• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 433
  • 80
  • 56
  • 31
  • 14
  • 11
  • 9
  • 9
  • 8
  • 7
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 779
  • 779
  • 402
  • 340
  • 202
  • 135
  • 134
  • 96
  • 93
  • 78
  • 75
  • 73
  • 70
  • 69
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

INFLUENCE OF COOLING METHODS ON THE ENERGY DENSITY OF BATTERIES : Comparing different cooling methods for Lithium-ion batteries

Söderberg, Oscar, Norberg, Simon January 2022 (has links)
Due to climate change, the energy system needs to change from traditional fossil fuels to be dominated by renewable energy sources. Not only the energy system, but the increasing number of vehicles and emissions from the transport sector are a problem for climate change and that need to be solved. Both can be solved with batteries, to handle climate change issue. The lithium-ion batteries (LIBs) have a high energy density which is important due to the less needed materials for the batteries. LIBs can be used in a battery energy storage system (BESS) to store the excess energy for later usage, and as an electric vehicle (EV) battery. For these high energy density batteries, there comes drawbacks such as safety issues by deviating temperatures which have effects on the capacity, lifetime, performance, and in worst case a thermal runaway can occur which may lead to fire and explosions. These temperature issues can be solved with a battery thermal management system (BTMS), which can manage temperature deviation. Cylindrical battery cells with the dimension 18650 with the cell chemistry Lithium-Nickel-Cobalt-Aluminum-Oxide (NCA) will be investigated with different discharge rates, how the heat generation increases, and how it can be handled by cooling systems. A battery pack will be built up in computational fluid dynamics (CFD) software called Ansys Fluent, to be simulated and see how the influence of cooling methods affect the energy density of the 18650 batteries. Air-cooling and liquid-cooling with fan as air-cooling and plate cooling as liquid cooling will be used in this work. 20 cells were investigated with air and liquid cooling, with two different cases with air-cooling. 100 cells with just liquid cooling during 0,5C was investigated on how the number of cells impacted on the energy density. It was seen that the different discharge rates (C-rate) had an impact on the amount of cooling, with air cooling being not as good as liquid cooling for cooling the battery pack and more flow was needed. The energy density in relation to weight showed that 20 cells with less spacing using air-cooling had the best energy density at 196,68 Wh/kg. It was also seen that the number of cells had an impact on the energy density in relation to volume. With the best energy density with 100 cells using liquid cooling at 279,96 Wh/L.
532

Modelling the Flow and Allocation of Materials from Battery Recycling through Production / Modellerande av flödet och allokeringen av material från batteriåtervinning genom produktion

