61 |
Gaussian structures and orthogonal polynomialsLarsson-Cohn, Lars January 2002 (has links)
This thesis consists of four papers on the following topics in analysis and probability: analysis on Wiener space, asymptotic properties of orthogonal polynomials, and convergence rates in the central limit theorem. The first paper gives lower bounds on the constants in the Meyer inequality from the Malliavin calculus. It is shown that both constants grow at least like (p-1)-1 or like p when p approaches 1 or ∞ respectively. This agrees with known upper bounds. In the second paper, an extremal problem on Wiener chaos motivates an investigation of the Lp-norms of Hermite polynomials. This is followed up by similar computations for Charlier polynomials in the third paper. In both cases, the Lp-norms present a peculiar behaviour with certain threshold values of p, where the growth rate and the dominating intervals undergo a rapid change. The fourth paper analyzes a connection between probability and numerical analysis. More precisely, known estimates on the convergence rate of finite difference equations are "translated" into results on convergence rates of certain functionals in the central limit theorem. These are also extended, using interpolation of Banach spaces as a main tool. Besov spaces play a central role in the emerging results.
|
62 |
On the error-bound in the nonuniform version of Esseen's inequality in the Lp-metricPaditz, Ludwig 25 June 2013 (has links) (PDF)
The aim of this paper is to investigate the known nonuniform version of Esseen's inequality in the Lp-metric, to get a numerical bound for the appearing constant L.
For a long time the results given by several authors constate the impossibility of a nonuniform estimation in the most interesting case δ=1, because the effect L=L(δ)=O(1/(1-δ)), δ->1-0, was observed, where 2+δ, 0<δ<1, is the order of the assumed moments of the considered independent random variables X_k, k=1,2,...,n. Again making use of the method of conjugated distributions, we improve the well-known technique to show in the most interesting case δ=1 the finiteness of the absolute constant L and to prove L=L(1)=<127,74*7,31^(1/p), p>1.
In the case 0<δ<1 we only give the analytical structure of L but omit numerical calculations. Finally an example on normal approximation of sums of l_2-valued random elements demonstrates the application of the nonuniform mean central limit bounds obtained here. / Das Anliegen dieses Artikels besteht in der Untersuchung einer bekannten Variante der Esseen'schen Ungleichung in Form einer ungleichmäßigen Fehlerabschätzung in der Lp-Metrik mit dem Ziel, eine numerische Abschätzung für die auftretende absolute Konstante L zu erhalten.
Längere Zeit erweckten die Ergebnisse, die von verschiedenen Autoren angegeben wurden, den Eindruck, dass die ungleichmäßige Fehlerabschätzung im interessantesten Fall δ=1 nicht möglich wäre, weil auf Grund der geführten Beweisschritte der Einfluss von δ auf L in der Form L=L(δ)=O(1/(1-δ)), δ->1-0, beobachtet wurde, wobei 2+δ, 0<δ<1, die Ordnung der vorausgesetzten Momente der betrachteten unabhängigen Zufallsgrößen X_k, k=1,2,...,n, angibt.
Erneut wird die Methode der konjugierten Verteilungen angewendet und die gut bekannte Beweistechnik verbessert, um im interessantesten Fall δ=1 die Endlichkeit der absoluten Konstanten L nachzuweisen und um zu zeigen, dass L=L(1)=<127,74*7,31^(1/p), p>1, gilt.
Im Fall 0<δ<1 wird nur die analytische Struktur von L herausgearbeitet, jedoch ohne numerische Berechnungen. Schließlich wird mit einem Beispiel zur Normalapproximation von Summen l_2-wertigen Zufallselementen die Anwendung der gewichteten Fehlerabschätzung im globalen zentralen Grenzwertsatz demonstriert.
|
63 |
On Parametric and Nonparametric Methods for Dependent DataBandyopadhyay, Soutir 2010 August 1900 (has links)
In recent years, there has been a surge of research interest in the analysis of time series
and spatial data. While on one hand more and more sophisticated models are being
developed, on the other hand the resulting theory and estimation process has become
more and more involved. This dissertation addresses the development of statistical
inference procedures for data exhibiting dependencies of varied form and structure.
In the first work, we consider estimation of the mean squared prediction error
(MSPE) of the best linear predictor of (possibly) nonlinear functions of finitely many
future observations in a stationary time series. We develop a resampling methodology
for estimating the MSPE when the unknown parameters in the best linear predictor
are estimated. Further, we propose a bias corrected MSPE estimator based on the
bootstrap and establish its second order accuracy. Finite sample properties of the
method are investigated through a simulation study.
