Spelling suggestions: "subject:"las""
511 |
Empirical studies in money, credit and banking : the Swedish credit market in transition under the silver and gold standards 1834-1913Ögren, Anders January 2003 (has links)
The empirical results reached in this thesis contradict the traditional theoretical view of money as being exogenously introduced into an economy as a medium of exchange intended to reduce the transactions costs associated with barter. Instead money was endogenously created in the form of credit. Thus, the long run neutrality of money also is called into question. The varying quality of different kinds of money reflects the demand for them. If legal tender was of higher quality than private promissary notes, it was because the former were in greater demand. Concisely put, the market determines the value, and therefore the quality, of various kinds of money. The principal problem addressed in this thesis is how, during the expansive nineteenth century, it was possible to satisfy the ever growing need for credit and means of payment without sacrificing the fixed exchange rate. Particular attention is paid to the private note issuing banks, the so called Enskilda banks, that dominated the Swedish banking system throughout the nineteenth century. In addition to their note issuing, the Enskilda banks were characterized by unlimited owner liability. An examination of the ongoing political process from a rational choice perspective, indicates that initially the concept of note issuing Enskilda banks enjoyed wide spread support. They were considered to be a reasonable response to the problem of establishing a commercial banking system in an illiquid economy. The distribution of political and economic power in favor of the Crown and the Nobility included their control over the issuance of bank charters. The monopolistic policy they followed in this regard, however, resulted in growing hostility towards these. As a result, starting in the middle 1860's, a more liberal attitude towards the establishment of banks began to prevail. By the end of the nineteenth century, various political interest were able to engineer the revocation of the Enskilda banks’ note issuing rights. The special characteristics of the Enskilda banks, the right to issue bank notes and the unlimited liability of their owners, have caused them to be perceived as outdated, at least once Joint Stock banks were introduced. In contrast to the Enskilda banks, these were unable to issue notes but instead provided their owners with limited liability. The thesis demonstrates that, given the initial illiquidity of the Swedish economy, the Enskilda banks actually were the more efficient alternative. Indeed, the note issuing privileges of the Enskilda banks became one of the principal factors behind the development of liquid domestic capital markets. An empirical study that includes the most basic constraints faced by the nineteenth century Swedish economy, the demands of the specie standard and the general shortages of reliable means of payment and of credit, reveals that the Enskilda bank system can not, strictly speaking, be considered an example of free banking. Instead of holding specie reserves, the Enskilda banks backed their notes with central bank (Riksbank) notes. This was not because the public preferred Enskilda bank to Riksbank notes. Rather it was the result of a monetary adverse selection process; Gresham’s Law. Previously utilized, lower quality, means of payment were replaced by Enskilda bank notes. By accepting some of the discount costs, the Enskilda banks made their notes circulate at par with Riksbank notes. Thus a domestic specie exchange system was created. The note issuance of the Enskilda banks paved the way for the deposit based commercial banking system that followed, and it was essential for the monetization of the economy that occurred during the late 1860's. The long run expansion of the money supply was unrelated to growth in Riksbank reserves, specie holdings or the monetary base. Other countries operating under the specie standard also experienced monetary growth, indicating that the specie standard actually was a system of credit. Money supply, as measured in terms of Riksbank and Enskilda bank notes held by the public, eventually reflected the level of output (GDP). VAR-tests indicated that annual changes in the level of Riksbank reserves preceded changes in the money supply which, in turn, preceded changes in the level of prices, thus supporting the price quantity theory. These results are summarized in a regression model that estimates domestic price movements as a function of current changes in international prices and GDP and of lagged changes in domestic prices and the money supply. The final chapter is an empirical analysis of the support provided to the Swedish banking system during the most severe financial crises of the nineteenth century. Maintaining the specie standard was over riding goal of the Riksbank. In times of crises, this concern prevented the Bank from supporting the banking system in accord with the classical lender of last resort recipe; to inject liquidity and briefly suspend convertibility. The thesis argues that in a transitional economy, such as that of nineteenth century Sweden, the fixed exchange rate makes it impossible in times of crisis to support the banks at all costs. Doing so might well convert a banking crisis into a currency crisis. Indeed, this is exactly what has happened in various countries on several occasions during the late twentieth century. Instead the appropriate procedure for acting as lender of last resort in a transitional economy is to initially support the banks, but only as long as central bank reserves are not exhausted. Should the seriousness of the crisis make this insufficient, the authorities should then proceed to import high powered money as a way of supplementing their reserves. The possibility that such action will be needed makes it particularly important that the country’s public finances be kept in good order. / <p>Diss. Stockholm : Handelshögskolan, 2003. Sammanfattning på engelska</p>
|
512 |
Sedimentological Investigations of Paleo-Ice Sheet Dynamics in West AntarcticaKirshner, Alexandra 16 September 2013 (has links)
Modern Pine Island and Thwaites Glaciers, which both drain into Pine Island Bay, are some of the fastest moving portions of the cryosphere and may be the most unstable ice streams in Antarctica. I examined over 133 cores to conduct a detailed sedimentological facies analysis. These data, augmented by new radiocarbon and 210Pb dates, and bathymetric data, are used to reconstruct the post-LGM deglacial history of PIB and gain a better understanding of the causes of ice sheet retreat.
