• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 11
  • 10
  • 9
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulations of laser-induced correlated many-electron dynamics in molecular systems

Klinkusch, Stefan January 2011 (has links)
In this thesis, simulations of laser-driven many-electron dynamics in molecules are presented, i.e., the interaction between molecules and an electromagnetic field is demonstrated. When a laser field is applied to a molecular system, a population of higher electronic states takes place as well as other processes, e.g. photoionization, which is described by an appropriate model. Also, a finite lifetime of an excited state can be described by such a model. In the second part, a method is postulated that is capable of describing electron correlation in a time-dependent scheme. This is done by introducing a single-electron entropy that is at least temporarily minimized in a further step. / Im Rahmen dieser Doktorarbeit werden Simulationen lasergetriebener Vielelektronendynamik in Molekülen präsentiert, d.h., die Wechselwirkung zwischen Molekülen und einem elektromagnetischen Feld wird demonstriert. Bei Laseranregungen finden nicht nur elektronische Übergänge statt, sondern auch weitere Prozesse wie die Photoionisation, die mit einem geeigneten Modell beschrieben wird. Auch die endliche Lebensdauer angeregter Zustände kann mit einem solchen Modell beschrieben werden. Im zweiten Teil wird eine Methode postuliert, die fähig ist, die Elektronenkorrelation zeitabhängig zu beschreiben. Dies wird durch die Einführung einer Einelektronenentropie erreicht, die in einem weiteren Schritt zumindest kurzzeitig minimiert wird.
2

Strong-Field QED Processes in Short Laser Pulses

Seipt, Daniel 18 February 2013 (has links) (PDF)
The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10^24 W/cm^2 and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton scattering. An enhancement of the two-photon process is found in strong laser pulses as compared to the corresponding weak-field process in perturbative QED.
3

Measurement of Pulse Train Instability in Ultrashort Pulse Characterization

Escoto, Esmerando 10 March 2020 (has links)
Die Messung ultrakurzer Laserpulse ist ein Eckpfeiler der ultraschnellen Laserphysik, da die Gültigkeit eines Experiments von der Glaubwürdigkeit seiner Messtechnik abhängt. Etablierte Puls-Charakterisierungstechniken beruhen jedoch häufig auf einer Mittelung über viele Pulse. Daher können sie falsche Informationen liefern, wenn die zeitliche Form von Puls zu Puls variiert. Diese Dissertation bietet Strategien zum sicheren Erfassen und Messen einer Degradierung der Puls-Kohärenz mit Hilfe von frequenzaufgelöstem optischem Gating (FROG), spektraler Phaseninterferometrie für die direkte Rekonstruktion elektrischer Felder (SPIDER) und Dispersionsscan (D-scan). Zu diesem Zweck werden Verbesserungen der Charakterisierungstechniken entwickelt. Die in dieser Arbeit entwickelten neuen Werkzeuge eröffnen nun einen Weg zur Untersuchung der Degradierung der Inter-Puls-Kohärenz, was eine zuverlässige Ultrakurzpulsmetrologie ermöglicht und das zuvor nicht nachweisbare Problem der Pulsfolgeninstabilität löst. / The measurement of ultrashort laser pulses is a cornerstone of ultrafast laser physics, as the validity of any experiment depends on the credibility of its measurement technique. However, established pulse characterization techniques often rely on averaging over many pulses. Therefore, they can return incorrect information if the temporal shape varies from pulse to pulse. This thesis provides strategies to safely detect and measure interpulse coherence degradation, using frequency-resolved optical gating (FROG), spectral phase interferometry for direct electric-field reconstruction (SPIDER), and dispersion scan (d-scan). To this end, improvements of the characterization techniques themselves are devised. The set of new tools developed in this thesis now opens up an avenue for the investigation of interpulse coherence degradation, leading to a more reliable ultrashort pulse metrology and solving the previously undetectable problem of pulse train instability.
4

