Spelling suggestions: "subject:"landnutzungsänderungen"" "subject:"landnutzungswandel""
11 |
Is short rotation forestry biomass sustainable?Zurba, Kamal 27 October 2016 (has links) (PDF)
Despite the negative effects of fossil fuels on the environment, these remain as the primary contributors to the energy sector. In order to mitigate global warming risks, many countries aim at reducing greenhouse gas emissions. Bioenergy crops are being used as a substitute for fossil fuels and short rotation forestry is a prime example.
In order to examine the sustainability of energy crops for fuel, typical European short rotation forestry (SRF) biomass, willow (Salix spp.) and poplar (Populus spp.) are examined and compared to rapeseed (Brassica napus L.) in respect to various aspects of soil respiration and combustion heat obtained from the extracted products per hectare.
Various approaches are used to look at an As-contaminated site not only in the field but also in a soil-column experiment that examines the fate of trace elements in SRF soils, and in an analysis using MICMAC to describe the driving factors for SRF crop production. Based on the cause-effect chain, the impacts of land-use change and occupation on ecosystem quality are assessed when land-use is changed from degraded land (grassland) to willow and poplar SRF.
A manual opaque dynamic closed chamber system (SEMACH-FG) was utilized to measure CO2 emissions at a willow/poplar short rotation forest in Krummenhennersdorf, Germany during the years 2013 and 2014, and at a rapeseed site in 2014.
Short rotation forest soils showed higher CO2 emission rates during the growing season than the dormant season – with a CO2 release of 5.62±1.81 m-2 s-1 for willows and 5.08±1.37 µmol CO2 m-2 s-1 for poplars in the growing season. However, during the dormant season the soil sites with willow emitted 2.54±0.81 µmol CO2 m-2 s-1 and with poplar 2.07±0.56 µmol CO2 m-2 s-1. The highest emission rates for the studied plantations were observed in July for both years 2013 and 2014, during which the highest air and soil temperatures were recorded.
Correlations between soil emission of CO2 and some meteorological parameters and leaf characteristics were investigated for the years 2013 and 2014. For example, for the willow clone (Jorr) and poplar clone (Max 3), high correlations were found for each between their soil emission of CO2 and both soil temperature and moisture content. Fitted models can explain about 77 and 75% of the results for Jorr and Max 3 clones, respectively. Moreover, a model of leaf area (LA) can explain about 68.6% of soil CO2 emission for H275. Estimated models can be used as a gap-filling method, when field data is not available.
The ratio between soil respiration and the combustion heat calculated from the extracted products per hectare was evaluated and compared for the study’s willow, poplar and rapeseed crops. The results show that poplar and willow SRF has a very low ratio of 183 kg CO2 GJ 1 compared to rapeseed, 738 kg CO2 GJ 1.
The soil-column experiment showed that by continuing the SRF plantation at the As-contaminated site, remediation would need only about 3% of the time needed if the site was left as a fallow field.
In order to understand the complex willow and poplar short rotation forestry production system, 50 key variables were identified and prioritized to describe the system as a step to enhance the success of such potentially sustainable projects. The MICMAC approach was used in order to find the direct and the indirect relationships between those parameters and to classify them into different clusters depending on their driving force and interdependency. From this, it can be summarized that in order to enhance the success of a SRF system, decision makers should be focussing on: ensuring a developed wood-fuel market, increasing farmers’ experience/training, improving subsidy regulations and recommending a proper harvesting year cycle.
Finally, the impacts of land-use change and occupation on the ecosystem quality were assessed. Results show that establishing SRF plantations on degraded lands improved the ecosystem structural quality (ESQ) by about 43% and ecosystem functional quality (EFQ) by about 12%.
Based on overall results, poplar and willow SRF biomass can be recommended as renewable and sustainable sources for bioenergy.
|
12 |
Mapping patterns of agricultural land-use intensity across EuropeEstel, Stephan 19 August 2016 (has links)
Die weltweite Bevölkerungszunahme, sich ändernde Ernährungsgewohnheiten, und die Nachfrage nach Bioenergie erfordern eine Erhöhung der landwirtschaftlichen Produktion. Die Intensivierung bestehender landwirtschaftlicher Flächen ist hierbei eine mögliche Option. Allerdings verstehen wir nur wenig von den räumlichen Mustern der landwirtschaftlichen Nutzungsintensität, da adäquate Datensätze fehlen. Europa ist eine beispielhafte Region, in der eine Intensivierung als auch ein Rückgang der Landnutzung stattfindet. Ziel dieser Dissertation war es Methoden zu entwickeln, die MODIS NDVI Zeitreihen und statistische Daten kombinieren und eine europaweite Kartierung der landwirtschaftlichen Nutzungsintensität ermöglichen. Für eine Einschätzung der landwirtschaftlichen Nutzungsintensität wurden eine Reihe von Intensitätsindikatoren entwickelt und kartiert. Die resultierenden Karten zeigen eine hohe Landnutzungsintensität in West- und Zentraleuropa und dem Mittelmeerraum, gekennzeichnet durch Mehrfachernten und langen Anbauzeiten. Gebiete mit niedriger Intensität lagen in Osteuropa, in Gebirgsregionen sowie in der Extremadura in Spanien, wo Brachland und die Aufgabe von Agrarflächen häufig sind. Die Aufgabe von Agrarflächen ist ein aktueller Prozess der Landnutzungsveränderung in Osteuropa, während die gleichzeitige Rekultivierung ehemaliger Agrarflächen ebenfalls umfassend ist. Diese räumlichen Muster lassen sich mit unterschiedlichen Agrarumweltbedingungen begründen aber auch mit sozioökonomischen Veränderungen wie die Restrukturierung des osteuropäischen Agrarsektors nach 1989 oder die Marginalisierung landwirtschaftlicher Flächen insbesondere in Gebirgsregionen. Die entstandenen Karten belegen das Potential von MODIS NDVI Zeitreihen, komplexe Phänomene landwirtschaftlicher Nutzungsintensität zu erfassen. Diese könnten genutzt werden um Umweltfolgen der landwirtschaftlichen Produktion zu bewerten oder Zielregionen für eine nachhaltige Intensivierung zu identifizieren. / Global population growth, changing diets, and the demand of bioenergy require an increase in agricultural production. Intensifying agricultural production is one pathway to meet increasing demands. However, our understanding of spatial patterns of agricultural land use remains weak since adequate data sets are lacking. Europe is as a prime example for a region that is undergoing both, intensification as well as decreasing agricultural land use. The goal of this doctoral thesis was to develop methodologies that combine MODIS NDVI time series and agricultural statistics to map spatial patterns of land-use intensity across Europe. To assess land-use intensity, a wide range of intensity indicators were mapped. The resulting maps revealed high-intensity areas in Western and Central Europe and the Mediterranean region, characterized by multi-harvests and long crop duration. Low-intensity areas are mostly located in Eastern Europe, in mountain regions and the Extremadura in Spain, where fallow and abandonment land are widespread. Agricultural abandonment is an ongoing land-use change process in Eastern Europe. At the same time, recultivation of formerly abandoned land is widespread as well. These spatial patterns are the result of agro-environmental conditions but also of changes in socio-economic conditions such as the restructuring of the agricultural sector in eastern European countries after 1989, or the marginalization of farmland especially in mountain regions. The resulting maps show the potential of MODIS time series to assess the complex phenomenon of land-use intensity. They may form a basis to assess the environmental outcomes of agricultural production and to identify target regions for sustainable intensification.