The next work considers nonparametric inference on spatial data. In this work
the asymptotic distribution of the Discrete Fourier Transformation (DFT) of spatial
data under pure and mixed increasing domain spatial asymptotic structures are
studied under both deterministic and stochastic spatial sampling designs. The deterministic
design is specified by a scaled version of the integer lattice in IRd while
the data-sites under the stochastic spatial design are generated by a sequence of independent
random vectors, with a possibly nonuniform density. A detailed account
of the asymptotic joint distribution of the DFTs of the spatial data is given which, among other things, highlights the effects of the geometry of the sampling region and
the spatial sampling density on the limit distribution. Further, it is shown that in
both deterministic and stochastic design cases, for "asymptotically distant" frequencies,
the DFTs are asymptotically independent, but this property may be destroyed if
the frequencies are "asymptotically close". Some important implications of the main
results are also given.
|
64 |
Some remarks on the central limit theorem for stationary Markov processes / Einige Bermerkungen zum zentralen Grenzwertsatz für stationäre Markoffsche ProzesseHolzmann, Hajo 21 April 2004 (has links)
No description available.
|
65 |
Joint universality for periodic Hurwitz zeta-functions / Periodinių Hurvico dzeta funkcijų jungtinis universalumasSkerstonaitė, Santa 27 August 2009 (has links)
The aim of our work is to obtain joint universality theorems for periodic Hurwitz zeta-functions. We prove two joint universality theorems for periodic Hurwitz zeta-function. In the first theorems, the set L is linearly independent over the field of national numbers, then the periodic Hurwitz zeta-functions are universality. In the second joint universality theorem, we consider the use then parameter alpha corresponds general periodic sequence. Then the set L is linearly independent over the field of national numbers and the rank hypothesis in this theorem is weaker then that in A. Laurinčikas (2008) work. Then the second periodic Hurwitz zeta-functions are universal too. / Magistro darbe yra nagrinėjamas Hurvico dzeta funkcijų rinkinio jungtinis universalumas. Yra įrodytos dvi jungtinės universalumo teoremos. Pirmoji teorema tvirtina, kad jei aibė L yra tiesiškai nepriklausoma virš racionaliųjų skaičių kūno, tai periodinės Hurvico dzeta funkcijos yra universalios. Ši teorema žymiai susilpnina sąlygas, kurioms esant, buvo gautas analogiškas rezultatas A. Javtoko ir A. Laurinčiko 2008 m. darbe. Antroje teoremoje yra nagrinėjamas atvejis, kai kiekvieną skaičių alpha atitinka periodinių sekų rinkinys. Kai sistema L yra tiesiškai nepriklausoma virš racionaliųjų skaičių kūno ir galioja vieno rango tipo sąlyga, silpnesnė negu A. Laurinčiko darbe (2008), tai periodinių Hurvico dzeta funkcijų rinkinys yra taip pat universalus.
|
66 |
Limit theorems for Lerch zeta-functions with algebraic irrational parameter / Lercho dzeta funkcijų su algebriniu iracionaliuoju parametru ribinės teoremosGenienė, Danutė Regina 04 February 2010 (has links)
Limit theorems in the sense of weak convergence of probability measures for the Lerch zeta-function with algebraic irrational parameter are obtained. A theorem of mentioned type on the complex plane, a joint limit theorem for a collection of Lerch zeta-functions on the complex plane as well as a limit theorem in the space of analytic functions are proved. The theorems obtained characterize the asymptotic behaviour of the Lerch zeta-function and can be applied in the investigation of the universality of that function. / Yra gautos Lercho dzeta funkcijos su algebriniu iracionaliuoju parametru ribinės teoremos silpno tikimybinių matų konvergavimo prasme. Yra įrodyta minėto tipo teorema kompleksinėje plokštumoje, jungtinė ribinė teorema Lercho dzeta funkcijų rinkiniui kompleksinėje plokštumoje ir teorema analizinių funkcijų erdvėje. Įrodytos teoremos charakterizuoja Lercho dzeta funkcijų asimptotinį elgesį ir gali būti taikomos šios funkcijos universalumui tirti.