Kraft, Cecilia, Laving, Daniel January 2021 (has links)
With the current shift towards renewable energy sources, the demand for batteries is expected to follow an exponential increase in the future, and lithium-ion batteries will be the bulk of it. In order to reduce carbon dioxide emissions from battery production and to secure future availability of critical metals, more batteries will need to be recycled. To incentivize this, the European Union will impose regulations on recycling efficiencies as well as recycled content in produced batteries. The purpose of this study was twofold. Firstly, it was to construct a model in Microsoft Excel which could follow the flow of materials from recycling through production and keep track of an inventory which could be allocated to customers as needed. Moreover, the model had to be able to calculate values such as recycled content in produced battery cells and take into account losses from production etc. Secondly, this thesis aimed to use the model to determine how many old cells would have to be recycled in order to produce a modern cell with a certain percentage of recycled content, as well as to determine which recycled active cathode metals there might be surpluses and shortages of. This was done as a case study at the company Northvolt AB, by gathering data from literature, interviews, and site visits. The model was then built iteratively, based on a material flow analysis approach. Finally, the model was used in a methodical manner to test the conversion rates and to determine how big the shortages and surpluses of materials would be. This thesis argues that there is no truly relevant literature on building a material flow and allocation model such as the one required here. However, using the method described above, it was possible nonetheless to construct the novel model. The model consists of several sheets with distinct functions and is scalable while also adaptable to other companies and industries. Among other things, it keeps track of inventory levels with a scalable time axle and helps the user set values to reach target recycled weight percentages. The model can also be used to perform the analyses required for the second half of the purpose of this thesis. The key outcome from that, was that recycling old batteries and producing new ones is far from a 1:1 process and that higher requirements on recycling efficiencies could greatly improve that. Moreover, the active cathode metals which would require the largest amounts of batteries to be recycled in order to produce new cells with recycled content at certain levels, were identified as bottlenecks. When using the required recycling efficiencies from the European Union in 2025 and 2030, the bottleneck metals were lithium and nickel if the new batteries were to contain 100 % recycled active cathode metals. However, if the recycled content should be in line with European Union regulations, the bottlenecks would be cobalt and nickel instead. This could shift the demand for virgin active cathode metals in favor of cobalt and nickel. / Med dagens skifte till förnybara energikällor förväntas efterfrågan på batterier följa en exponentiell ökning i framtiden, och litiumjonbatterier kommer stå för merparten av den. För att minska koldioxidutsläppen från batteriproduktion och för att säkra framtida tillgång till kritiska material kommer fler batterier behöva återvinnas. För att ge incitament till detta, kommer Europeiska unionen införa regleringar på återvinningseffektiviteter och återvunnet innehåll i nya batterier. Syftet med denna studie var tvåfaldigt. Det första syftet var att bygga en modell i Microsoft Excel som kunde följa materialflöden från återvinning genom produktion och hålla kolla på ett lager som kunde allokeras till kunder efter behov. Dessutom behövde modellen kunna räkna ut värden såsom återvunnet innehåll i producerade battericeller samt ta hänsyn till förluster i produktion etc. Det andra syftet var att använda modellen till att bestämma hur många gamla celler som skulle behöva återvinnas för att producera en modern cell med vissa nivåer av återvunnet innehåll, såväl som att bestämma vilka återvunna aktiva katodmetaller det kan bli överskott och underskott av. Detta gjordes som en fallstudie på företaget Northvolt AB, genom att samla data från litteratur, intervjuer och studiebesök. Modellen byggdes sedan iterativt, baserat på en materialflödesanalys. Slutligen användes modellen på ett metodiskt sätt för att testa omvandlingseffektiviteter och bestämma hur stora underskotten och överskotten av material skulle bli. Denna avhandling menar att det inte finns någon riktigt relevant litteratur om att bygga en materialflödes- och allokeringsmodell som den som krävdes här. Med metoderna som beskrevs ovan var det dock möjligt att bygga modellen och bryta ny mark på vägen. Modellen består av flera ark med distinkta funktioner och är skalbar samtidigt som den kan anpassas till andra företag och industrier. Den håller bland annat reda på lagernivåer med en skalbar tidsaxel och hjälper användaren bestämma värden som behövs för att nå målen på återvunna viktprocent. Modellen kan också användas för att utföra de analyser som behövs för att uppfylla andra halvan av avhandlingens syfte. Huvudresultatet från det, är att återvinning av gamla batterier och produktion av nya är långt ifrån en 1:1 process och att högre krav på återvinningseffektiviteter skulle förbättra det markant. Vidare identifierades de aktiva katodmetallerna som skulle kräva de största mängderna återvunna batterier för att producera nya celler med vissa nivåer av återvunnet innehåll. De kallades flaskhalsar. Med Europeiska unionens krav på återvinningseffektiviteter för 2025 och 2030, var flaskhalsmetallerna litium och nickel om de nya batterierna skulle innehålla 100 % återvunna aktiva katodmetaller. Om det återvunna innehållet å andra sidan skulle vara i linje med Europeiska unionens regleringar, skulle flaskhalsarna vara kobolt och nickel istället. Detta skulle kunna skifta efterfrågan på nybrutna aktiva katodmetaller till fördel för kobolt och nickel.
533

A comparison between aqueous and organic electrolytes for lithium ion batteries / En jämförelse mellan vattenbaserade och organiska elektrolyter för litium-jonbatterier