|
13 |
Entwicklung von Landnutzungsszenarien für landschaftsökologische FragestellungenFritsch, Uta January 2002 (has links)
Die Landschaften Mitteleuropas sind das Resultat einer langwierigen Geschichte menschlicher Landnutzung mit ihren unterschiedlichen, z.T. konkurrierenden Nutzungsansprüchen. Durch eine überwiegend intensive Beanspruchung haben die direkten und indirekten Auswirkungen der Landnutzung in vielen Fällen zu Umweltproblemen geführt. Die Disziplin der Landschaftsökologie hat es sich zur Aufgabe gemacht, Konzepte für eine nachhaltige Nutzung der Landschaft zu entwickeln. Eine wichtige Fragestellung stellt dabei die Abschätzung der möglichen Folgen von Landnutzungsänderungen dar.<br />
Für die Analyse der relevanten Prozesse in der Landschaft werden häufig mathematische Modelle eingesetzt, welche es erlauben die Landschaft unter aktuellen Verhältnissen oder hinsichtlich veränderter Rahmenbedingungen zu untersuchen. Die hypothetische Änderung der Landnutzung, die als Landnutzungsszenario bezeichnet wird, verkörpert eine wesentliche Modifikation der Rahmenbedingungen, weil Landnutzung maßgeblich Einfluss auf die natürlichen Prozesse der Landschaft nimmt. Während die Antriebskräfte einer solchen Änderung überwiegend von sozio-ökonomischen und politischen Entscheidungen gesteuert werden, orientiert sich die exakte Verortung der Landnutzungsänderungen an den naturräumlichen Bedingungen und folgt z.T. erkennbaren Regeln. Anhand dieser Vorgaben ist es möglich, räumlich explizite Landnutzungsszenarien zu entwickeln, die als Eingangsdaten für die Modellierung verschiedener landschaftsökologischer Fragestellungen wie z.B. für die Untersuchung des Einflusses der Landnutzung auf den Wasserhaushalt, die Erosionsgefahr oder die Habitatqualität dienen können. <br />
<br />
Im Rahmen dieser Dissertation wurde das rasterbasierte deterministische Allokationsmodell luck (Land Use Change Scenario Kit) für die explizite Verortung der Landnutzungsänderungen entwickelt. Es basiert auf den in der Landschaftsökologie üblichen räumlichen Daten wie Landnutzung, Boden sowie Topographie und richtet sich bei der Szenarienableitung nach den Leitbildern der Landschaftsplanung. Das Modell fußt auf der Hypothese, dass das Landnutzungsmuster als Funktion seiner landschaftsökologischen Faktoren beschrieben werden kann. Das Veränderungspotenzial einer Landnutzungseinheit resultiert im Modell aus einer Kombination der Bewertung der relativen Eignung des Standortes für die jeweilige Landnutzung und der Berücksichtigung von Standorteigenschaften der umliegenden Nachbarn. Die Durchführung der Landnutzungsänderung im Modell ist iterativ angelegt, um den graduellen Prozess des Landschaftswandels nachvollziehen zu können.<br />
Als Fallbeispiel für die Anwendung solcher räumlich expliziten Landnutzungsszenarien dient die Fragestellung, inwieweit Landnutzungsänderungen die Hochwasserentstehung beeinflussen. Um den Einfluss auf die Hochwasserentstehung für jede der Landnutzungskategorien – bebaute, landwirtschaftlich genutzte und naturnahe Flächen – abschätzen zu können, wird im Landnutzungsmodell luck exemplarisch für jede Kategorie ein Teilmodell für die Veränderung von Landnutzung angeboten: <br />
1) Ausdehnung der Siedlungsfläche: Dieses Teilmodell fußt auf der Annahme, dass sich Siedlungen nur in direkter Nachbarschaft bereits bestehender Bebauung und bevorzugt entlang von Entwicklungsachsen ausbreiten. Steile Hangneigungen stellen für potenzielle Standorte ein Hemmnis bei der Ausbreitung dar. <br />
2) Stilllegung von Grenzertragsackerflächen: Gemäß der Hypothese, dass sich die Stilllegung von Ackerflächen an der potenziellen Ertragsleistung der Standorte orientiert, werden in diesem Teilmodell alle Ackerstandorte dahingehend bewertet und die Flächen mit der geringsten Leistungsfähigkeit stillgelegt. Bei homogenen Gebietseigenschaften werden die Stilllegungsflächen zufällig auf die Ackerfläche verteilt.<br />
3) Etablierung von Schutzgebieten in Ufer- und Auenbereichen: Ausgehend von der These, dass sich entlang von Flüssen sensible Flächen befinden, deren Schutz positive Folgen für das Leistungsvermögen der Landschaft haben kann, werden in diesem Teilmodell schützenswerte Ufer- und Auenbereiche auf derzeit landwirtschaftlich genutzten Flächen ausgewiesen. Die Größe der Schutzgebietsfläche orientiert sich an der Morphologie der umgebenden Landschaft.<br />
<br />
Die drei Teilmodelle wurden hinsichtlich der implizierten Hypothesen mit vielen unterschiedlichen Ansätzen validiert. Das Resultat dieser intensiven Analyse zeigt für jedes Teilmodell eine zufriedenstellende Tauglichkeit. <br />
Die Modellierung der Landnutzungsänderungen wurden in drei mesoskaligen Flusseinzugsgebieten mit einer Fläche zwischen 100 und 500 km² durchgeführt, die sich markant in ihrer Landnutzung unterscheiden. Besonderer Wert wurde bei der Gebietsauswahl darauf gelegt, dass eines der Gebiete intensiv landwirtschaftlich genutzt wird, eines dicht besiedelt und eines vorwiegend bewaldet ist. <br />
Im Hinblick auf ihre Relevanz für die vorliegende Fragestellung wurden aus bestehenden Landnutzungstrends die Szenarien für (1) die prognostizierte Siedlungsfläche für das Jahr 2010, (2) die möglichen Konsequenzen des EU-weiten Beschlusses der Agenda 2000 und (3) die Novelle des Bundesnaturschutzgesetzes aus dem Jahr 2001 abgeleitet.<br />
Jedes Szenario wurde mit Hilfe des Modells auf die drei Untersuchungsgebiete angewendet. Dabei wurden für die Siedlungsausdehnung in allen drei Gebieten realistische Landnutzungsmuster generiert. Einschränkungen ergeben sich bei der Suche nach Grenzertragsstilllegungsflächen. Hier hat unter homogenen Gebietseigenschaften die zufällige Verteilung von Flächen für die Stilllegung zu einem unrealistischen Ergebnis geführt. Die Güte der Schutzgebietsausweisung ist maßgeblich an die aktuelle Landnutzung der Aue und die Morphologie des Geländes gebunden. Die besten Ergebnisse werden erzielt, wenn die Flächen in den Ufer- und Auenbereichen mehrheitlich unter derzeitiger Ackernutzung stehen und der Flusslauf sich in das Relief eingetieft hat.<br />
Exemplarisch werden für jeden Landnutzungstrend die hydrologischen Auswirkungen anhand eines historischen Hochwassers beschrieben, aus denen jedoch keine pauschale Aussage zum Einfluss der Landnutzung abgeleitet werden kann.<br />
