• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PM10 och NO2 på utvalda skolgårdar i Stockholm : Skillnader i halter år 2010-2015-2020

Engström, Alva January 2022 (has links)
Luftföroreningar har varit ett problem världen över i många år, även i Stockholms tätort i och med hårt trafikerade vägar. Det är ett problem för både människan och miljön då det kan påverka människans kropp och bidra till klimatförändringar som påverkar miljön. Föroreningar som kvävedioxider (NO2) och partiklar (PM10) uppkommer till stor del från trafiken. NO2 bildas till stor del vid förbränning av bränsle och PM10 främst av dubbdäckens slitage på vägbanan. Både kvävedioxidhalter och partikelhalter kan vid inandning hos människan ge skadliga hälsoeffekter. Därav infördes miljökvalitetsmålet Frisk Luft år 1999, vilket ska vara vägledande för Sveriges arbete kring luftföroreningar. Detta miljökvalitetsmål är ett långsiktigt mål och innehåller hälsobaserade riktvärden. I Stockholm är det timmedelvärdet för NO2 och årsmedelvärdet för PM10 de luftföroreningar som är svårast att klara för miljökvalitetsmålet. Miljökvalitetsmålet Frisk Lufts satta målvärde för dessa är 60 μg/m3 (NO2 timmedelvärde) respektive 15 μg/m3 (PM10 årsmedelvärde). Barn är extra känsliga för luftföroreningar då deras lungor inte är fullt utvecklade förrän mellan sex och åtta år samt att de har ett annat andningsmönster än vad äldre människor har. Därmed är barn i en riskgrupp när det gäller luftföroreningar och kan vid exponering av dessa i ung ålder få bestående negativa effekter på sin andning. Skolgårdar intill hårt trafikerade vägar resulterar i att barn exponeras för mycket luftföroreningar. Vidare finns det en rekommendation att vid planering av förskole- och skolmiljöer där barn stadigvarande vistas ska fokus i första hand utgå från att klara de nivåer som anges i miljökvalitetsmålet. Detta arbete undersöker halterna av luftföroreningarna PM10 och NO2 på 29 utvalda skolgårdar i Stockholms stad, med överskridande, för åren 2010, 2015 och 2020. Detta för att undersöka om det går att se signifikanta skillnader och förändringar över åren på skolgårdarna som grupp och enskilt över tid. Med hjälp av dataunderlag från Miljöförvaltningen har datagranskning i GIS och därefter statistiska analyser genomförts. Studiens resultat visar att förändringar har skett mellan perioden 2015–2020 i Stockholms stad på flertalet av studiens utvalda skolgårdar. Signifikanta minskningar mellan åren för skolgårdarna som grupp går främst att se för PM10 maxhalter och medelhalter. För NO2 går det inte att se lika tydliga minskningar i halterna. Enbart en signifikant minskning i NO2 medelhalt går att identifiera mellan år 2015 och 2020 för skolgårdarna som grupp. Det går att se en tydlig minskning av halterna i staden och på de utvalda skolgårdarna som grupp samt enskilda gällande PM10 årsmedelvärde mellan perioden 2010–2020. För NO2 timmedelvärde går det enbart att se en signifikant minskning där halterna minskar för vardera år på en av de studerade skolgårdarna. En förklaring till studiens resultat kan vara de åtgärder som har gjorts i staden gällande luftföroreningar, främst partiklar.
2