Quantum dissipative dynamics with a surrogate Hamiltonian

Koch, Christiane 18 October 2002 (has links)
Diese Dissertation untersucht Quantensysteme in kondensierter Phase, welche mit ihrer Umgebung wechselwirken und durch ultrakurze Laserpulse angeregt werden. Die Zeitskalen der verschiedenen beteiligten Prozessen lassen sich bei solchen Problemen nicht separieren, weshalb die Standardmethoden zur Behandlung offener Quantensysteme nicht angewandt werden können. Die Methode des Surrogate Hamiltonian stellt ein Beispiel neuer Herangehensweisen an dissipative Quantendynamik dar. Die Weiterentwicklung der Methode und ihre Anwendung auf Phänomene, die zur Zeit experimentell untersucht werden, stehen im Mittelpunkt dieser Arbeit. Im ersten Teil der Arbeit werden die einzelnen dissipativen Prozesse klassifiziert und diskutiert. Insbesondere wird ein Modell der Dephasierung in die Methode des Surrogate Hamiltonian eingeführt. Dies ist wichtig für zukünftige Anwendungen der Methode, z.b. auf kohärente Kontrolle oder Quantencomputing. Diesbezüglich hat der Surrogate Hamiltonian einen großen Vorteil gegenüber anderen zur Verfügung stehenden Methoden dadurch, daß er auf dem Spin-Bad, d.h. auf einer vollständig quantenmechanischen Beschreibung der Umgebung, beruht. Im nächsten Schritt wird der Surrogate Hamiltonian auf ein Standardproblem für Ladungstransfer in kondensierter Phase angewandt, zwei nichtadiabatisch gekoppelte harmonische Oszillatoren, die in ein Bad eingebettet sind. Dieses Modell stellt eine große Vereinfachung von z.B. einem Molekül in Lösung dar, es dient hier jedoch als Testbeispiel für die theoretische Beschreibung eines prototypischen Ladungstransferereignisses. Alle qualitativen Merkmale eines solchen Experimentes können wiedergegeben und Defizite früherer Behandlungen identifiziert werden. Ultraschnelle Experimente beobachten Reaktionsdynamik auf der Zeitskala von Femtosekunden. Dies kann besonders gut durch den Surrogate Hamiltonian als einer Methode, die auf einer zeitabhängigen Beschreibung beruht, erfaßt werden. Die Kombination der numerischen Lösung der zeitabhängigen Schrödingergleichung mit der Wignerfunktion, die die Visualisierung eines Quantenzustands im Phasenraum ermöglicht, gestattet es, dem Ladungstransferzyklus intuitiv Schritt für Schritt zu folgen. Der Nutzen des Surrogate Hamiltonian wird weiterhin durch die Verbindung mit der Methode der Filterdiagonalisierung erhöht. Dies gestattet es, aus mit dem Surrogate Hamiltonian nur für relative kurze Zeite konvergierte Erwartungswerten Ergebnisse in der Frequenzdomäne zu erhalten. Der zweite Teil der Arbeit beschäftigt sich mit der theoretischen Beschreibung der laserinduzierten Desorption kleiner Moleküle von Metalloxidoberflächen. Dieses Problem stellt ein Beispiel dar, in dem alle Aspekte mit derselben methodischen Genauigkeit beschrieben werden, d.h. ab initio Potentialflächen werden mit einem mikroskopischen Modell für die Anregungs- und Relaxationsprozesse verbunden. Das Modell für die Wechselwirkung zwischen angeregtem Adsorbat-Substrat-System und Elektron-Loch-Paaren des Substrats beruht auf einer vereinfachten Darstellung der Elektron-Loch-Paare als ein Bad aus Dipolen und auf einer Dipol-Dipol-Wechselwirkung zwischen System und Bad. Alle Parameter können aus Rechnungen zur elektronischen Struktur abgeschätzt werden. Desorptionswahrscheinlichkeiten und Desorptionsgeschwindigkeiten werden unabhängig voneinander