Die Studie demonstriert die Bedeutung des Landnutzungsmusters für die natürlichen Prozesse in der Landschaft und unterstreicht die Notwendigkeit einer räumlich expliziten Modellierung für landschaftsökologische Fragestellungen in der Mesoskala. / Today′s landscapes in Central Europe are the result of a long history of land-use, which is characterised by many different demands. The immediate and long-term consequences of predominantly intensive land-use have led to environmental problems in many cases. Therefore it is necessary to develop strategies for the maintenance of landscape efficiency which take into account the different claims of utilisation. In this context the estimation of possible impacts of land-use changes represents an important statement of problem. <br />
For the analysis of the relevant processes within the landscape, it is common to apply mathematical models. Such models enable the investigation of the landscape under current conditions or with regard to modified boundary conditions. A hypothetic alteration of land-use, which is termed as land-use scenario, represents a substantial modification of the boundary conditions, because land-use exerts a strong influence on the natural processes of the landscape. While the driving forces are predominantly governed by socio-economical and political decisions, the exact location of land-use changes within the landscape mainly depends on the natural conditions and follows partly transparent rules. With these presumptions it is possible to develop land-use scenarios, which can serve as input data for the modelling of different questions of landscape ecology such as the influence of land-use on the water balance, the danger of erosion or the quality of habitat characteristics. <br />
In the context of this thesis the grid-based deterministic allocation model luck (Land Use Change Scenario Kit) for the allocation of land-use changes was developed. It is based upon the types of spatial data, which are commonly used in landscape ecology, such as information on land-use, soils as well as topography. The derivation of scenarios follows the approaches of landscape planning. The model is based upon the hypothesis, that land-use structure can be described as a function of its landscape ecological factors. The potential of a site to become subject to land-use changes, results from a combination of its local qualities and the site characteristics of its neighbourhood. Land-use change is realised iteratively in order to simulate the gradual process of changes in the landscape.<br />
The influence of land-use changes on flood generation serves as a case study to demonstrate the need for spatial explicit land-use scenarios. For each land-use category – built up areas, agriculturally used areas and natural/semi-natural land – the model luck offers a submodel for investigating the effect of land-use changes on flood generation: <br />
<br />
1) Expansion of settlement area: This submodel is based upon the assumption that settlements spread only in the neighbourhood of already existing built-up areas and preferentially along infrastructural axes of development. Steep slopes inhibit the spreading on potential locations.<br />
2) Set-aside of marginal yield sites under agricultural use: Setting-aside of arable land is based on the hypothesis that the selection of arable land to be set-aside depends on the potential yield efficiency of the locations. Within this submodel all fields under agricultural use are valued to that effect and the ones with the least productive efficiency are selected as set-aside locations. In case of homogeneous area qualities the set-aside locations are selected randomly. <br />
3) Establishment of protected areas in waterside and ripearian areas: This submodel takes into consideration that the protection of sensitive areas along the river courses may have positive consequences for the efficiency of the landscape. Therefore this submodel establishes protection zones on waterside and ripearian sites under currently agricultural use, that might be of value for nature conservation. The size of the protection area depends on the morphology of the surrounding landscape. <br />
<br />
The three submodels were validated with respect to the implied hypotheses by the help of many different approaches. The result of this intensive analysis shows a satisfying suitability for each of the submodels.<br />
<br />
The simulation of land-use changes was carried out for three mesoscale river catchments with an area between 100 and 500 km². Special attention was paid to the fact that these areas should be markingly different in their land-use: One study area is predominantly under intensive agricultural use, one is densely populated and the third one is covered by forest in large parts of the area. <br />
With regard to their relevance to the onhand question from existing land-use trends scenarios were derived for the prognosed settlement area for the year 2010, for the possible consequences of the EU-wide agreement of Agenda 2000 and for the amending federal conservation law dating to the year 2001, which enhances the enlargement of protected areas. <br />
Each scenario was applied to the three study areas utilizing the model luck. For the expansion of the settlement areas in all three study areas realistic land-use patterns were generated. Limitations arose only in the context of the search for marginal yield fields. Here, the random distribution of areas to be set-aside under homogeneous conditions led to unrealistic results. The quality of the establishment of protected areas in waterside and ripearian areas is substantially bound to current land-use and the morphology of the area. The best results for this submodel are achieved if waterside and ripearian areas are mainly arable land and if the river has lowered its course into the morphology. <br />
The hydrological consequences are described exemplarily for each land-use trend with a historical flood event. The interpretation of the hydrographs does not allow global statements about the influence of land-use. <br />
The study demonstrates the significance of land-use pattern for the natural processes in the landscape and underlines the necessity of spatially explicit modelling for landscape ecological questions at the mesoscale.
|
14 |
Integrated modelling of Global Change impacts in the German Elbe River BasinHattermann, Fred Fokko January 2005 (has links)
The scope of this study is to investigate the environmental change in the German part of the Elbe river basin, whereby the focus is on two water related problems: having too little water and having water of poor quality.