Quintans De Souza, Gabriel January 2021 (has links)
Många batteriers användningsområden kräver att batterierna har hög upp- och urladdningshastighet samt låg kostnad. För dessa användningsområden är vattenbaserade laddningsbara batterier (ARB) ett möjligt alternativ i och med att de är svårantändliga, har god jonledningsförmåga, lägre inre resistans, billigare elektrolytlösning och tillverkning och har potentiellt högre upp- och urladdningshastigheter.  Genom att utgå från en cell med LiMn2O4 och V2O5 som katod respektive anod, utvecklades en cell med en spänning på 1 V och prestanda för 2 mol/L LiTSFI i organisk respektive vattenlöslig lösning jämfördes i ett SEI-fritt system. Prestandan kvantifierades med avseende på urladdningskapaciteten vid olika urladdningshastigheter samt fördelningen av de interna överpotentialerna. Vid C/4 behöll den organiska elektrolyten 88,3% av den initiala kapaciteten efter 10 cykler medan den vattenlösliga behöll 98,8%. En gräns på 20 °C påvisades för den organiska elektrolyten och vid försök att gå över denna hastighet svällde pouch cellen upp. Den vattenlösliga elektrolyten, å andra sidan, bevarade 37 mAh/g vid 50 °C.  Skillnaden i potentialfördelning i de två systemen analyserades även genom att använda tunnare elektroder. Den organiska elektrolyten visade då en förbättring av prestandan vid höga hastigheter, med en urladdningskapacitet på 8,8 mAh/g vid 50 °C, jämfört med 30 mAh/g för den vattenlösliga elektrolyten. IR-fallet var 7 gånger högre för den organiska elektrolyten. Eventuell skillnad i laddningsöverföring och por-resistans kunde inte analyseras då flera processer ägde rum på samma gång i systemen, vilket gav ett impedansspektrum med en komplex associerad ekvivalent krets. / For several battery applications, high dis-/charge rate and low cost are imperatives. It is for these applications that aqueous rechargeable batteries (ARB) rise as potential candidates given the non-flammability, potentially higher ionic conductivity and dis-/charge rates, lower internal resistances and lower price of the electrolyte solvents and manufacture. By benchmarking a cell with LiMn2O4 and V2O5 as cathode and anode, respectively, a cell with an operating voltage window of 1 V was developed and the performance of 2 mol/L LiTFSI in organic and aqueous solvent compared in a SEI-free system. This performance was quantified in terms of discharge capacity at different rates of discharge and the distribution of internal overpotentials. At C/4, the organic electrolyte held 88.3% of the initial capacity after 10 cycles while the aqueous, 98.8%. A limit of 20 °C for the organic electrolyte was seen, and at the attempt of cycling above this rate, swelling of the pouch cell took place. The aqueous electrolyte, on the other hand, conserved 37 mAh/g at 50 °C. The difference of overpotentials distribution in both systems was also assessed by employing thinner electrodes. The organic electrolyte showed then an improvement on high-rate performance, reaching 50 °C, but with a discharge capacity of 8.8 mAh/g, against 30 mAh/g for the aqueous electrolyte. The IR-drop was 7 times higher for the organic electrolyte. The differentiation between charge-transfer and pore resistance, however, was not possible, because of the presence of several processes taking place at similar time-scales in both systems, yielding an impedance spectra with a complex associated equivalent circuit.
534

Second Life Batteries Faciliating Sustainable Transition in the Transport and Energy Sectors? : An Exploratory Field Study in Colombia