|
67 |
Lercho dzeta funkcijų su algebriniu iracionaliuoju parametru ribinės teoremos / Limit theorems for Lerch zeta-functions with algebraic irrational parameterGenienė, Danutė Regina 04 February 2010 (has links)
Yra gautos Lercho dzeta funkcijos su algebriniu iracionaliuoju parametru ribinės teoremos silpno tikimybinių matų konvergavimo prasme. Yra įrodyta minėto tipo teorema kompleksinėje plokštumoje, jungtinė ribinė teorema Lercho dzeta funkcijų rinkiniui kompleksinėje plokštumoje ir teorema analizinių funkcijų erdvėje. Įrodytos teoremos charakterizuoja Lercho dzeta funkcijų asimptotinį elgesį ir gali būti taikomos šios funkcijos universalumui tirti. / Limit theorems in the sense of weak convergence of probability measures for the Lerch zeta-function with algebraic irrational parameter are obtained. A theorem of mentioned type on the complex plane, a joint limit theorem for a collection of Lerch zeta-functions on the complex plane as well as a limit theorem in the space of analytic functions are proved. The theorems obtained characterize the asymptotic behaviour of the Lerch zeta-function and can be applied in the investigation of the universality of that function.
|
68 |
Estudo de séries de tempo financeiras sob a perspectiva do teorema das seções de Lévy / Finalcial time series analysis based on Lévy's section theorem perspectiveRanciaro Neto, Adhemar 25 June 2013 (has links)
This study aimed to analyze financial time series grounded on a perspective of time measure
changing, based on accumulation of volatility of returns relative to the prices observed. Such
a scale was used for two reasons: the first one is related to Ludwig Von Mises’ proposition of
time concept in an economic system and the second one is related to the acceleration of
convergence in Gaussian distribution of a sequence of random variables, according to Lévy
sections theorem. By means of implementation of this new timeline, we designed a type of
trading asset strategy which its resulting average returns and risk were compared to a strategy
using daily time unit. Results suggested reflection about statistical and measurement
procedures applied to the data. / O objetivo deste trabalho foi o de estudar séries temporais financeiras fundamentadas em uma
perspectiva de alteração de medida de tempo, baseada no acúmulo de volatilidade dos
retornos relativos aos preços observados. Esta escala foi utilizada por dois motivos: o
primeiro está relacionado à proposta de Ludwig von Mises sobre a ideia de tempo em um
sistema econômico e o segundo está associado à capacidade que tal medida tem de acelerar o
processo de convergência de distribuição de uma sequência de variáveis aleatórias para a
Gaussiana, de acordo com o teorema das seções de Lévy. Com base nesta nova escala
temporal, foi elaborado um tipo de estratégia de negociação de ativos tendo seus retornos
médios e risco sido avaliados em comparação com uma estratégia utilizando o tempo em
unidades diárias. Os resultados obtidos motivaram a reflexão sobre as estatísticas utilizadas e
os procedimentos para a mensuração de desempenho de cada estratégia.
|
69 |
Théorèmes limites pour des fonctionnelles de clusters d'extrêmes et applications / Limit theorems for functionals of clusters of extremes and applicationsGomez Garcia, José Gregorio 13 November 2017 (has links)
Cette thèse traite principalement des théorèmes limites pour les processus empiriques de fonctionnelles de clusters d'extrêmes de séquences et champs aléatoires faiblement dépendants. Des théorèmes limites pour les processus empiriques de fonctionnelles de clusters d'extrême de séries temporelles stationnaires sont donnés par Drees & Rootzén [2010] sous des conditions de régularité absolue (ou "ß-mélange"). Cependant, ces conditions de dépendance de type mélange sont très restrictives : elles sont particulièrement adaptées aux modèles dans la finance et dans l'histoire, et elles sont de plus compliquées à vérifier. Généralement, pour d'autres modèles fréquemment rencontré dans les domaines applicatifs, les conditions de mélange ne sont pas satisfaites. En revanche, les conditions de dépendance faible, selon Doukhan and Louhichi [1999] et Dedecker & Prieur [2004a], sont des conditions qui généralisent les notions de mélange et d'association. Elles sont plus simple à vérifier et peuvent être satisfaites pour de nombreux modèles. Plus précisément, sous des conditions faibles, tous les processus causals ou non causals sont faiblement dépendants: les processus Gaussien, associés, linéaires, ARCH(∞), bilinéaires et notamment Volterra entrent dans cette liste. À partir de ces conditions favorables, nous étendons certains des théorèmes limites de Drees & Rootzén [2010] à processus faiblement dépendants. En outre, comme application des théorèmes précédents, nous montrons la convergence en loi de l'estimateur de l'extremogramme de Davis & Mikosch [2009] et l'estimateur fonctionnel de l'indice extrémal de Drees [2011] sous dépendance faible. Nous démontrons un théorème de la valeur extrême pour les champs aléatoires stationnaires faiblement dépendants et nous proposons, sous les mêmes conditions, un critère du domaine d'attraction d'une loi d'extrêmes. Le document se conclue sur des théorèmes limites pour les processus empiriques de fonctionnelles de clusters d’extrêmes de champs aléatoires stationnaires faiblement dépendants, et met en évidence la convergence en loi de l'estimateur d'un