<br><br>
The Elbe region is representative of humid to semi-humid landscapes in central Europe, where water availability during the summer season is the limiting factor for plant growth and crop yields, especially in the loess areas, where the annual precipitation is lower than 500 mm. It is most likely that water quantity problems will accelerate in future, because both the observed and the projected climate trend show an increase in temperature and a decrease in annual precipitation, especially in the summer. Another problem is nutrient pollution of rivers and lakes. In the early 1990s, the Elbe was one of the most heavily polluted rivers in Europe. Even though nutrient emissions from point sources have notably decreased in the basin due to reduction of industrial sources and introduction of new and improved sewage treatment facilities, the diffuse sources of pollution are still not sufficiently controlled.
<br><br>
The investigations have been done using the eco-hydrological model SWIM (Soil and Water Integrated Model), which has been embedded in a model framework of climate and agro-economic models. A global scenario of climate and agro-economic change has been regionalized to generate transient climate forcing data and land use boundary conditions for the model. The model was used to transform the climate and land use changes into altered evapotranspiration, groundwater recharge, crop yields and river discharge, and to investigate the development of water quality in the river basin. Particular emphasis was given to assessing the significance of the impacts on the hydrology, taking into account in the analysis the inherent uncertainty of the regional climate change as well as the uncertainty in the results of the model.
<br><br>
The average trend of the regional climate change scenario indicates a decrease in mean annual precipitation up to 2055 of about 1.5 %, but with high uncertainty (covering the range from -15.3 % to +14.8 %), and a less uncertain increase in temperature of approximately 1.4 K. The relatively small change in precipitation in conjunction with the change in temperature leads to severe impacts on groundwater recharge and river flow. Increasing temperature induces longer vegetation periods, and the seasonality of the flow regime changes towards longer low flow spells in summer. As a results the water availability will decrease on average of the scenario simulations by approximately 15 %. The increase in temperatures will improve the growth conditions for temperature limited crops like maize. The uncertainty of the climate trend is particularly high in regions where the change is the highest.
<br><br>
The simulation results for the Nuthe subbasin of the Elbe indicate that retention processes in groundwater, wetlands and riparian zones have a high potential to reduce the nitrate concentrations of rivers and lakes in the basin, because they are located at the interface between catchment area and surface water bodies, where they are controlling the diffuse nutrient inputs. The relatively high retention of nitrate in the Nuthe basin is due to the long residence time of water in the subsurface (about 40 years), with good conditions for denitrification, and due to nitrate retention and plant uptake in wetlands and riparian zones.
<br><br>
The concluding result of the study is that the natural environment and communities in parts of Central Europe will have considerably lower water resources under scenario conditions. The water quality will improve, but due to the long residence time of water and nutrients in the subsurface, this improvement will be slower in areas where the conditions for nutrient turn-over in the subsurface are poor. / Ziel der vorliegenden Arbeit ist die Untersuchung der Auswirkungen des Globalen Wandels auf den Wasserkreislauf im deutschen Teil des Elbeeinzugsgebietes. Der Fokus liegt dabei auf Wassermengen- und Wasserqualitätsproblemen.
<br><br>
Die Elbe liegt im Zentrum Europas im Übergangsbereich zwischen ozeanischen und kontinentalen Klimaten, wo die Wasserverfügbarkeit in den Sommermonaten den limitierenden Faktor für das Pflanzenwachstum und die landwirtschaftlichen Erträge bildet. Dies gilt insbesondere für die Lössgebiete im Lee des Harzes, wo die jährlichen Niederschläge unter 500 mm liegen. Es ist sehr wahrscheinlich, dass sich die Wassermengenprobleme in Zukunft noch verstärken werden, denn sowohl das beobachtete als auch das für die Zukunft projizierte Klima in der Region zeigen höhere Temperaturen und fallende Niederschläge, besonders im Sommer. Ein weiteres Problem ist die hohe Nährstoffbelastung der Flüsse und Seen im Elbeeinzugsgebiet. Anfang der neunziger Jahre war die Elbe eine der am stärksten belasteten Flüsse in Europa. Obwohl die Einträge besonders aus Punktquellen durch den Rückgang der Industrie und den Bau von neuen Kläranlagen seitdem gefallen sind, gelangen trotzdem noch große Nährstoffmengen aus diffusen Quellen in die Gewässer.
<br><br>
Die Untersuchungen wurden unter Anwendung des ökohydrologischen Modells SWIM (Soil and Water Integrated Model) durchgeführt, welches über Schnittstellen mit Klimamodellen und agroökonomischen Modellen verbunden wurde. Ein globales Szenario des Klimawandels und des landwirtschaftlichen Wandels wurde regionalisiert, um so die geänderten Randbedingungen für den Szenarienzeitraum zu erhalten. Simulationen mit SWIM dienten dann dazu, die geänderten Randbedingungen in Änderungen im Wasserhaushalt und in den landwirtschaftlichen Erträgen zu transformieren. Außerdem wurde das Langzeitverhalten von Nährstoffen im Untersuchungsgebiet modelliert. Besonderer Wert wurde dabei darauf gelegt, die Unsicherheit der Szenarienergebnisse zu quantifizieren.
<br><br>
Der mittlere Szenarientrend zeigt eine Reduzierung der mittleren jährlichen Niederschläge bis zum Jahre 2055 um ungefähr 1.5 %, wobei die Ergebnisse mit einer großen Unsicherheit behaftet sind: die Spannweite der Niederschläge in den Szenarienrealisationen liegt zwischen -15.3 % und +14.8 %. Die Erwärmung unter Szenarienbedingungen mit ungefähr 1.4 K ist weniger unsicher. Diese relativ geringen Änderungen habe starke Auswirkungen auf den Wasserhaushalt im Elbegebiet: durch die steigenden Temperaturen wird die Vegetationszeit verlängert, und die Niedrigabflussperiode im Sommer wird sich in den Herbst ausdehnen. Insgesamt wird unter dem mittleren Szenarientrend die Wasserverfügbarkeit um ca. 15 % abnehmen. Außerdem werden sich durch die steigenden Temperaturen die Anbaubedingungen für wärmeliebende Ackerfrüchte in der Landwirtschaft verbessern. Die Unsicherheit des Klimatrends ist dort am größten, wo auch die lokalen Änderungen am größten sind.