Vesterberg, Iris, Westerlund, Sofia January 2020 (has links)
The increasing number of vehicles in Colombian cities have resulted in alarmingly low quality of air, further resulting in increasing health issues. One potential solution to this issue could be a shift from ICEVs (internal combustion engine vehicles) to EVs (electric vehicles). However, EVs in Colombia are still very expensive, an issue that needs to be addressed in order for the EV market to increase enough to be able address the issue of low air quality in cities. One way of overcoming these cost barriers could be through implementation of a market for SLB (second life batteries), meaning that a battery retired from usage in EVs would be remanufactured, resold and reused in another application. Through SLB, the owner cost of EVs could potentially be decreased. SLB could also help improve the case for nondispatchable renewable energy sources by providing low cost BESS (battery energy storage solutions). Thus, SLB has the potential to facilitate sustainable transition within both the transport and the energy sector. This thesis aims to assess the potential of SLB in Colombia. This is done through a literature review where the current state of SLB is investigated, several interviews with potential stakeholders for a SLB market in Colombia, and a techno-economic assessment of four potential BESS applications in Colombia. The literature review provides with current knowledge and state of SLB in general. The interviews provide important insight to potential stakeholders’ view on SLB for the specific case of Colombia. The techno-economic assessment includes a sensitivity analysis aiming to provide insights in which factors, such as e.g. battery purchasing price or charging cost, that that gives rise to the largest impact on feasibility of SLB. Findings from the interviews shows a strong collective commitment from the interviewees to working towards cleaner air, resulting in high engagement and collaborative efforts between stakeholders for the SLB case. The main issue highlighted by stakeholders regards technoeconomic uncertainties of SLB. Findings from the techno-economic assessment indicates that SLB is viable for larger applications such as BESS at solar farms, but not for smaller applications such as backup power in residential buildings. However, SLB is not deemed to be a game changer for either application, and there are still many uncertainties regarding both technological and economic aspects that needs to be further investigated. The sensitivity analysis shows that the factors resulting in the highest impact on feasibility of SLB is battery SOH (state of health) at the beginning of SLB usage, and battery and repurposing cost. It will be hard to address both of these factors simultaneously due to a higher SOH would render higher battery prices, and vice versa. The findings from the thesis shows that SLB can facilitate sustainable transition within both the transport and energy sectors but is not to be considered a game changer for these sectors. However, even though SLB’s contribution to sustainable transition is not revolutionary, it is still necessary from a sustainability perspective. Given the environmental footprint of EV batteries and the amount of hazardous waste retired EV batteries will give rise to, circular economy must be pursued. / Det ökande antalet fordon i colombianska städer har resulterat i oroväckande låg luftkvalitet, vilket ytterligare resulterat i ökande hälsoproblem. En potentiell lösning på det problemet kan vara en övergång från ICEVs (förbränningsmotorfordon) till EV (elfordon). EVs i Colombia är fortfarande väldigt dyra, en fråga som måste adresseras för att EV-marknaden ska kunna öka tillräckligt för att kunna ge en inverkan på problemet med låg luftkvalitet i städer. Ett sätt att övervinna dessa kostnadshinder skulle kunna vara genom att implementera en marknad för SLB (second life-batterier), vilket innebär att ett batteri som bedömts inte längre uppfylla kraven för användning i EVs, och därmed byts ut, skulle kunna byggas om, säljas vidare och återanvändas i andra applikationer. Genom SLB kan ägarkostnaderna för EVs potentiellt sänkas. SLB skulle också kunna användas för att tillhandahålla billigare BESS (batterilagringslösningar) hos icke-reglerbara förnyelsebara kraftverk, såsom solkraftverk. Således har SLB potentialen att underlätta för hållbara förändringar inom både transportsektorn och energisektorn. Den här uppsatsen ämnar att utvärdera SLBs potential i Colombia. Detta görs genom en litteraturöversikt där det nuvarande tillståndet av SLBs undersöks, flera intervjuer med potentiella intressenter för en SLB-marknad i Colombia, och en tekno-ekonomisk bedömning av fyra potentiella BESS-applikationer i Colombia. Litteraturöversikten samlar aktuell kunskap och status inom SLB i allmänhet. Intervjuerna ger viktig insikt om potentiella intressenters syn på SLB för det specifika fallet i Colombia. Den tekno-ekonomiska bedömningen inkluderar en känslighetsanalys som syftar till att ge insikter i vilka faktorer, som t.ex. batteriets inköpspris eller laddningskostnad, som ger upphov till den största effekten på SLBs genomförbarhet. Resultat från intervjuerna visar ett starkt kollektivt engagemang från de intervjuade att arbeta mot renare luft, vilket resulterar i högt engagemang och samarbete mellan intressenterna. Det största problemet med SLB från intressenternas synpunkt berör tekno-ekonomiska osäkerheter. Resultat från den tekno-ekonomiska bedömningen indikerar att SLB är ekonomiskt försvarbart för större applikationer som BESS vid solkraftverk, men inte för mindre applikationer som t.ex. för reservenergi i bostadshus. SLB anses dock inte vara ett genombrott för användning vid någon av applikationerna, och det finns fortfarande många osäkerheter när det gäller både tekniska och ekonomiska aspekter som måste undersökas ytterligare. Känslighetsanalysen visar att de faktorer som resulterar i den högsta påverkan på genomförbarheten av SLB är batteriets SOH (hälsotillstånd) i början av SLB-användning och kostnaden för batteri och ombyggnad av batterier. Det kommer dock att vara svårt att hantera båda dessa faktorer samtidigt på grund av att högre SOH skulle ge högre batteripriser, och vice versa. Resultaten från uppsatsen visar att SLB kan underlätta för hållbara förändringar inom både transport- och energisektorerna, men att det inte ska betraktas som något fantastiskt genombrott för dessa sektorer. Även fast SLBs bidrag till hållbara förändringar är inte revolutionerande, är det fortfarande en nödvändig faktor ur ett hållbarhetsperspektiv. Med tanke på miljöavtrycket för EV-batterier och mängden av farligt avfall som EV-batterier kommer att ge upphov till då de inte längre är önskvärda, måste cirkulär ekonomi bedrivas i största möjliga mån.
535