im experimentell gefundenen Bereich erhalten. Damit erlaubt der Surrogate Hamiltonian erstmalig eine vollständige Beschreibung der Photodesorptionsdynamik auf ab initio-Basis. / This thesis investigates condensed phase quantum systems which interact with their environment and which are subject to ultrashort laser pulses. For such systems the timescales of the involved processes cannot be separated, and standard approaches to treat open quantum systems fail. The Surrogate Hamiltonian method represents one example of a number of new approaches to address quantum dissipative dynamics. Its further development and application to phenomena under current experimental investigation are presented. The single dissipative processes are classified and discussed in the first part of this thesis. In particular, a model of dephasing is introduced into the Surrogate Hamiltonian method. This is of importance for future work in fields such as coherent control and quantum computing. In regard to these subjects, it is a great advantage of the Surrogate Hamiltonian over other available methods that it relies on a spin, i.e. a fully quantum mechanical description of the bath. The Surrogate Hamiltonian method is applied to a standard model of charge transfer in condensed phase, two nonadiabatically coupled harmonic oscillators immersed in a bath. This model is still an oversimplification of, for example, a molecule in solution, but it serves as testing ground for the theoretical description of a prototypical ultrafast pump-probe experiment. All qualitative features of such an experiment are reproduced and shortcomings of previous treatments are identified. Ultrafast experiments attempt to monitor reaction dynamics on a femtosecond timescale. This can be captured particularly well by the Surrogate Hamiltonian as a method based on a time-dependent picture. The combination of the numerical solution of the time-dependent Schrödinger equation with the phase space visualization given by the Wigner function allows for a step by step following of the sequence of events in a charge transfer cycle in a very intuitive way. The utility of the Surrogate Hamiltonian is furthermore significantly enhanced by the incorporation of the Filter Diagonalization method. This allows to obtain frequency domain results from the dynamics which can be converged within the Surrogate Hamiltonian approach only for comparatively short times. The second part of this thesis is concerned with the theoretical treatment of laser induced desorption of small molecules from oxide surfaces. This is an example which allows for a description of all aspects of the problem with the same level of rigor, i.e. ab initio potential energy surfaces are combined with a microscopic model for the excitation and relaxation processes. This model of the interaction between the excited adsorbate-substrate complex and substrate electron-hole pairs relies on a simplified description of the electron-hole pairs as a bath of dipoles, and a dipole-dipole interaction between system and bath. All parameters are connected to results from electronic structure calculations. The obtained desorption probabilities and desorption velocities are simultaneously found to be in the right range as compared to the experimental results. The Surrogate Hamiltonian approach therefore allows for a complete description of the photodesorption dynamics on an ab initio basis for the first time.
5