<br><br>
Die Simulationsergebnisse für das Nuthe-Teileinzugsgebiet der Elbe zeigen, das Retentionsprozesse im Untergrund und in den Feucht- und Auengebieten einen starken Einfluss auf die Wasserqualität und die Nitratkonzentration der Oberflächengewässer haben, da sie durch ihre Lage im Einzugsgebiet eine Schnittstelle zwischen dem umliegenden Einzugsgebiet und den Flüssen und Seen bilden. Die relativ hohe Umsetzung von Nitrat im Einzugsgebiet der Nuthe kann dadurch erklärt werden, dass Nitrat eine relativ lange Aufenthaltszeit im Grundwasser (im Mittel 40 Jahre) mit einer hohen Nitratumsetzungsrate hat, und durch die guten Denitrifizierungsbedingungen in den Feucht- und Auengebieten. Dazu kommt noch, dass große Nitratmengen durch die Pflanzen in den Feuchtgebieten aus dem Grundwasser aufgenommen werden.
<br><br>
Zusammenfassend kann man sagen, das sich die Ökosysteme und die Gesellschaft im Elbeeinzugsgebiet unter Szenarienbedingungen auf niedrigere Wasserverfügbarkeit einstellen müssen. Die Wasserqualität wird sich grundsätzlich zwar weiter verbessern, aber aufgrund der langen Verweilzeit der Nährstoffe im Grundwasser wird dies insbesondere in den Teileinzugsgebieten, in denen die geochemischen Bedingungen für einen hohen Nährstoffumsatz nicht gegeben sind, noch relativ lange dauern.
|
15 |
Möglichkeiten und Grenzen von Aufforstung als Beitrag zum dezentralen HochwasserschutzWahren, Andreas 30 September 2013 (has links) (PDF)
Wald weist gegenüber anderen Landnutzungen meist die günstigeren Wasserrückhalteigenschaften auf. Diese sind jedoch begrenzt. Ob zusätzlicher Wald in einem Einzugsgebiet zur Reduktion eines Hochwassers führt, hängt ab von der Vorwitterung, den Eigenschaften des Bodens, auf dem die Aufforstung etabliert wurde, Dauer und Intensität des hochwasserauslösenden Niederschlagsereignisses und Lage und Größe der Aufforstungsfläche im betrachteten Einzugsgebiet. Weiterhin spielt das Waldmanagement, welches in dieser Arbeit nur am Rande diskutiert wurde, eine bedeutende Rolle. Bei der Umwandlung einer anderen Landnutzung in Wald sind noch nicht alle Prozesse, die den Wasserrückhalt betreffen, ausreichend untersucht und beschrieben. Dies gilt besonders für die Änderungen in der hydraulischen Architektur der Böden. Es wurde dargestellt, dass aufwachsende Wälder schon nach wenigen Jahren die Porenverteilung besonders in den oberen Bodenhorizonten verändern. Obwohl experimentelle Felduntersuchungen besonders durch die Suche nach geeigneten Teststandorten schwierig sind, wären weitere Messergebnisse von anderen Böden mit anderen Baumarten hier wünschenswert. Eine modellhafte Beschreibung einer Landnutzungsänderung hin zu Wald in Bezug auf den Hochwasserrückhalt ist demnach mit hohen Unsicherheiten behaftet. Modelle bleiben dennoch die einzige Möglichkeit, Auswirkungen von Landnutzungsänderungen mit vertretbarem Aufwand quantifizierend abzuschätzen.
Allgemein gilt bei der Anwendung hydrologischer Modelle zur Prognose von Auswirkungen veränderter Landnutzungen, dass bislang wenig quantitativ verwertbares Wissen über Änderungen im Boden besteht. Weder der Zielzustand noch der Verlauf der Transformation können hier sicher prognostiziert werden. Vernachlässigt man aber solche Prozesse, dürfen bei einer Ergebnisdiskussion auch nur die berücksichtigten Prozesse angeführt werden. Die Weiterentwicklung der Modelle mit gezielter paralleler Datenerhebung ist hier unabdingbar. Die zunehmenden Fragestellungen hinsichtlich veränderter Landnutzungssysteme erfordern auch innovative Formen der Parametrisierung und Kalibrierung der Modelle. Der zunehmende Grad an Prozessabbildungen in den Modellen darf die Parametrisierbarkeit nicht unmöglich machen. Eine adäquate Prozessabbildung ist jedoch der Schlüssel für die szenarienfähige Modellierung. Die Kommunikation der Ergebnisse muss deshalb eine hohe Transparenz mit der Benennung aller bekannten Unsicherheiten aufweisen, da Entscheidungen in der Landnutzung Konsequenzen über sehr lange Zeiträume hinweg nach sich ziehen.
Die qualifizierte Prognose von Landnutzungsänderungen ist eine disziplinübergreifende Aufgabe. Hier wirken soziologische, ökonomische und ökologische Prozesse zusammen, deren Resultat die zukünftige Landnutzung ist. Eine weitere wichtige Schlussfolgerung der vorliegenden Arbeit ist daher, dass für die Umsetzung von Maßnahmen, zur Erhöhung des Wasserrückhaltes, wie hier der Aufforstung, ein breiter wissenschaftlicher und gesellschaftlicher Konsens herrschen muss. Es braucht integrierte Ansätze zur disziplinübergreifenden Beschreibung von Auswirkungen veränderter Landnutzung. Trotz aller Unsicherheiten bei der wissenschaftlichen Beweisführung wird erwartet, dass bis zur Umsetzung der Hochwasserrisiko-Managementpläne „nachhaltige Flächennutzungen“ zur „Verbesserung des Wasserrückhaltes“ definiert sind. Besonders für die politischen Entscheidungsträger ist zur Entwicklung geeigneter Steuerelemente festzuhalten, das Hochwasserschutzmaßnahmen in der Fläche ihre hauptsächliche Wirkung nicht am Punkt der Implementierung entfalten, sondern erst weiter flussabwärts. Daher sind die bisherigen Förderinstrumente der EU-Agrarflächenförderung für den Hochwasserschutz in der Fläche nahezu nicht anwendbar. Es gilt hier sektorales Denken zu überwinden. Unterschiedliche Ansprüche an Landnutzungssysteme sind durch Lösungsansätze auszubalancieren, die die unterschiedlichen Landschaftsfunktionen berücksichtigen, von denen Wasserrückhalt ein Teil sein kann. Andere Schutzziele wie Naturschutz, Bodenschutz, Ziele der Wasserrahmenrichtlinie, Fragen eines ästhetischen Landschaftsbildes und nicht zuletzt Fragen der wirtschaftlichen Ansprüche an die einzelnen Flächen spielen hier eine wichtige Rolle. Bei der Entwicklung begründeter Zukunftsszenarien ist diese transdisziplinäre Herangehensweise unbedingt zu empfehlen.
