• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 59
  • 21
  • 12
  • 7
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 288
  • 288
  • 128
  • 54
  • 43
  • 43
  • 42
  • 35
  • 33
  • 31
  • 29
  • 29
  • 29
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Analysis Of Grain Burnback And Internal Flow In Solid Propellant Rocket Motor In 3-dimensions

Yildirim, Cengizhan 01 March 2007 (has links) (PDF)
In this thesis, Initial Value Problem of Level-set Method is applied to solid propellant combustion to find the grain burnback. For the performance prediction of the rocket motor, 0-D, 1-D or 3-D flow models are used depending on the type of thre grain configuration.
192

An efficient analysis of resin transfer molding process using extended finite element method

Jung, Yeonhee 02 September 2013 (has links) (PDF)
Numerical simulation for Resin Transfer Molding (RTM) manufacturing process is attempted by using the eXtended Finite Element Method (XFEM) combined with the level set method. XFEM allows to obtaining a good numerical precision of the pressure near the resin flow front, where its gradient is discontinuous. The enriched shape functions of XFEM are derived by using the level set values so as to correctly describe the interpolation with the resin flow front. In addition, the level set method is used to transport the resin flow front at each time step during the mold filling. The level set values are calculated by an implicit characteristic Galerkin FEM. The multi-frontal solver of IPSAP is adopted to solve the system. This work is validated by comparing the obtained results with analytic solutions.Moreover, a localization method of XFEM and level set method is proposed to increase the computing efficiency. The computation domain is reduced to the small region near the resin flow front. Therefore, the total computing time is strongly reduced by it. The efficiency test is made with simple channel or radial flow models. Several application examples are analyzed to demonstrate ability of this method. A wind turbine blade is also treated as industrial application. Finally, a Graphic User Interface (GUI) tool is developed so as to make easy the pre/post-processing of the simulation.
193

Computer-­Assisted  Coronary  CT  Angiography  Analysis : From  Software  Development  to  Clinical  Application

Wang, Chunliang January 2011 (has links)
Advances in coronary Computed Tomography Angiography (CTA) have resulted in a boost in the use of this new technique in recent years, creating a challenge for radiologists due to the increasing number of exams and the large amount of data for each patient. The main goal of this study was to develop a computer tool to facilitate coronary CTA analysis by combining knowledge of medicine and image processing, and to evaluate the performance in clinical settings. Firstly, a competing fuzzy connectedness tree algorithm was developed to segment the coronary arteries and extract centerlines for each branch. The new algorithm, which is an extension of the “virtual contrast injection” (VC) method, preserves the low-density soft tissue around the artery, and thus reduces the possibility of introducing false positive stenoses during segmentation. Visually reasonable results were obtained in clinical cases. Secondly, this algorithm was implemented in open source software in which multiple visualization techniques were integrated into an intuitive user interface to facilitate user interaction and provide good over­views of the processing results. An automatic seeding method was introduced into the interactive segmentation workflow to eliminate the requirement of user initialization during post-processing. In 42 clinical cases, all main arteries and more than 85% of visible branches were identified, and testing the centerline extraction in a reference database gave results in good agreement with the gold standard. Thirdly, the diagnostic accuracy of coronary CTA using the segmented 3D data from the VC method was evaluated on 30 clinical coronary CTA datasets and compared with the conventional reading method and a different 3D reading method, region growing (RG), from a commercial software. As a reference method, catheter angiography was used. The percentage of evaluable arteries, accuracy and negative predictive value (NPV) for detecting stenosis were, respectively, 86%, 74% and 93% for the conventional method, 83%, 71% and 92% for VC, and 64%, 56% and 93% for RG. Accuracy was significantly lower for the RG method than for the other two methods (p<0.01), whereas there was no significant difference in accuracy between the VC method and the conventional method (p = 0.22). Furthermore, we developed a fast, level set-based algorithm for vessel segmentation, which is 10-20 times faster than the conventional methods without losing segmentation accuracy. It enables quantitative stenosis analysis at interactive speed. In conclusion, the presented software provides fast and automatic coron­ary artery segmentation and visualization. The NPV of using only segmented 3D data is as good as using conventional 2D viewing techniques, which suggests a potential of using them as an initial step, with access to 2D reviewing techniques for suspected lesions and cases with heavy calcification. Combining the 3D visualization of segmentation data with the clinical workflow could shorten reading time.
194