Zur Theorie photoinduzierter Dynamik offener Molekularsysteme: Kontrolle von Dissipation durch ultrakurze Laser-Pulse

Schirrmeister, Dirk 26 June 1998 (has links)
Zusammenfassung in PostScript In dieser Arbeit wird die photoinduzierte Dynamik offener Molekularsysteme unter dem Einfluß intensiver und ultrakurzer Laserpulse untersucht. Die Anregung eines Moleküls durch einen optischen ultrakurzen Laserpuls führt zu Übergängen zwischen verschiedenen elektronischen Zuständen. Dieser Anregungsprozeß wird begleitet von dissipativen Vorgängen wie Energie-- und Phasenrelaxation. Die Beschreibung dieser photoinduzierten Dynamik erfolgt mit Hilfe der Methode der Dichtematrixtheorie. Dabei zeigt die Ableitung der Quanten--Master--Gleichung im Rahmen des Projektionsoperator--Formalismus, daß die wirkenden äußeren Felder einmal direkt im reversiblen Anteil der Bewegungsgleichung auftreten, aber auch einen indirekten Einfluß über den die Dissipation beschreibenden Dissipations--Superoperator ausüben. In dieser Arbeit wird zum ersten Mal die durch ultrakurze Laserpulse induzierte Feldabhängigkeit des Dissipations--Superoperators berücksichtigt. Im Rahmen der Darstellung der Quanten--Master--Gleichung im Floquetbild kann eine anschauliche Deutung dieses feldabhängigen Effektes gegeben werden: die die Dissipation beschreibende frequenzabhängige Spektraldichte der Umgebungsmoden wird feldabhängig bei verschiedenen Frequenzen abgefragt. Analytische Untersuchungen zum Zwei--Niveau--System zeigen, daß die Feldabhängigkeit dann relevant wird, wenn die Pulslänge vergleichbar ist mit der Zeitskala, auf der die Autokorrelationsfunktion der Umgebungsfreiheitsgrade abklingt. Um den Einfluß auf experimentelle Größen zu untersuchen, wird ein zweifarbiges Pump--Test--Experiment zum Laserfarbstoffmolekül IR 125 betrachtet, bei welchem die spektral und zeitlich aufgelöste Transmission auf einer Femtosekunden-- und Pikosekunden--Zeitskala gemessen wurde. Im Rahmen des Modells einer effektiven Schwingungsmode wird eine Anpassungsrechnung an das Experiment vorgenommen. Dabei wird zunächst die Standard-Redfield-Theorie verwendet, um ein Referenzmodell zu gewinnen. Es gelingt, eine gute Übereinstimmung mit dem Experiment zu erreichen. Die exakte Berücksichtigung des Einflusses der internen Konversion zwischen den angeregten elektronischen Zuständen führt zu einem Anstieg der Transmission innnerhalb einer Pikosekunde. Es ist notwendig, die Dichtematrixgleichungen exakt zu lösen, da eine vergleichende Untersuchung mit Hilfe der nichtlinearen Suszeptibilität dritter Ordnung eine deutliche Abweichung zum exakten Resultat zeigt. Ausgehend vom Referenzfall feldunabhängiger Dissipation wird dann die Feldabhängigkeit der Relaxationsraten bestimmt sowie der Einfluß auf Observablen wie der relativen Transmission untersucht. In Übereinstimmung mit den analytischen Ergebnissen zeigt sich, daß der feldabhängige Effekt am größen ausgeprägt ist, wenn die Pulslänge kleiner als die Korrelationszeit der Umgebungsfreiheitsgrade wird und die wirkenden Felder hinreichend intensiv sind.Damit wird eine Kontrolle von Dissipation möglich. Ein Einfluß des feldabhängigen Effektes auf experimentelle Observablen wird vorhergesagt. / abstract in PostScript This thesis investigates the influence of intense and ultrashort laser pulses on the photoinduced dynamics of open molecular systems. The excitation of a molecule by an optical ultrashort laser pulse induces transitions between different electronic states. This excitation process is accompanied by the dissipative processes of energy and vibrational relaxation. This excitation process is described within the method of the density matrix theory. Thereby, the derivation of the quantum master equation in the framework of the projection operator formalism demonstrates that the external fields are present in the reversible part of the equation of motion and also exert an indirect influence by acting on the dissipation superoperator which accounts for dissipation. In this thesis the field--dependency of the dissipation superoperator which is induced by the external fields is considered for the first time. By a representation of the quantum master equation in the Floquet picture, an interpretation of this field--dependent effect can be given: the frequency--dependent spectral density of the environmental modes which describe dissipation is determined at different field--dependent frequencies. Analytical investigations for the two level system demonstrate that the field dependence becomes relevant if the pulse length is comparable with the time scale on which the autocorrelation function of the environmental degrees of freedom decays.To investigate the influence on experimental quantities, a two--color pump--probe experiment for the laser dye molecule IR 125 is considered for which the spectrally and temporally resolved transmission on a femtosecond and picosecond time scale has been measured. Within the model of one effective vibrational mode the experimental data is fitted. The standard Redfield theory is used to provide a reference model. A high degree of concurrence between the theory and the results of the experiment is achieved. The exact treatment of internal conversion between the excited electronic states leads to a rise in transmission within one picosecond. It is necessary to solve the density matrix equations exactly because a comparative investigation with the nonlinear susceptibility of third order leads to a clear viation from the exact result. Starting from the reference case of field--independent dissipation, the field--dependency of the relaxation rates is determined and the influence on observables for example the relative transmission is investigated. The analytical results show that the field--dependent effect is strongest if the pulse length becomes smaller than the correlation time of the environmental modes and if the acting fields are sufficiently strong. Thereby, a control of dissipation becomes possible. An influence of the field--dependent effect on experimental observables is predicted.
6