Hochwasserschutz kann aber nicht die Aufgabe haben, Hochwasserereignisse vollkommen auszuschließen. Schon heute ist bekannt, dass das Ausbleiben kleiner und mittlerer Hochwässer ökologische Konsequenzen hat. Vielmehr könnte in Gebieten, wie dem hier untersuchten, eine Erhöhung des Waldanteils dazu beitragen, die anthropogenen Störungen zu reduzieren und den Wasserrückhalt dahingehend zu erhöhen, dass hochwasserverschärfende Eingriffe in den Einzugsgebieten zurückgebaut werden. / Forests show, compared to other land uses, in many cases good water retention potential. This is however limited. Whether additional forest area in a catchment leads to a reduction of flooding depends on the pre-event atmospheric conditions, the soil characteristics at the afforested site, the duration and intensity of the rain storm event, and location and size of the afforested area. Further, the forest management, which is only briefly discussed in this thesis, plays an important role. Many water retention related processes occurring during the transformation of a landuse into forest are not yet sufficiently investigated an described. This applies especially to the changes in the hydraulic architecture of the soil. It was shown that after a few years growing forests have already changed the pore distribution, especially in the upper soil horizons. However, further research under different soil and tree type would be desirable. Therefore, a model-based description of land use change towards forest with regard to flood retention comprises uncertainties which should be taken into consideration. Nevertheless, models are the only possibility to assess land use change effects with justifiable expenditure.
In general, the application of hydrological models comprised sparse useful information about changes in the soil due to a changed land use. Neither the target state nor the progression of the transformation can be predicted with certainty. Further development of models with parallel observations and data gathering is essential. With increasing number of questions regarding modified land use systems, a need arises for innovative forms of parameterisation and model calibration. The increasing degree of process mapping in models may make parameterability difficult, however, adequate process mapping is the key to scenario capable modelling. The communication of results must therefore include a high degree of transparency in the definition of all known uncertainties, because decisions have long lasting consequences.
A qualified prediction of land use changes is a cross-disciplinary task. Ecological, economical, and sociological processes together form the future land use distribution. An important conclusion from this thesis is that the implementation of measures targeting increased water retention requires must result in a consensus with society and economics. Integrated approaches and transdisciplinary assessment of impacts of land use modifications are needed. Although, the uncertainties in model-based land use change assessment are high, there is a need for the definition of “sustainable land use” and “increase of water retention” for the flood risk management plans. Adapted land use as a component of integrated flood risk management has a major constraint: the benefits of water retention in the landscape are mostly not directly noticeable at the place where a measure is implemented. This is highly important for stakeholders and decision makers. However, given that most of the land available for afforestation is a private property, it may be necessary to provide subsidies to encourage landowners to increase the percentage of forested land. Competitive land use system requirements need to be balanced with approaches dealing with different landscape functions. Water retention is part of this functioning. Other protection aims like nature protection, soil protection, aims of the Water Framework Directive, aesthetic land use pattern but also the agrar-economic production play an important role. Well-founded future land use scenarios should use this transdisciplinary view.
Finally, it is also important to keep in mind that floods belong to a healthy river runoff regime. Floods are an important part of the natural hydrological cycle, and therefore the goal of watershed management should not be to eliminate them entirely. Additional forest can help to re-establish the natural water retention potential in anthropogenically disturbed river basins and to decrease the human-made contribution to flood generation.
|
16 |
The Ecological Dynamics of a Coastal LagoonNandi, Nandi 17 February 2015 (has links) (PDF)
A coastal lagoon is a landform that is influenced by natural processes and human activities. All human activities at the upstream, particularly agriculture and cultivation bring soil, waste, and other materials to the downstream area through the river drains into the lagoon. Even though its position is inland of water bodies, the lagoon is still affected by waves and winds from the sea. Additionally, coastal lagoon will be the depository place for sedimentation from the upland area. Segara Anakan (SA), which is located in Indonesia, is an example of a coastal lagoon area, which has a unique biophysical characteristic. The region has a great natural ability to ensure the sustainability of the interrelationships between terrestrial, estuarine and marine ecosystems in harmony and balance as a habitat for flora and fauna. The region is an area of migration of various types of protected animals and it is a place of breeding for diverse species of the shrimp and fish, which have a highly economical value. Segara Anakan lagoon (SAL), currently experiencing acceleration narrowed on its area due to a very intensive sedimentation from the mainland.
The research aims to answer the question of how ecological dynamic occurs in the SAL area due to sedimentation. Achieving the objectives of this study required examining the morphology and land use changes with multitemporal remote sensing approaches. While, to assess the role of community participation and planning management strategies is using qualitative descriptive methods and SWOT analyze.
The using of multitemporal remote sensing Landsat images is possible to analyze the morphological and land use changes with different time and sensors. These Landsat has image accuracy about 92.66%. It can be used for image interpretations resulting 13 classes of land use. The morphodynamics of SAL indicated by the changes of area of lagoon and accreted land and also the distance of coastlines during the periods 1979-2013. In addition, the land use or land cover also changes during that time. The bigger portions of land use changes are in the tropical and mangrove\'s forests.
There are distinctive forms of participation in conservation efforts. The upstream community involvement in conservation tends to be different participating in the way of ideas, money, materials, properties, skills and expertise or social activities. In addition, the community at downstream area has a sufficiently high level of participation in environmental conservation. There are also strong relationships between the level of education and level of income and basic knowledge in conservation with the participation of SA conservation.
The ecological dynamics of the SAL area are described with a historical time line. It is divided into three time periods: the 1970s - 1980s, the 1990s and from 2000 onwards. Each of these has occurrences that can lead to changes in the environment.
The implementation of appropriate conservation technique can reduce the sedimentation rate. Hence, the synergic coordination measures between upstream and downstream regions are necessary in the future. Increasing community awareness and participation in the conservation by improving educational sector, providing information, and applying sustainable development land use are the ways to match human activities with the temporal and spatial dynamics of the coastal resources.
|
17 |
Relative contribution of land use change and climate variability on discharge of upper Mara River, KenyaMwangi, Hosea M., Julich, Stefan, Patil, Sopan D., McDonald, Morag A., Feger, Karl-Heinz 27 July 2017 (has links) (PDF)
Study region
Nyangores River watershed, headwater catchment of Mara River basin in Kenya.
Study focus
Climate variability and human activities are the main drivers of change of watershed hydrology. The contribution of climate variability and land use change to change in streamflow of Nyangores River, was investigated. Mann Kendall and sequential Mann Kendall tests were used to investigate the presence and breakpoint of a trend in discharge data (1965–2007) respectively. The Budyko framework was used to separate the respective contribution of drivers to change in discharge. Future response of the watershed to climate change was predicted using the runoff sensitivity equation developed.