My results record a clear retreat stratigraphy in PIB composed of, from top to base; terrigenous sandy silt (plumite), pebbly sandy mud (ice-proximal glacimarine), and till. Initial retreat from the outer-continental shelf began shortly after the LGM and before 16.4 k cal yr BP, in response to rising sea level. Bedforms in outer PIB document episodic retreat in the form of back-stepping grounding zone wedges and are associated with proximal glacimarine sediments. A sub-ice shelf facies is observed in central PIB that spans ∼12.3–10.6 k cal yr BP. Widespread impingement of warm water onto the continental shelf caused an abrupt change from sub-ice shelf sedimentation to distal glacimarine sedimentation dominated by dispersal of terrigenous silt between 7.8 and 7.0 k cal yr BP. The uppermost sediments in Pine Island Bay were hydrodynamically sorted by meltwater plumes. Inner Pine Island Bay contains several large basins that are linked by channels. The most recent release of sediment coincides with rapid retreat of the grounding line, and has an order of magnitude greater flux relative to the entire unit, indicating episodic sedimentation. This is the first identification of a meltwater-derived deposit in Antarctica and demonstrates that punctuated meltwater-intensive glacial retreat occurred at least three times throughout the Holocene in this region.
Quartz sand grains were used to conduct an analysis of mode of transport for sediments in the Antarctic Peninsula region from the Eocene to present to record the onset of glaciation. Glacial transport imparts a unique suite of microtextures on quartz grains from high shear-stresses. Eocene samples are free of glacial influence. Late Eocene samples show the inception of glacially derived high-stress microtextures, marking the onset of alpine glaciation. Oligocene grains are similar to the late Eocene samples. Middle Miocene microtextures are characteristic of transport from far-field large ice sheets, originating from ice rafting from the West Antarctic Ice Sheet. The Pliocene and Pleistocene samples indicate the existence of the northern Antarctic Peninsula Ice Sheet at this time, consistent with other proxies.