Numerische Untersuchungen zum optischen Durchbruch von Femtosekunden-Laserpulsen in Wasser / Numerical investigations of the optical breakdown of femtosecond laser pulses in water

Köhler, Karsten 13 October 2010 (has links)
No description available.
7

Atomic and molecular clusters in intense laser pulses

Mikaberidze, Alexey 07 October 2011 (has links) (PDF)
We have investigated processes of ionization, energy absorption and subsequent explosion of atomic and molecular clusters under intense laser illumination using numerical as well as analytical methods. In particular, we focused on the response of composite clusters, those consisting of different atomic elements, to intense light pulses. Another major theme is the effect of the molecular structure of clusters on their Coulomb explosion. The action of intense laser pulses on clusters leads to fundamental, irreversible changes: they turn almost instantaneously into nanoplasmas and subsequently disintegrate into separate ions and electrons. Due to this radical transformation, remarkable new features arise. Transient cluster nanoplasmas are capable of absorbing enormous amounts of laser energy. In some cases more than 90 % of incident laser energy is absorbed by a gas of clusters with a density much smaller than that of a solid. After the efficient absorption, the energy is transformed into production of energetic ions, electrons, photons, and even neutrons. Composite clusters show especially interesting behavior when they interact with intense laser pulses. Nanoplasmas formed in composite clusters may absorb even more laser energy, than those formed in homogeneous clusters, as we demonstrate in this work. One of the most important results of this thesis is the identification of a novel type of plasma resonance. This resonance is enabled by an unusual ellipsoidal shape of the nanoplasma created during the ionization process in a helium droplet doped with just a few xenon atoms. In contrast to the conventional plasma resonance, which requires significant ion motion, here, the resonant energy absorption occurs at a remarkably fast rate, within a few laser cycles. Therefore, this resonance is not only the most efficient (like the conventional resonance), but also, perhaps, the fastest way to transfer laser energy to clusters. Recently, dedicated experimental studies of this effect were performed at the Max Planck Institute in Heidelberg. Their preliminary results confirm our prediction of a strong, avalanche-like ionization of the helium droplet with a small xenon cluster inside. A conventional plasma resonance, which relies on the cluster explosion, also exhibits interesting new properties when it occurs in a composite xenon-helium cluster with a core-shell geometry. We have revealed an intriguing double plasma resonance in this system. This was the first theoretical study of the influence of the helium embedding on the laser- driven nanoplasma dynamics. Our results demonstrate the important role of the interaction between xenon and helium parts of the cluster. Understanding this interaction is necessary in order to correctly interpret the experimental results. We have elucidated several important properties of Coulomb explosion in atomic and molecular clusters. Specifically, it was found that the kinetic energy distribution of ions after the Coulomb explosion of an atomic cluster is quite similar to the initial potential energy distribution of ions and is only weakly influenced by ion overtake effects, as was believed before. For the case of molecular hydrogen clusters, we have shown that the alignment of molecules inside the cluster affects its Coulomb explosion. Investigation of the dynamical processes in composite and molecular clusters induced by intense laser pulses is a step towards understanding them in more complex nano-objects, such as biomolecules or viruses. This is of great interest in the context of x-ray diffractive imaging of biomolecules with atomic resolution, which is one of the main goals of new x-ray free electron laser facilities.
8