Une approche eulérienne du couplage fluide-structure, analyse mathématique et applications en biomécanique

Milcent, Thomas 25 May 2009 (has links) (PDF)
L'interaction d'une structure élastique et d'un fluide incompressible intervient dans de nombreux phénomènes physiques. C'est le cas en biomécanique où une vésicule biologique se déforme dans un fluide. Nous considérons une formulation eulérienne de la méthode de frontière immergée. Une fonction level set est utilisée afin de capturer l'interface et de prendre en compte une partie de l'élasticité de la membrane. La première partie est consacrée à un théorème d'existence local en temps pour ce modèle. Nous ajoutons au modèle une énergie de flexion dépendant de la courbure qui permet en particulier d'obtenir les formes d'équilibre des vésicules. Dans la deuxième partie nous comparons différentes méthodes d'optimisation de formes pour calculer la force associée à cette énergie. Nous prouvons que ces approches conduisent à des résultats identiques. En application, nous présentons dans la dernière partie des simulations numériques de formes d'équilibre et de cisaillement de vésicules.
195

Développement de méthodes numériques multi échelle pour le calcul des structures constituées de matériaux fortement hétérogènes élastiques et viscoélastiques

Tran, Anh Binh 13 October 2011 (has links) (PDF)
Les bétons sont des matériaux composites à la microstructure complexe et constitués de phases dont le contraste des propriétés physiques et mécaniques peut être très grand. Ces matériaux posent des difficultés aux approches macroscopiques lorsqu'il s'agit de maîtriser leurs comportements effectifs comme celui du fluage. Malgré ces difficultés, EDF doit se doter d'outils permettant de modéliser de façon prédictive l'évolution des bétons des ouvrages en service ou de prescrire lecahier des charges des bétons de nouvelles installations. Ayant pour objectif de contribuer à la résolution de ce problème, ce travail de thèse développe des méthodes numériques multi échelle pour le calcul des structures constituées de matériaux fortement hétérogènes élastiques ou viscoélastiques. Plus précisément, ce travail de thèse comporte trois parties. Dans la première partie, nous nous intéressons à un composite constitué d'une matrice élastique renforcée par des inclusionsélastiques dont les formes géométriques peuvent être quelconques et dont la fraction volumique peut être importante. Pour modéliser ce matériau composite, une première approche numérique consistant à combiner la méthode des éléments finis étendus (XFEM) standard et la méthode "level-set" (LS) classique est d'abord utilisée. Nous montrons que cette première approche numérique, qui apparaît naturelle, induit en fait plusieurs artefacts numériques non rapportés dans la littérature, conduisant en particulier à une convergence non optimale par rapport à la finessedu maillage. Par suite, nous élaborons une nouvelle approche numérique ($mu $-XFEM) basée sur la description des interfaces par des courbes de niveaux multiples et sur un enrichissement augmenté permettant de prendre en compte plusieurs interfaces dans un même élément. Nous démontrons au travers des comparaisons et exemples que la convergence est améliorée de manière substantielle par rapport à la première approche numérique. Dans la deuxième partie, nous proposons une nouvelle méthode pour calculer les déformations différées des structures composées de matériaux hétérogènes viscoélastiques linéaires. Contrairement aux approches proposées jusqu'à présent, notre méthode opère directement dans l'espace temporel et permet d'extraire de manière séquentielle le comportement homogénéisé d'un matériau hétérogène viscoélastique linéaire. Concrètement, les composantes du tenseur de relaxation effectif du matériau sont d'abord obtenues à partir d'un volume élémentaire représentatif et échantillonnées au cours du temps. Une technique d'interpolation et un algorithme implicite permettent ensuite d'évaluer numériquement la réponse temporelle du matériau par le biais d'un produit de convolution. Les déformations différées des structures sont enfin calculées par la méthode des éléments finis classique. Différents tests sont effectués pour évaluer la qualité et l'efficacité de la méthode proposée, montrant que cette dernière permet d'avoir un gain en temps de l'ordre de plusieurs centaines par rapport aux approches de type éléments finis multiniveaux. La troisième partie est consacrée à l'étude de la structure de l'enceinte de confinement d'un réacteur nucléaire. Nous prenons en compte les quatre niveaux d'échelles associés à la pâte deciment, au mortier, au béton et à la structure en béton précontraint par des câbles en acier. La méthode numérique d'homogénéisation élaborée dans la seconde partie est appliquée afin de construire les lois de comportement pour chacun des trois premiers niveaux. Les résultats obtenus présentent un intérêt pratique pour résoudre des problèmes posés par EDF
196