|
513 |
FE Analysis of axial-bearing in large fans : FE analys av axialkullager i stora fläktarHjalmarsson, Joel, Memic, Anes January 2010 (has links)
Detta examensarbete har utförts på Fläktwoods AB i Växjö, som producerar stora axialfläktar för olika industriapplikationer. Syftet är att öka kunskapen om fettsmorda axiella kullager genom FE analyser. Projektet har genomförts i fem delsteg för att avgöra påverkan av en eller några få parametrar i taget. De studerade parametrarna är: elementstorlek, kontaktstyvhet, last, lagergeometri (dvs. oskulation), ickelinjär geometri och ickelinjära materialegenskaper (dvs. plasticitet). Slutsatsen är att elementstorleken bör väljas fint nog för att ge ett jämnt resultat men grovt nog för att beräkningstiden skal vara rimlig. Kontaktstyvheten har inte stor, men tydlig, inverkan på kontakttrycket och penetrationen. Förändringar av oskulationen leder till förändringar i kontaktellipsens form medan olika laster inte påverkar formen på ellipsen, utan snarare storleken. När det handlar om plasticitet är sträckgränsen den viktigaste faktorn att beakta. / This thesis project was carried out at Fläktwoods AB in Växjö who produces large axial fans for different industry applications. The purpose is to increase the knowledge of grease lubricated axial ball bearings through FE analyses. The project was executed into five sub steps to determine the influence of one or few parameters at a time. The studied parameters are: mesh density, contact stiffness, load, bearing geometry (i.e. osculation), geometrical nonlinearity and material nonlinearity (i.e. plasticity). It is concluded that the mesh density should be selected fine enough to give a smooth result but course enough to give a reasonable calculation time. The contact stiffness has not a major, but a clear, impact on the contact pressure and penetration. Changes of the osculation lead to changes of the contact ellipse shape and applying different load level does not affect the shape of the ellipse but rather the size. When dealing with plasticity the yield strength is the most important factor to take in consideration.
|
514 |
The classical-historical novel in nineteenth-century BritainWalker, Stanwood Sterling 11 April 2011 (has links)
Not available / text
|
515 |
Veränderungen kardiovaskulärer Risikofaktoren - mit besonderer Betrachtung von Homocystein und hsCRP - unter drei aktuell diskutierten Ernährungsstrategien zur Gewichtsreduktion: Low carb, Low fat und Low fat with reduced glycemic load / Changes in cardiovascular risk factors - with special consideration of homocysteine and hsCRP - while following one of three currently discussed weight-loss strategies: Low carb, low fat and low fat with reduced glycemic loadHönemann, Ines 24 April 2008 (has links)
No description available.
|
516 |
Vegetation, climate and environmental dynamics of the Black Sea/Northern Anatolian region during the last 134 ka obtained from palynological analysisShumilovskikh, Lyudmila 06 March 2013 (has links)
No description available.
|
517 |
Ice dynamics of the Darwin-Hatherton glacial system, Transantarctic Mountains, AntarcticaRiger-Kusk, Mette January 2011 (has links)
The Darwin-Hatherton glacial system (DHGS) drains from the East Antarctic Ice Sheet (EAIS) and through the Transantarctic Mountains (TAM) before entering the Ross Embayment. Large ice-free areas covered in glacial sediments surround the DHGS, and at least five glacial drift sheets mark the limits of previous ice extent. The glacier belongs to a group of slow-moving EAIS outlet glaciers which are poorly understood. Despite this, an extrapolation of a glacial drift sheet boundary has been used to determine the thickness of the EAIS and the advanced West Antarctic Ice Sheet (WAIS) during the Last Glacial Maximum (LGM). In order to accurately determine the past and present contributions of the Antarctic ice sheets to sea level changes, these uncertainties should be reduced. This study aims to examine the present and LGM ice dynamics of the DHGS by combining newly acquired field measurements with a 3-D numerical ice sheet-shelf model. The fieldwork included a ground penetrating radar survey of ice thickness and surface velocity measurements by GPS. In addition, an extensive dataset of airborne radar measurements and meteorological recordings from automatic weather stations were made available. The model setup involved nesting a high-resolution (1 km) model of the DHGS within a lower resolution (20 km) all-Antarctic simulation. The nested 3-D modelling procedure enables an examination of the impact of changes of the EAIS and WAIS on the DHGS behaviour, and accounts for a complex glacier morphology and surface mass balance within the glacial system.