Atomic and molecular clusters in intense laser pulses

Mikaberidze, Alexey 19 July 2011 (has links)
We have investigated processes of ionization, energy absorption and subsequent explosion of atomic and molecular clusters under intense laser illumination using numerical as well as analytical methods. In particular, we focused on the response of composite clusters, those consisting of different atomic elements, to intense light pulses. Another major theme is the effect of the molecular structure of clusters on their Coulomb explosion. The action of intense laser pulses on clusters leads to fundamental, irreversible changes: they turn almost instantaneously into nanoplasmas and subsequently disintegrate into separate ions and electrons. Due to this radical transformation, remarkable new features arise. Transient cluster nanoplasmas are capable of absorbing enormous amounts of laser energy. In some cases more than 90 % of incident laser energy is absorbed by a gas of clusters with a density much smaller than that of a solid. After the efficient absorption, the energy is transformed into production of energetic ions, electrons, photons, and even neutrons. Composite clusters show especially interesting behavior when they interact with intense laser pulses. Nanoplasmas formed in composite clusters may absorb even more laser energy, than those formed in homogeneous clusters, as we demonstrate in this work. One of the most important results of this thesis is the identification of a novel type of plasma resonance. This resonance is enabled by an unusual ellipsoidal shape of the nanoplasma created during the ionization process in a helium droplet doped with just a few xenon atoms. In contrast to the conventional plasma resonance, which requires significant ion motion, here, the resonant energy absorption occurs at a remarkably fast rate, within a few laser cycles. Therefore, this resonance is not only the most efficient (like the conventional resonance), but also, perhaps, the fastest way to transfer laser energy to clusters. Recently, dedicated experimental studies of this effect were performed at the Max Planck Institute in Heidelberg. Their preliminary results confirm our prediction of a strong, avalanche-like ionization of the helium droplet with a small xenon cluster inside. A conventional plasma resonance, which relies on the cluster explosion, also exhibits interesting new properties when it occurs in a composite xenon-helium cluster with a core-shell geometry. We have revealed an intriguing double plasma resonance in this system. This was the first theoretical study of the influence of the helium embedding on the laser- driven nanoplasma dynamics. Our results demonstrate the important role of the interaction between xenon and helium parts of the cluster. Understanding this interaction is necessary in order to correctly interpret the experimental results. We have elucidated several important properties of Coulomb explosion in atomic and molecular clusters. Specifically, it was found that the kinetic energy distribution of ions after the Coulomb explosion of an atomic cluster is quite similar to the initial potential energy distribution of ions and is only weakly influenced by ion overtake effects, as was believed before. For the case of molecular hydrogen clusters, we have shown that the alignment of molecules inside the cluster affects its Coulomb explosion. Investigation of the dynamical processes in composite and molecular clusters induced by intense laser pulses is a step towards understanding them in more complex nano-objects, such as biomolecules or viruses. This is of great interest in the context of x-ray diffractive imaging of biomolecules with atomic resolution, which is one of the main goals of new x-ray free electron laser facilities.:1. Introduction 1 2. Interaction of clusters with intense laser pulses 5 2.1. Cluster formation and structure . . . . . . . . . . . . . . . . . . 5 2.1.1. Cluster formation . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2. Cluster structure . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3. Composite clusters . . . . . . . . . . . . . . . . . . . . . 7 2.2. Matter in intense light fields . . . . . . . . . . . . . . . . . . . . 9 2.2.1. Laser sources . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2. Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3. Clusters under intense laser pulses . . . . . . . . . . . . . . . . . 11 2.3.1. Three stages of intense laser-cluster interaction . . . . . 12 2.3.2. Pathways of cluster ionization and energy absorption . . 13 2.3.3. Composite clusters in intense laser fields . . . . . . . . . 14 2.4. Scenarios of cluster explosion . . . . . . . . . . . . . . . . . . . 15 2.4.1. Coulomb explosion vs. quasi-neutral expansion . . . . . 15 2.4.2. Anisotropic explosion . . . . . . . . . . . . . . . . . . . . 17 2.5. Comparison between experiment and theory . . . . . . . . . . . 18 3. Theoretical methods for intense laser-cluster interaction 21 3.1. The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2. Survey of simulation methods . . . . . . . . . . . . . . . . . . . 22 3.2.1. Quantum methods . . . . . . . . . . . . . . . . . . . . . 22 3.2.2. Classical methods . . . . . . . . . . . . . . . . . . . . . . 23 3.3. Our method: classical microscopic molecular dynamics . . . . . 24 3.3.1. Initial configuration . . . . . . . . . . . . . . . . . . . . . 24 3.3.2. Integrating the equations of motion . . . . . . . . . . . . 26 3.3.3. Observables . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4. The role of quantum effects . . . . . . . . . . . . . . . . . . . . 31 4. Cluster nanoplasma: a statistical approach 33 4.1. Vlasov-Poisson formalism . . . . . . . . . . . . . . . . . . . . . . 33 4.2. Nanoplasma electrons at quasi-equilibrium . . . . . . . . . . . . 34 4.2.1. Self-consistent potential and electron density . . . . . . . 34 4.2.2. Energy distribution of nanoplasma electrons . . . . . . . 36 4.3. Harmonic oscillator model . . . . . . . . . . . . . . . . . . . . . 41 4.3.1. Derivation from kinetic equations . . . . . . . . . . . . . 42 4.3.2. Comparison with the molecular dynamics results . . . . 44 4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5. Ionization and energy absorption in helium droplets doped with xenon clusters 47 5.1. Local ignition and anisotropic nanoplasma growth . . . . . . . . 48 5.1.1. Cluster size dependence . . . . . . . . . . . . . . . . . . 50 5.1.2. Nanoplasma resonance during its anisotropic growth . . 51 5.1.3. Range of laser frequencies and intensities . . . . . . . . . 55 5.1.4. Plasma resonance for circular polarization . . . . . . . . 56 5.1.5. Summary and future work . . . . . . . . . . . . . . . . . 57 5.2. Electron migration and its influence on the cluster expansion . . 59 5.2.1. Charging dynamics . . . . . . . . . . . . . . . . . . . . . 59 5.2.2. Explosion dynamics . . . . . . . . . . . . . . . . . . . . . 61 5.3. Interplay between nanoplasma expansion and its electronic response 63 5.3.1. Single pulse: time-dependence . . . . . . . . . . . . . . . 64 5.3.2. Two pulses: a pump-probe study . . . . . . . . . . . . . 67 5.4. Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . 71 6. Coulomb explosions of atomic and molecular clusters 75 6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.2. Analytical treatment of the Coulomb explosion . . . . . . . . . . 76 6.2.1. Steplike density profile . . . . . . . . . . . . . . . . . . . 76 6.2.2. Kinetic approach . . . . . . . . . . . . . . . . . . . . . . 79 6.2.3. Gradually decreasing initial density . . . . . . . . . . . . 83 6.3. Coulomb explosions of atomic and molecular hydrogen clusters: a molecular dynamics study . . . . . . . . . . . . . . . . . . . . 84 6.3.1. Kinetic energy distributions of ions (KEDI) . . . . . . . 85 6.3.2. Information loss during the explosion . . . . . . . . . . . 87 6.3.3. Ion overtake processes . . . . . . . . . . . . . . . . . . . 90 6.3.4. Non-radial motion of ions . . . . . . . . . . . . . . . . . 91 6.3.5. Three-body effects in Coulomb explosion . . . . . . . . . 93 6.4. Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . 96 7. Conclusions and outlook 97 7.1. Physical conclusions . . . . . . . . . . . . . . . . . . . . . . . . 97 7.2. Methodological conclusions . . . . . . . . . . . . . . . . . . . . . 99 7.3. Research perspectives . . . . . . . . . . . . . . . . . . . . . . . . 100 A. Suppression of the cluster barrier 101 B. Structure determination for Xen@Hem clusters 103 C. Calculation of the time-dependent phase shift 107 D. Potential of a uniformly charged spheroid 109 E. On the possibility of molecular alignment inside hydrogen clusters 111 Bibliography
9