Contributions aux méthodes numériques pour traiter les non linéarités et les discontinuités dans les matériaux hétérogènes

Monteiro, Eric 11 March 2010 (has links) (PDF)
Motivé par l'étude de tissus biologiques, ce travail contribue aux développements d'outils numériques permettant de prédire la réponse mécanique de matériaux hétérogènes non linéaires dans lesquels les énergies d'interfaces deviennent prépondérantes. Ainsi, une méthode d'homogénéisation multi échelle combinée à une technique de réduction de modèle basée sur la décomposition orthogonale aux valeurs propres est proposée dans un cadre thermique et hyperélastique. Les énergies d'interfaces entre les différentes phases des composites sont décrites par un modèle d'interface cohérent et prises en compte numériquement par une approche liant la méthode des éléments finis étendus et la méthode level-set. Une étude de l'étalement d'une cellule vivante entre deux lamelles fixes est ensuite réalisée. Les deux modèles utilisés pour les simulations montrent que l'assemblage cortex d'actine-membrane plasmique ne joue qu'un rôle minime dans la réponse mécanique cellulaire
197

A Fire Simulation Model for Heterogeneous Environments Using the Level Set Method

Lo, Shin-en 01 January 2012 (has links)
Wildfire hazard and its destructive consequences have become a growing issue around the world especially in the context of global warming. An effective and efficient fire simulation model will make it possible to predict the fire spread and assist firefighters in the process of controlling the damage and containing the fire area. Simulating wildfire spread remains challenging due to the complexity of fire behaviors. The raster-based method and the vector-based method are two major approaches that allow one to perform computerized fire spread simulation. In this thesis, we present a scheme we have developed that utilizes a level set method to build a fire spread simulation model. The scheme applies the strengths and overcomes some of the shortcomings of the two major types of simulation method. We store fire data and local rules at cells. Instead of calculating which are the next ignition points cell by cell, we apply Huygens' principle and elliptical spread assumption to calculate the direction and distance of the expanding fire by the level set method. The advantage to storing data at cells is that it makes our simulation model more suitable for heterogeneous fuel and complex topographic environment. Using a level set method for our simulation model makes it possible to overcome the crossover problem. Another strength of the level set method is its continuous data processing. Applying the level set method in the simulation models, we need fewer vector points than raster cells to produce a more realistic fire shape. We demonstrate this fire simulation model through two implementations using narrow band level set method and fast marching method. The simulated results are compared to the real fire image data generated from Troy and Colina fires. The simulation data are then studied and compared. The ultimate goal is to apply this simulation model to the broader picture to better predict different types of fires such as crown fire, spotting fires, etc.
198

Development of New Global Optimization Algorithms Using Stochastic Level Set Method with Application in: Topology Optimization, Path Planning and Image Processing