The findings of this study illustrate the difference in ice dynamics between the Darwin and Hatherton Glaciers. The Darwin Glacier is up to 1500 m thick, partially warm-based, has high driving stresses (~150 kPa), and measured ice velocities increase from 20-30 m yr⁻¹ in the upper parts to ~180 m yr⁻¹ in the lowermost steepest regions, where modelled flow velocities peak at 330 m yr⁻¹. In comparison, the Hatherton Glacier is relatively thin (<900 m), completely cold-based, has low driving stresses (~85 kPa), and is likely to flow with velocities <10 m yr⁻¹ in most regions. It is inferred that the slow velocities with which the DHGS flows are a result of high subglacial mountains restricting ice flow from the EAIS, large regions of frozen basal conditions, low SMB and undulating bedrock topography. The model simulation of LGM ice conditions within the DHGS implies that the ice thickness of the WAIS has been significantly overestimated in previous reconstructions. Results show that the surface of the WAIS and EAIS away from the TAM would have been elevated 600-750 and 0-80 m above present-day levels, respectively, for the DHGS to reach what was inferred to represent the LGM drift sheet limit. Ultimately, this research contributes towards a better understanding of the dynamic behaviour of slow moving TAM outlet glaciers, and provides new insight into past changes of the EAIS and WAIS. This will facilitate more accurate quantifications of contributions of the WAIS and EAIS to changes in global sea level.
|
518 |
Constraining uncertainty in climate sensitivity : an ensemble simulation approach based on glacial climateSchneider von Deimling, Thomas January 2006 (has links)
Uncertainty about the sensitivity of the climate system to changes in the Earth’s radiative balance constitutes a primary source of uncertainty for climate projections. Given the continuous increase in atmospheric greenhouse gas concentrations, constraining the uncertainty range in such type of sensitivity is of vital importance. A common measure for expressing this key characteristic for climate models is the climate sensitivity, defined as the simulated change in global-mean equilibrium temperature resulting from a doubling of atmospheric CO2 concentration. The broad range of climate sensitivity estimates (1.5-4.5°C as given in the last Assessment Report of the Intergovernmental Panel on Climate Change, 2001), inferred from comprehensive climate models, illustrates that the strength of simulated feedback mechanisms varies strongly among different models.
The central goal of this thesis is to constrain uncertainty in climate sensitivity. For this objective we first generate a large ensemble of model simulations, covering different feedback strengths, and then request their consistency with present-day observational data and proxy-data from the Last Glacial Maximum (LGM). Our analyses are based on an ensemble of fully-coupled simulations, that were realized with a climate model of intermediate complexity (CLIMBER-2). These model versions cover a broad range of different climate sensitivities, ranging from 1.3 to 5.5°C, and have been generated by simultaneously perturbing a set of 11 model parameters. The analysis of the simulated model feedbacks reveals that the spread in climate sensitivity results from different realizations of the feedback strengths in water vapour, clouds, lapse rate and albedo. The calculated spread in the sum of all feedbacks spans almost the entire plausible range inferred from a sampling of more complex models.
We show that the requirement for consistency between simulated pre-industrial climate and a set of seven global-mean data constraints represents a comparatively weak test for model sensitivity (the data constrain climate sensitivity to 1.3-4.9°C). Analyses of the simulated latitudinal profile and of the seasonal cycle suggest that additional present-day data constraints, based on these characteristics, do not further constrain uncertainty in climate sensitivity.
The novel approach presented in this thesis consists in systematically combining a large set of LGM simulations with data information from reconstructed regional glacial cooling. Irrespective of uncertainties in model parameters and feedback strengths, the set of our model versions reveals a close link between the simulated warming due to a doubling of CO2, and the cooling obtained for the LGM. Based on this close relationship between past and future temperature evolution, we define a method (based on linear regression) that allows us to estimate robust 5-95% quantiles for climate sensitivity. We thus constrain the range of climate sensitivity to 1.3-3.5°C using proxy-data from the LGM at low and high latitudes. Uncertainties in glacial radiative forcing enlarge this estimate to 1.2-4.3°C, whereas the assumption of large structural uncertainties may increase the upper limit by an additional degree. Using proxy-based data constraints for tropical and Antarctic cooling we show that very different absolute temperature changes in high and low latitudes all yield very similar estimates of climate sensitivity.