New hydrological insights for the region
There was a significant increasing trend in the discharge with a breakpoint in 1977. Land use change was found to be the main driver of change in discharge accounting for 97.5% of the change. Climate variability only caused a net increase of the remaining 2.5% of the change; which was caused by counter impacts on discharge of increase in rainfall (increased discharge by 24%) and increase in potential evapotranspiration (decreased discharge by 21.5%). Climate change was predicted to cause a moderate 16% and 15% increase in streamflow in the next 20 and 50 years respectively. Change in discharge was specifically attributed to deforestation at the headwaters of the watershed.
|
18 |
Relative contribution of land use change and climate variability on discharge of upper Mara River, KenyaMwangi, Hosea M., Julich, Stefan, Patil, Sopan D., McDonald, Morag A., Feger, Karl-Heinz 27 July 2017 (has links)
Study region
Nyangores River watershed, headwater catchment of Mara River basin in Kenya.
Study focus
Climate variability and human activities are the main drivers of change of watershed hydrology. The contribution of climate variability and land use change to change in streamflow of Nyangores River, was investigated. Mann Kendall and sequential Mann Kendall tests were used to investigate the presence and breakpoint of a trend in discharge data (1965–2007) respectively. The Budyko framework was used to separate the respective contribution of drivers to change in discharge. Future response of the watershed to climate change was predicted using the runoff sensitivity equation developed.
New hydrological insights for the region
There was a significant increasing trend in the discharge with a breakpoint in 1977. Land use change was found to be the main driver of change in discharge accounting for 97.5% of the change. Climate variability only caused a net increase of the remaining 2.5% of the change; which was caused by counter impacts on discharge of increase in rainfall (increased discharge by 24%) and increase in potential evapotranspiration (decreased discharge by 21.5%). Climate change was predicted to cause a moderate 16% and 15% increase in streamflow in the next 20 and 50 years respectively. Change in discharge was specifically attributed to deforestation at the headwaters of the watershed.
|
19 |
Is short rotation forestry biomass sustainable?Zurba, Kamal 12 October 2016 (has links)
Despite the negative effects of fossil fuels on the environment, these remain as the primary contributors to the energy sector. In order to mitigate global warming risks, many countries aim at reducing greenhouse gas emissions. Bioenergy crops are being used as a substitute for fossil fuels and short rotation forestry is a prime example.
In order to examine the sustainability of energy crops for fuel, typical European short rotation forestry (SRF) biomass, willow (Salix spp.) and poplar (Populus spp.) are examined and compared to rapeseed (Brassica napus L.) in respect to various aspects of soil respiration and combustion heat obtained from the extracted products per hectare.
Various approaches are used to look at an As-contaminated site not only in the field but also in a soil-column experiment that examines the fate of trace elements in SRF soils, and in an analysis using MICMAC to describe the driving factors for SRF crop production. Based on the cause-effect chain, the impacts of land-use change and occupation on ecosystem quality are assessed when land-use is changed from degraded land (grassland) to willow and poplar SRF.
A manual opaque dynamic closed chamber system (SEMACH-FG) was utilized to measure CO2 emissions at a willow/poplar short rotation forest in Krummenhennersdorf, Germany during the years 2013 and 2014, and at a rapeseed site in 2014.
Short rotation forest soils showed higher CO2 emission rates during the growing season than the dormant season – with a CO2 release of 5.62±1.81 m-2 s-1 for willows and 5.08±1.37 µmol CO2 m-2 s-1 for poplars in the growing season. However, during the dormant season the soil sites with willow emitted 2.54±0.81 µmol CO2 m-2 s-1 and with poplar 2.07±0.56 µmol CO2 m-2 s-1. The highest emission rates for the studied plantations were observed in July for both years 2013 and 2014, during which the highest air and soil temperatures were recorded.
Correlations between soil emission of CO2 and some meteorological parameters and leaf characteristics were investigated for the years 2013 and 2014. For example, for the willow clone (Jorr) and poplar clone (Max 3), high correlations were found for each between their soil emission of CO2 and both soil temperature and moisture content. Fitted models can explain about 77 and 75% of the results for Jorr and Max 3 clones, respectively. Moreover, a model of leaf area (LA) can explain about 68.6% of soil CO2 emission for H275. Estimated models can be used as a gap-filling method, when field data is not available.
The ratio between soil respiration and the combustion heat calculated from the extracted products per hectare was evaluated and compared for the study’s willow, poplar and rapeseed crops. The results show that poplar and willow SRF has a very low ratio of 183 kg CO2 GJ 1 compared to rapeseed, 738 kg CO2 GJ 1.
The soil-column experiment showed that by continuing the SRF plantation at the As-contaminated site, remediation would need only about 3% of the time needed if the site was left as a fallow field.
In order to understand the complex willow and poplar short rotation forestry production system, 50 key variables were identified and prioritized to describe the system as a step to enhance the success of such potentially sustainable projects. The MICMAC approach was used in order to find the direct and the indirect relationships between those parameters and to classify them into different clusters depending on their driving force and interdependency. From this, it can be summarized that in order to enhance the success of a SRF system, decision makers should be focussing on: ensuring a developed wood-fuel market, increasing farmers’ experience/training, improving subsidy regulations and recommending a proper harvesting year cycle.
Finally, the impacts of land-use change and occupation on the ecosystem quality were assessed. Results show that establishing SRF plantations on degraded lands improved the ecosystem structural quality (ESQ) by about 43% and ecosystem functional quality (EFQ) by about 12%.