Kasaiezadeh Mahabadi, Seyed Alireza January 2012 (has links)
A unique mathematical tool is developed to deal with global optimization of a set of engineering problems. These include image processing, mechanical topology optimization, and optimal path planning in a variational framework, as well as some benchmark problems in parameter optimization. The optimization tool in these applications is based on the level set theory by which an evolving contour converges toward the optimum solution. Depending upon the application, the objective function is defined, and then the level set theory is used for optimization. Level set theory, as a member of active contour methods, is an extension of the steepest descent method in conventional parameter optimization to the variational framework. It intrinsically suffers from trapping in local solutions, a common drawback of gradient based optimization methods. In this thesis, methods are developed to deal with this drawbacks of the level set approach. By investigating the current global optimization methods, one can conclude that these methods usually cannot be extended to the variational framework; or if they can, the computational costs become drastically expensive. To cope with this complexity, a global optimization algorithm is first developed in parameter space and compared with the existing methods. This method is called "Spiral Bacterial Foraging Optimization" (SBFO) method because it is inspired by the aggregation process of a particular bacterium called, Dictyostelium Discoideum. Regardless of the real phenomenon behind the SBFO, it leads to new ideas in developing global optimization methods. According to these ideas, an effective global optimization method should have i) a stochastic operator, and/or ii) a multi-agent structure. These two properties are very common in the existing global optimization methods. To improve the computational time and costs, the algorithm may include gradient-based approaches to increase the convergence speed. This property is particularly available in SBFO and it is the basis on which SBFO can be extended to variational framework. To mitigate the computational costs of the algorithm, use of the gradient based approaches can be helpful. Therefore, SBFO as a multi-agent stochastic gradient based structure can be extended to multi-agent stochastic level set method. In three steps, the variational set up is formulated: i) A single stochastic level set method, called "Active Contours with Stochastic Fronts" (ACSF), ii) Multi-agent stochastic level set method (MSLSM), and iii) Stochastic level set method without gradient such as E-ARC algorithm. For image processing applications, the first two steps have been implemented and show significant improvement in the results. As expected, a multi agent structure is more accurate in terms of ability to find the global solution but it is much more computationally expensive. According to the results, if one uses an initial level set with enough holes in its topology, a single stochastic level set method can achieve almost the same level of accuracy as a multi-agent structure can obtain. Therefore, for a topology optimization problem for which a high level of calculations (at each iteration a finite element model should be solved) is required, only ACSF with initial guess with multiple holes is implemented. In some applications, such as optimal path planning, objective functions are usually very complicated; finding a closed-form equation for the objective function and its gradient is therefore impossible or sometimes very computationally expensive. In these situations, the level set theory and its extensions cannot be directly employed. As a result, the Evolving Arc algorithm that is inspired by "Electric Arc" in nature, is proposed. The results show that it can be a good solution for either unconstrained or constrained problems. Finally, a rigorous convergence analysis for SBFO and ACSF is presented that is new amongst global optimization methods in both parameter and variational framework.
199

Dynamics of turbulent premixed flames in acoustic fields

Hemchandra, Santosh 13 May 2009 (has links)
This thesis describes computational and theoretical studies of fundamental physical processes that influence the heat-release response of turbulent premixed flames to acoustic forcing. Attached turbulent flames, as found in many practical devices, have a non-zero mean velocity component tangential to the turbulent flame brush. Hence, flame surface wrinkles generated at a given location travel along the flame sheet while being continuously modified by local flow velocity disturbances, thereby, causing the flame sheet to respond in a non-local manner to upstream turbulence fluctuations. The correlation length and time scales of these flame sheet motions are significantly different from those of the upstream turbulence fluctuations. These correlation lengths and times increase with turbulence intensity, due to the influence of kinematic restoration. This non-local nature of flame sheet wrinkling (called 'non-locality') results in a spatially varying distribution of local consumption speed (i.e. local mass burning rate) even when the upstream flow statistics are isotropic and stationary. Non-locality and kinematic restoration result in coupling between the responses of the flame surface to coherent acoustic forcing and random turbulent fluctuations respectively, thereby, causing the coherent ensemble averaged component of the global heat-release fluctuation to be different in magnitude and phase from its nominal (laminar) value even in the limit of small coherent forcing amplitudes (i.e. linear forcing limit). An expression for this correction, derived from an asymptotic analysis to leading order in turbulence intensity, shows that its magnitude decreases with increasing forcing frequency because kinematic restoration limits flame surface wrinkling amplitudes. Predictions of ensemble averaged heat release response from a different, generalized modeling approach using local consumption and displacement speed distributions from unforced analysis shows good agreement with the exact asymptotic result at low frequencies.
200