On the whole, this thesis highlights that LGM proxy-data information can offer an effective means of constraining the uncertainty range in climate sensitivity and thus underlines the potential of paleo-climatic data to reduce uncertainty in future climate projections. / Eine der entscheidenden Hauptquellen für Unsicherheiten von Klimaprojektionen ist, wie sensitiv das Klimasystem auf Änderungen der Strahlungsbilanz der Erde reagiert. Angesichts des kontinuierlichen Anstiegs der atmosphärischen Treibhausgaskonzentrationen ist die Einschränkung des Unsicherheitsbereichs dieser Sensitivität von entscheidender Bedeutung. Ein häufig verwendetes Maß zur Beschreibung dieser charakteristischen Kenngröße von Klimamodellen ist die sogenannte Klimasensitivität, definiert als die Gleichgewichtsänderung der simulierten globalen Mitteltemperatur, welche sich aus einer Verdoppelung des atmosphärischen CO2-Gehalts ergibt. Die breite Spanne der geschätzten Klimasensitivität (1.5-4.5°C), welche ein Vergleich verschiedener komplexer Klimamodelle nahe legt (IPCC, 2001), verdeutlicht, wie groß die Unsicherheit in der Klimasensitivität ist. Diese Unsicherheit resultiert in erster Linie aus Unterschieden in der Simulation der entscheidenden Rückkopplungs-mechanismen in den verschiedenen Modellen.
Das zentrale Ziel dieser Dissertation ist die Einschränkung des breiten Unsicherheitsbereichs der Klimasensitivität. Zunächst wird hierzu ein großes Ensemble an Modellsimulationen erzeugt, in welchem gezielt spezifische Modellparameter variiert, und somit unterschiedliche Rückkopplungsstärken der einzelnen Modellversionen realisiert werden. Diese Simulationen werden dann auf ihre Konsistenz mit sowohl heutigen Beobachtungsdaten, als auch Proxy-Daten des Letzten Glazialen Maximums (LGM) überprüft. Unsere Analysen basieren dabei auf einem Ensemble voll gekoppelter Modellläufe, welche mit einem Klimamodell intermediärer Komplexität (CLIMBER-2) realisiert wurden. Die betrachteten Modellversionen decken eine breite Spanne verschiedener Klimasensitivitäten (1.3-5.5°C) ab und wurden durch gleichzeitiges Variieren von 11 Modellparametern erzeugt. Die Analyse der simulierten Rückkopplungs-mechanismen offenbart, dass unterschiedliche Werte der Klimasensitivität in unserem Modellensemble durch verschiedene Realisierungen der Rückkopplungsstärken von Wasserdampf, Wolken, Temperatur-Vertikalprofil und Albedo zu erklären sind. Die berechneten Gesamt-Rückkopplungsstärken unser Modellversionen decken hierbei fast den gesamten möglichen Bereich von komplexeren Modellen ab.
Wir zeigen, dass sich die Forderung nach Konsistenz zwischen simuliertem vorindustriellem Klima und Messdaten, die auf einer Wahl von sieben global gemittelten Datensätzen basieren, als vergleichsweise schwacher Test der Modellsensitivität erweist: Die Daten schränken den plausiblen Bereich der Klimasensitivität lediglich auf 1.3-4.9°C ein. Zieht man neben den genannten global gemittelten Messdaten außerdem klimatische Informationen aus Jahreszeit und geografischer Breite hinzu, lässt sich die Unsicherheit in der Klimasensitivität nicht weiter einschränken.
Der neue Ansatz dieser Dissertation besteht darin, in systematischer Weise einen großen Satz an LGM-Simulationen mit Dateninformationen über die rekonstruierte glaziale Abkühlung bestimmter Regionen zu kombinieren. Unabhängig von den Unsicherheiten in Modellparametern und Rückkopplungsstärken offenbaren unsere Modellversionen eine ausgeprägte Beziehung zwischen der simulierten Erwärmung aufgrund der CO2-Verdoppelung und der Abkühlung im LGM. Basierend auf dieser engen Beziehung zwischen vergangener und zukünftiger Temperaturentwicklung definieren wir eine Methode (basierend auf linearer Regression), welche es uns erlaubt, robuste 5-95%-Quantile der Klimasensitivität abzuschätzen. Indem wir Proxy-Daten des LGM von niederen und hohen Breiten heranziehen, können wir die Unsicherheitsspanne der Klimasensitivität auf 1.3-3.5°C beschränken. Unsicherheiten im glazialen Strahlungsantrieb vergrößern diese Abschätzung auf 1.2-4.3°C, wobei die Annahme von großen strukturellen Unsicherheiten die obere Grenze um ein weiteres Grad erhöhen kann. Indem wir Proxy-Daten über tropische und antarktische Abkühlung betrachten, können wir zeigen, dass sehr unterschiedliche absolute Temperatur-Änderungen in hohen und niederen Breiten zu sehr ähnlichen Abschätzungen der Klimasensitivität führen.