Strong-Field QED Processes in Short Laser Pulses: One- and Two-Photon Compton Scattering

Seipt, Daniel 20 December 2012 (has links)
The purpose of this thesis is to advance the understanding of strong-field QED processes in short laser pulses. The processes of non-linear one-photon and two-photon Compton scattering are studied, that is the scattering of photons in the interaction of relativistic electrons with ultra-short high-intensity laser pulses. These investigations are done in view of the present and next generation of ultra-high intensity optical lasers which are supposed to achieve unprecedented intensities of the order of 10^24 W/cm^2 and beyond, with pulse lengths in the order of some femtoseconds. The ultra-high laser intensity requires a non-perturbative description of the interaction of charged particles with the laser field to allow for multi-photon interactions, which is beyond the usual perturbative expansion of QED organized in powers of the fine structure constant. This is achieved in strong-field QED by employing the Furry picture and non-perturbative solutions of the Dirac equation in the presence of a background laser field as initial and final state wave functions, as well as the laser dressed Dirac-Volkov propagator. The primary objective is a realistic description of scattering processes with regard to the finite laser pulse duration beyond the common approximation of infinite plane waves, which is made necessary by the ultra-short pulse length of modern high-intensity lasers. Non-linear finite size effects are identified, which are a result of the interplay between the ultra-high intensity and the ultra-short pulse length. In particular, the frequency spectra and azimuthal photon emission spectra are studied emphasizing the differences between pulsed and infinite laser fields. The proper description of the finite temporal duration of the laser pulse leads to a regularization of unphysical infinities (due to the infinite plane-wave description) of the laser-dressed Dirac-Volkov propagator and in the second-order strong-field process of two-photon Compton scattering. An enhancement of the two-photon process is found in strong laser pulses as compared to the corresponding weak-field process in perturbative QED.
10

Konzeption und Umsetzung neuer Technologien zur biaxialen Winkelmessung und elektrooptischen Pseudostreckenmessung

Fuhrland, Matthias 31 January 2008 (has links) (PDF)
Ein Ziel der Arbeit war die Entwicklung eines Verfahrens zur 3D-Positionierung auf Basis elektrooptischer Pseudostreckenmessung. Ein zweites Ziel war die Entwicklung eines Reflexgoniometers zur zweiachsigen Winkelmessung. Im Rahmen der Arbeit wurden die Grundlagen zur instrumentellen Umsetzung beider Verfahren erarbeitet, die Genauigkeitspotentiale ermittelt und mögliche Anwendungen für die einzelnen Schlüsseltechnologien und deren Kombination abgeleitet. In einer Prototyp-Entwicklung wurden Vorschläge für die wesentlichen Funktionselemente des räumlichen Weg- bzw. Winkelmesssystems gemacht. Hierzu gehören das kardanisch aufgehängte Etalon, die temperaturstabilisierte Laseroptik und die temperaturkalibrierte CCD der Winkelmesseinheit (Reflexgoniometer), die Systeme zur Erzeugung und Detektion ultrakurzer Laserpulse, eine elastische Optik, Möglichkeiten zur Formung des transversalen Strahlprofils, das TCSPC-System und die zur Auswertung und Kalibrierung notwendigen Algorithmen, wie z.B. die Autokollimation eines Lasers. ("Veröffentlicht von der Deutschen Geodätischen Kommission Reihe C (Dissertationen) unter der Nummer C 614 (München 2008; ISBN 3 7696 5053 0; 2; 144 S.") / One goal of the thesis was the development of a method for three-dimensional positioning based on electro-optical measurement of pseudo ranges. Another goal was the development of a reflex goniometer for biaxial angle measurement. Within the scope of this thesis the basics for the instrumental realisation of both methods were developed, the accuracy potentials were determined and possible applications for the separate key technologies and their combination were deduced. In a prototype development proposals were made for the main functional elements of the spatial distance and angle measurement systems. These include the gimbal mounted etalon, the temperature stabilised laser optics and the temperature calibrated CCD of the angle measurement device (reflex goniometer), the systems for creation and detection of ultrashort laser pulses, an elastic optical device, possibilities of transversal beam shaping, the TCSPC system and the algorithms which are necessary for analysis and calibration, e.g. the autocollimation of a laser.

Page generated in 0.0571 seconds