CFD Simulation of Urea Evaporation in STAR-CCM+

Ottosson, Oscar January 2019 (has links)
Diesel engines produce large amounts of nitrogen oxides (NOX) while running. Nitrogen oxides are highly toxic and also contribute towards the formation of tropospheric ozone. Increasingly stringent legislation regarding the amount of nitrogen oxides that are allowed to be emitted from diesel-powered vehicles has forced manufacturers of diesel-engines to develop after-treatment systems that reduce the amount of nitrogen oxides in the exhaust. One of the main components in such a system is selective catalytic reduction (SCR), where nitrogen oxides are reduced to diatomic nitrogen and water with the help of ammonia. A vital part of this process is the spraying of a urea-water-solution (UWS), which is needed in order to produce the reducing agent ammonia. UWS spraying introduces the risk of solid deposits (such as biuret, ammelide and ammeline) forming in the after-treatment system, should the flow conditions be unfavourable. Risk factors include high temperatures, but also low dynamics and high thickness of the resulting liquid film that forms as the UWS spray hits the surfaces of the after-treatment system. It is thus essential that manufacturers of SCR after-treatment systems have correct data on how much UWS that should be sprayed into the exhaust for any given flow condition. Experimental tests are thoroughly used to assess this but are very expensive and are thus limited to prototype testing during product development. When assessing a wider range of concepts and geometries early on in the product development stage, simulation tools such as computational fluid dynamics (CFD) are used instead. One of the most computationally heavy processes to simulate within a SCR after-treatment system is the UWS spray and its interaction with surfaces inside the after-treatment system, where correct prediction of the formation of solid deposits are of great importance. Most CFD models used for this purpose hold a relatively good level of accuracy and are utilized throughout the whole industry where SCR aftertreatment is applied. Despite this, these models are limited in the fact that they are only able to cover timescales in the scope of seconds to minutes while using a tolerable amount of computational power. However, the time spectrum for solid deposit formation is minutes to hours. Scania is one of Sweden’s biggest developers of SCR after-treatment, with the technology being incorporated directly into its silencers. AVL Fire is the main UWS spray simulation tool for engineers at Scania at the moment. One major drawback of using AVL Fire for UWS spray simulations is that it is deemed too time-consuming to set up new cases and too unstable during simulation, which makes it too costly in terms of expensive engineering hours. This project has investigated the potential of using STAR-CCM+ for UWS spray simulations at Scania instead. A standard method has been evaluated, as well as parameters that will prove useful in further investigations of a potential speedup method. The studied method in STAR-CCM+ is easy to setup and the simulation process is robust and stable. Various other perks come from using STAR-CCM+ as well, such as: a user-friendly interface, easy and powerful mesh-generation and great post-process capabilities. Several different parameters have been investigated for their impact on the studied method, such as mesh refinement of the spray injector area and the number of parcels injected every time-step through the spray injector (simply put the resolution of the spray). A possible speedup by freezing the momentum equations when allowed and lowering the amount of inner iterations has also been investigated. A handful of operating conditions have been studied for two different geometries. The attained simulation results display correlations with physical measurements, but further assessment for identifying the risk of solid deposit needs to be performed on the studied cases to assess the full accuracy of solid deposit prediction of the studied method. Recommendations for future work includes fully implementing and evaluating the speedup method available for spray simulations in STAR-CCM+ as well as directly comparing how the accuracy and performance of the method relates to that of the method used in AVL Fire for spray simulations. / Dieselmotorer producerar under körning stora mängder kväveoxider (NOx). Kväve-oxider är starkt giftiga föreningar som även bidrar till att öka mängden marknära ozon. Allt strängare lagstiftning gällande mängden kväveoxider som får släppas ut från fordon med dieselmotorer har lett till att tillverkare av dieselmotorer blivit tvingade att utveckla efterbehandlingssystem som renar avgasen från motorn. En av huvudkomponenterna i ett sådant system idag är selective catalytic reduction (SCR; på svenska selektiv katalytisk reduktion), där kväveoxider omvandlas till kvävgas och vatten med hjälp av ammoniak. För att producera ammoniak används en lösning av urea och vatten (t.ex. AdBlue®), som introduceras till efterbehandlingssystemet via spray. Denna process har dock en stor nackdel, då det under omvandlingsprocessen kan finnas risk för klumpbildning av ämnen som biuret, ammelid och ammelin ifall flödesförhållandena är ogynnsamma. Riskfaktorer för klumpbildning inkluderar höga temperaturer samt låg dynamik och hög tjocklek för den vätskefilm som bildas när sprayen med urea-lösning kommer i kontakt med ytor i efterbehandlingssystemet. Det är därför av stor vikt för tillverkare av efterbehandlingssystem som använder SCR att känna till hur mycket urealösning som kan sprayas in för varje givet flöde. Experimentella tester används till stor del för att utvärdera detta, men är väldigt dyra och kan endast göras för ett fåtal prototyper under en produkts utveckling. För att kunna utvärdera ett större antal koncept och geometrier tidigare i utvecklingsstadiet av en ny produkt används därför ofta datorkraft med simuleringsverktyg som CFD (Computational Fluid Dynamics). En av de mest beräkningstunga processerna att simulera i ett efterbehandlingssystem med SCR är sprayandet av urea-lösning och dess interaktion med ytor, där korrekta förutbestämmelser av huruvida det finns risk för klumpbildning eller inte är av stor betydelse. De flesta CFD modeller som används i detta syfte har förhållandevis god noggrannhet och används i stor utsträckning i den bransch där efterbehandling med SCR tillämpas. Däremot är dessa modeller begränsade i att de endast kan åstadkomma simuleringar (med en acceptabel mängd datorkraft) som sträcker sig i tidsintervallet sekunder till minuter. Bildningen av klump är dock en process som kan ta upp till flera timmar. Scania är en av Sveriges största tillämpare av SCR, då tekniken används i de efterbehandlingssystem som finns inbyggda i tillverkarens ljuddämpare. Scania använder främst AVL Fire för simulering av spray med urea. AVL Fire anses dock vara för tidskrävande vid skapelsen av nya simuleringsfall och för instabilt under simulering. Detta projekt har därför undersökt möjligheten att använda STAR-CCM+ för simulering av spray med urea hos Scania. Den metod i STAR-CCM+ som utvärderats är enkel att använda då nya simuleringsfall ska skapas, samtidigt som den är robust och stabil under simulering. Relevanta parametrar för en potentiell uppsnabbningsmetod har också undersökts. STAR-CCM+ i sin helhet är användarvänligt, där verktyget för att skapa och generera mesh är enkelt att använda såväl som kraftfullt när mer avancerade operationer krävs. Möjligheterna för postprocessing är väldigt smidiga för transienta förlopp, vilket är ett stort plus för simuleringar med urea-spray, vars injektion och resulterande processer är väldigt transienta skeenden i sig. Flera olika parametrar har undersökts, för att granska hur stor påverkan de har på prestandan och noggrannheten hos den studerade metoden. Två av dessa är tätheten av beräkningsnoder i den region där spray-munstycket är placerat samt antalet paket med urea-vatten lösning som injiceras varje tidssteg via spray-munstycket. En möjlig uppsnabbning av metoden, som går ut på att frysa ekvationerna för bevarelse av rörelsemängd (eng - momentum equations) när det är tillåtet och samtidigt minska antalet inre iterationer för varje tidssteg, har också undersökts. Ett flertal olika flödesförhållanden har också undersökts för två olika geometrier. De erhållna resultaten tyder på korrelation med data från fysiska experiment. Dock bör ytterligare hydrodynamiska utvärderingar tillämpas för att ordentligt kunna redogöra för hur väl STAR-CCM+ kan användas för att förutse risken för klump- bildning i en spray-process med urea-vatten lösning. Framtida arbete borde fokusera på att utvärdera den uppsnabbningsmetod som finns för spray-simuleringar i STAR-CCM+, samt direkt jämföra hur väl metodens noggrannhet och prestanda står sig gentemot den metod som används i AVL Fire för spray-simuleringar.

Page generated in 0.2548 seconds