Multi-Property Topology Optimisation with the Level-Set Method

Vivien Joy Challis Unknown Date (has links)
We present a level-set algorithm for topology optimisation and demonstrate its capabilities and advantages in a variety of settings. The algorithm uses discrete element densities so that interpolation schemes are avoided and the boundary of the design is always well defined. A review of the level-set method for topology optimisation, and a description of the mathematical concepts behind the level-set algorithm are given in the introductory chapters. A compact Matlab implementation of the algorithm provides explicit implementation details for the simple example of compliance minimisation with a volume constraint. The remainder of the thesis presents original results obtained using the level-set algorithm. As a new application, we use topology optimisation to maximise fracture resistance. Fracture resistance is assumed to be related to the elastic energy released by a crack propagating in a normal direction from parts of the boundary that are in tension. We develop a suitable fracture resistance objective functional, derive its shape derivative and apply the level-set algorithm to simple examples. Topology optimisation methods that involve intermediate density elements are not suitable to solve this problem because the boundary of the design is not well defined. Our results indicate that the algorithm correctly optimises for fracture resistance. As the method is computationally intensive, we suggest simpler objective functionals that could be used as a proxy for fracture resistance. For example, a perimeter penalty could be added to the compliance objective functional in conjunction with a non-linear elasticity law where the Young's modulus in tension is lower than in compression. The level-set method has only recently been applied to fluid flow problems. We utilise the level-set algorithm to minimise energy dissipation in Stokes flows in both two and three dimensions. The discrete element densities allow the no-slip boundary condition to be applied directly. The Stokes equations therefore need only be solved in the fluid region of the design: this results in significant computational savings compared to conventional material distribution approaches. In order to quantify the computational savings the optimisation problems are resolved using an interpolation scheme to simulate the no-slip boundary condition. This significant advantage of the level-set method for fluid flow problems has not been noted by other authors. The algorithm produces results consistent with those obtained by other topology optimisation approaches, and solves large-scale three dimensional problems with modest computational cost. The first examples of three dimensional periodic microstructure design with the level-set method are presented in this thesis. The level-set algorithm is extended to deal with multiple constraints. This is needed so that materials can be designed with symmetry requirements imposed on their effective properties. To demonstrate the capabilities of the approach, unit cells are designed separately to maximise conductivity and bulk modulus with an isotropy requirement. The resulting materials have properties very close to the relevant Hashin-Shtrikman bounds. The algorithm is then applied to multifunctional material design: unit cells are designed to give isotropic materials that have maximum bulk modulus and maximum conductivity. Cross-property bounds indicate the near-optimality of the microstructures obtained. The design space of the problem is extensively explored with different coefficients of the conductivity and bulk modulus in the objective and different volume constraints. We hypothesise the existence of theoretically optimal single-scale microstructures with the topologies of the computationally optimised microstructures we have found. Structures derived from the Schwartz primitive (P) and diamond (D) minimal surfaces have previously been presented as good multifunctional composites. These structures are elastically anisotropic. Although they have similar conductivity, they have stiffness properties inferior to several of the isotropic optimised microstructures.

Page generated in 0.0821 seconds