Vor dem Hintergrund unserer Ergebnisse zeigt diese Dissertation, dass LGM-Proxy-Daten ein effektives Mittel zur Einschränkung des Unsicherheitsbereichs der Klimasensitivität sein können und betont somit das Potenzial von Paläoklimadaten, den großen Unsicherheitsbereich von Klimaprojektionen zu reduzieren.
|
519 |
Stalagmite reconstructions of western tropical pacific climate from the last glacial maximum to presentPartin, Judson Wiley 01 April 2008 (has links)
The West Pacific Warm Pool (WPWP) plays an important role in the global heat budget and global hydrologic cycle, so knowledge about its past variability would improve our understanding of global climate. Variations in WPWP precipitation are most notable during El Niño-Southern Oscillation events, when climate changes in the tropical Pacific impact rainfall not only in the WPWP, but around the globe. The stalagmite records presented in this dissertation provide centennial-to-millennial-scale constraints of WPWP precipitation during three distinct climatic periods: the Last Glacial Maximum (LGM), the last deglaciation, and the Holocene. In Chapter 2, the methodologies associated with the generation of U/Th-based absolute ages for the stalagmites are presented. In the final age models for the stalagmites, dates younger than 11,000 years have absolute errors of ±400 years or less, and dates older than 11,000 years have a relative error of ±2%. Stalagmite-specific 230Th/232Th ratios, calculated using isochrons, are used to correct for the presence of unsupported 230Th in a stalagmite at the time of formation. Hiatuses in the record are identified using a combination of optical properties, high 232Th concentrations, and extrapolation from adjacent U/Th dates. In Chapter 3, stalagmite oxygen isotopic composition (d18O) records from N. Borneo are presented which reveal millennial-scale rainfall changes that occurred in response to changes in global climate boundary conditions, radiative forcing, and abrupt climate changes. The stalagmite d18O records detect little change in inferred precipitation between the LGM and the present, although significant uncertainties are associated with the impact of the Sunda Shelf on rainfall d18O during the LGM. A millennial-scale drying in N. Borneo, inferred from an increase in stalagmite d18O, peaks at ~16.5ka coeval with timing of Heinrich event 1, possibly related to a southward movement of the Intertropical Convergence Zone (ITCZ). An inferred precipitation maximum (stalagmite d18O minimum) during the mid-Holocene in N. Borneo supports La Niña-like conditions and/or a southward migration of the ITCZ over the course of the Holocene as likely mechanisms for the observed millennial-scale trends. In Chapter 4, stalagmite Mg/Ca, Sr/Ca, and d13C records reflect hydrologic changes in the overlying karst system that are linked to a combination of rainfall variability and cave micro-environmental effects. Dripwater and stalagmite geochemistry suggest that prior calcite precipitation is a mechanism which alters dripwater geochemistry in slow, stalagmite-forming drips in N. Borneo. Stalagmite Mg/Ca ratios and d13C records suggest that the LGM climate in N. Borneo was drier and that ecosystem carbon cycling may have responded to the drier conditions. Large amplitude decadal- to centennial-scale variability in stalagmite Mg/Ca, Sr/Ca and d13C during the deglaciation may be linked to deglacial abrupt climate change events.
|
520 |
The Stickelberger ideal in the spirit of Kummer with application to the first case of Fermat's last theorem /Jha, Vijay. January 1993 (has links)
Thesis (Ph. D.)--Punjab University, 1992. / Includes bibliographical references (p. 174-181).
|
Page generated in 0.0502 seconds