extremogramme de processus spatio-temporels stationnaires faiblement dépendants en tant qu'application. / This thesis deals mainly with limit theorems for empirical processes of extreme cluster functionals of weakly dependent random fields and sequences. Limit theorems for empirical processes of extreme cluster functionals of stationnary time series are given by Drees & Rootzén [2010] under absolute regularity (or "ß-mixing") conditions. However, these dependence conditions of mixing type are very restrictive: on the one hand, they are best suited for models in finance and history, and on the other hand, they are difficult to verify. Generally, for other models common in applications, the mixing conditions are not satisfied. In contrast, weak dependence conditions, as defined by Doukhan & Louhichi [1999] and Dedecker & Prieur [2004a], are dependence conditions which generalises the notions of mixing and association. These are easier to verify and applicable to a wide list of models. More precisely, under weak conditions, all the causal or non-causal processes are weakly dependent: Gaussian, associated, linear, ARCH(∞), bilinear and Volterra processes are some included in this list. Under these conveniences, we expand some of the limit theorems of Drees & Rootzén [2010] to weakly dependent processes. These latter results are used in order to show the convergence in distribution of the extremogram estimator of Davis & Mikosch [2009] and the functional estimator of the extremal index introduced by Drees [2011] under weak dependence. We prove an extreme value theorem for weakly dependent stationary random fields and we propose, under the same conditions, a domain of attraction criteria of a law of extremes. The document ends with limit theorems for the empirical process of extreme cluster functionals of stationary weakly dependent random fields, deriving also the convergence in distribution of the estimator of an extremogram for stationary weakly dependent space-time processes.
|
70 |
Understanding the Functional Central Limit Theorems with Some Applications to Unit Root Testing with Structural Change / El Teorema del Límite Central Funcional con algunas aplicaciones a raíces unitarias con cambios estructuralesAquino, Juan Carlos, Rodríguez, Gabriel 10 April 2018 (has links)
The application of different unit root statistics is by now a standard practice in empirical work. Even when it is a practical issue, these statistics have complex nonstandard distributions depending on functionals of certain stochastic processes, and their derivations represent a barrier even for many theoretical econometricians. These derivations are based on rigorous and fundamental statistical tools which are not (very) well known by standard econometricians. This paper aims to fill this gap by explaining in a simple way one of these fundamental tools: namely, the Functional Central Limit Theorem. To this end, this paper analyzes the foundations and applicability of two versions of the Functional Central Limit Theorem within the framework of a unit root with a structural break. Initial attention is focused on the probabilistic structure of the time series to be considered. Thereafter, attention is focused on the asymptotic theory for nonstationary time series proposed by Phillips (1987a), which is applied by Perron (1989) to study the effects of an (assumed) exogenous structural break on the power of the augmented Dickey-Fuller test and by Zivot and Andrews (1992) to criticize the exogeneity assumption and propose a method for estimating an endogenous breakpoint. A systematic method for dealing with efficiency issues is introduced by Perron and Rodriguez (2003), which extends the Generalized Least Squares detrending approach due to Elliot et al. (1996). An empirical application is provided. / Hoy en día es una práctica estándar de trabajo empírico la aplicación de diferentes estadísticos de contraste de raíz unitaria. A pesar de ser un aspecto práctico, estos estadísticos poseen distribuciones complejas y no estándar que dependen de funcionales de ciertos procesos estocásticos y sus derivaciones representan una barrera incluso para varios econometristas teóricos. Estas derivaciones están basadas en herramientas estadísticas fundamentales y rigurosas que no son (muy) bien conocidas por econometristas estándar. El presente artículo completa esta brecha al explicar en una forma simple una de estas herramientas fundamentales la cual es el Teorema del Límite Central Funcional. Por lo tanto, este documento analiza los fundamentos y la aplicabilidad de dos versiones del Teorema del Límite Central Funcional dentro del marco de una raíz unitaria con un quiebre estructural. La atención inicial se centra en la estructura probabilística de las series de tiempo propuesta por Phillips (1987a), la cual es aplicada por Perron (1989) para estudiar los efectos de un quiebre estructural (asumido) exógeno sobre la potencia de las pruebas Dickey-Fuller aumentadas y por Zivot y Andrews (1992) para criticar el supuesto de exogeneidad y proponer un método para estimar un punto de quiebre endógeno. Un método sistemático para tratar con aspectos de eficiencia es introducido por Perron y Rodríguez (2003), el cual extiende el enfoque de Mínimos Cuadrados Generalizados para eliminar los componentes determinísticos de Elliot et al. (1996). Se presenta además una aplicación empírica.
|
Page generated in 0.3754 seconds