Based on overall results, poplar and willow SRF biomass can be recommended as renewable and sustainable sources for bioenergy.:Table of Contents
Acknowledgements VI
Abstract VII
List of Figures IX
List of Tables XI
List of Appendix Tables XII
List of Abbreviations XIII
List of Abbreviations ...continued XIV
1. Background 1
1.1. General introduction 1
1.2. Soil organic carbon (SOC) 2
1.3. Soil respiration 4
1.4. Energy and bioenergy crops 5
1.5. Willow and poplar short rotation forestry 8
1.6. Degraded lands 10
1.8. Challenges 17
1.9. Objectives of this study 18
2. Methodology 19
2.1. Site Description 19
2.2. Environmental variables 22
2.3. Measuring CO2 emissions 23
2.3.1. Soil emission of CO2 23
2.3.2. Sensitivity of soil respiration to temperature (Q10) 25
2.4. Willow and poplar leaf traits 26
2.4.1. Measuring leaf area 26
2.4.2. Leaf Area Index (LAI) 27
2.4.3. Leaf sensitivity to high and low temperatures 28
2.5. Soil characteristics 30
2.5.1. Soil sampling 30
2.5.2. Soil Moisture Content % (SMC) by gravimetric method 31
2.5.3. Soil pH 31
2.5.4. Soil Cation Exchange Capacity (CEC) 31
2.5.5. Soil content of C, N, S, heavy metals and trace elements 31
2.5.6. Soil porosity 31
2.5.7. Soil pore water 32
2.5.8. Soil hydraulic conductivity (Kf) 32
2.6. Soil-column experiment 34
2.6.1. Experiment set-up 35
2.6.2. Distribution coefficients (Kd) 35
2.7. MICMAC approach 36
2.7.1. Selection of variables 36
2.7.2. Description of direct relationships 36
2.7.3. Classification of variables 37
2.8. Impacts of land-use change on the ecosystem quality 38
2.9. Computer software 40
3. Results and Discussion 41
3.1. Environmental conditions 41
3.1.1. Photosynthetically active radiation (PAR) 41
3.1.2. Soil temperature 42
3.1.3. Soil moisture content 43
3.2. Soil emission of CO2 46
3.2.1. CO2 emission from soil at the short rotation forestry site 46
3.2.2. Soil emission of CO2 during the day and the night 48
3.2.3. Cumulative emission of CO2 49
3.2.4. Comparison with other bioenergy crops 50
3.3. Q10 52
3.4. Willow and poplar Leaf Characteristics 54
3.4.1. Leaf Area Index (LAI) 54
3.4.2. Specific leaf area (SLA) 56
3.4.3. Leaf sensitivity to temperature 57
3.5. Correlations of soil CO2 emission with soil temperature and moisture content 59
3.6. Correlations of soil CO2 emission with plant parameters 65
3.7. Insights into soil respiration and combustion heat per area 67
3.7.1. Cumulative seasonal CO2 emission (CE) 68
3.7.2. Output energy 69
3.7.3. CO2(soil respiration) / Energy ratio 70
3.7.4. Global-warming potential (GWP) 72
3.8. Trace elements in soil 73
3.8.1. Solid-liquid partition coefficients (Kd) 74
3.8.2. Estimating time of remediation 78
3.9. Identification and Prioritization of Key Parameters for Willow and Poplar Short Rotation Forestry (SRF) Production System 82
3.9.1. Based on direct influence/dependence map: 85
3.9.2. Based on indirect influence/dependence map: 87
3.10. Impacts of Land-use Change on the Ecosystem Quality 93
4. Conclusions and Recommendations 101
5. References 102
Appendix 118
|
20 |
Cows Back to Pasture – Unlock Climate Change Mitigation Potentials in Dairy Farming at Increasing Milk ProductionWolf, Patricia 17 December 2021 (has links)
Die Arbeit liefert ein umfassendes Verständnis der (1) Auswirkungen auf Landnutzung und Treibhausgas (THG)-emissionen im Zusammenhang mit der deutschen Milchproduktion im Zeitraum von 2000 bis 2015 und bis 2030, (2) Unsicherheiten hinsichtlich der Bewertung der THG-emissionen der Milchproduktion und (3) Bewertung der Anwendbarkeit des zugrundeliegenden Modells für andere Länder als Deutschland. Landnutzung stellt die Anbaufläche von Futter für bestimmte Milchleistungen dar. Die Arbeit konzentrierte sich auf die Landnutzungsänderung zwischen Grün- und Ackerland durch Änderung der Milchkuhrationen. Ein Ökobilanz-Modell wurde entwickelt, um die Auswirkungen der Entwicklung der deutschen Milchproduktion und -leistung (typische Rationen unter deutschen Bedingungen) bis 2030 für drei Weidesysteme (ohne Weide, Halbtags- und Ganztagsweide) zu simulieren. THG-emissionen wurden für die gesamte Produktionskette berechnet, beginnend mit dem Pflanzenbau. Eingangsdaten für Ökobilanz-Studien von Lebensmitteln werden von Variabilität und Unsicherheiten beeinflusst. Ein systematischer Ansatz (Kombination aus lokaler und globaler Sensitivitätsanalyse) wurde verwendet, um wesentliche Eingangsparameter für die Bewertung der THG-emissionen der Milchproduktion zu identifizieren. Zu diesem Zweck wurden drei Rationen, welche die Weidesysteme im Jahr 2030 repräsentieren, ausgewählt. Die lokale Sensitivitätsanalyse diente der Identifikation der einflussreichsten Parameter, die globale der Identifikation der wichtigsten Parameter. Die USA dienen der Prüfung der Anwendbarkeit des Modells für andere Länder. Produktionssystem, verfügbare Daten und IPCC Tier-Methoden werden mit dem deutschen System und zugehörigen Daten verglichen.
Diese Arbeit liefert wichtige Erkenntnisse zur künftigen Intensivierung der Milchproduktion sowie zu Klimaschutzpotenzialen in Abhängigkeit der Fütterungsstrategie. Darüber hinaus trägt sie zur Verringerung der Unsicherheiten künftiger Studien zur Milchproduktion bei. / This thesis provides an comprehensive understanding of: (1) impacts on land use and greenhouse gas (GHG) emissions related to the German milk production in the period from 2000 to 2015 and further until 2030, (2) uncertainties with regard to the assessment of GHG emissions of milk production and (3) evaluation of applicability of the underlying life cycle assessment (LCA) model for countries other than Germany. Land use represents the acreage needed to provide sufficient feed for certain milk yields. This research focusses on land use change between grassland and cropland as an effect of changing dairy cow diets. A LCA model, which reflects typical dairy cow diets under German conditions, was developed to simulate the impact of the German development of milk production and yield until 2030 for three grazing systems (zero-, restricted and unrestricted grazing). GHG emissions have been calculated for the whole production chain, beginning with crops cultivation. Input parameter of LCA studies of food products are affected by variability and uncertainty. A systematic approach (combining local and global sensitivity analysis) was used to identify essential input parameters for the assessment of GHG emissions of milk production. Three diets representing the grazing systems in the year 2030 were selected for this purpose. Local sensitivity analysis was used to identify the most influential parameters, global sensitivity analysis was used to identify the parameters which are most important. The United States of America are taken as example to verify the applicability of the LCA model for other countries. Production system, available data, and IPCC tier methods were compared with the German system and data.
This thesis provides important insights on future intensification of milk production along with climate change mitigation potentials depending on the feeding strategy. Moreover, it contributes to the reduction of uncertainties of future LCA studies of milk production.
|
Page generated in 0.0716 seconds