A Study Of Components For Lithium And Sodium Batteries And Other Storage Devices

Michaud, Xavier January 2019 (has links)
An investigation of electrochemical storage device materials has been undertaken in four parts. The bulk and interfacial resistance of Na+ beta-alumina tubes were separated using a galvanostatic charge-discharge method. Sodium silicide was characterized to better understand its synthesis. BiMn2O5 was produced using a sol-gel method and tested for pseudocapacity. Different lithium ion anode and cathode materials were deposited using a new electrophoretic deposition method. A novel galvanostatic charge-discharge method was developed for the determination of bulk and interface resistance in Na+ beta-alumina solid electrolytes [BASE]. Dense and duplex BASE tubes were tested by varying the exposed surface area. The results of dense BASE tube pairs were used to determine the bulk and interfacial resistance components, while duplex BASE tubes were tested to determine the reduction in interfacial resistance. It was found that duplex tubes had reduced the interfacial resistance by 75%, when compared to a uniformly dense electrolyte. Sodium silicide was characterized using various methods to better understand the phase and the Na-Si phase diagram. EMF experiments using Na+ BASE tubes was used to determine the activity in the silicon rich region of the phase diagram, which showed a sodium activity of 0.5 at 550°C. TGA/DSC was used to determine phase transformation temperatures, as well as the heat of formation for NaSi, which was recorded to be below 1 kJ mol-1. A sol-gel precipitation method was used to produce fine BiMn2O5 powders used for supercapacitors. The powders resulting from a consistent method were tested for pseudocapacitance using bulk and thin film electrodes. Bulk electrodes had a gravimetric capacitance of 10 F g-1, while thin film electrodes only reached 2.6 F g-1. Lithium ion battery anode (Li4Ti5O12) and cathode (LiFePO4, LiMn2O4, LiMn1.5Ni0.5O4) materials were electrophoretically deposited with the assistance of PAZO-Na and CMC-Na. Cathodes were successfully deposited on aluminium substrates, and were tested in the potential window 2 – 4.3 V. The LiFePO4 cathodes showed capacity of 146.7 mAh g-1 at C/10, while showing capacity retention of 103% after 50 cycles. / Thesis / Doctor of Philosophy (PhD) / The goal of this work is to examine materials used in different types of electrochemical storage devices. The modification of resistive properties of β-alumina electrolytes are examined for use in high temperature sodium batteries. Electrophoretic deposition methods are used to rapidly make thin electrodes for lithium ion batteries and supercapacitors. The stoichiometric compound NaSi, a potentially safer and greener method of producing hydrogen gas, is characterized for a better understanding of its properties, and therefore production.
536

Quantum-Mechanistic-Based and Data-Driven Prediction of Surface Degradation and Stacking Faults in Battery Cathode Materials

Li, Xinhao January 2024 (has links)
Batteries play a pivotal role in the modern world, powering everything from portable electronics to electric vehicles, and are critical in the shift towards renewable energy sources by enabling efficient energy storage. This thesis presents new computational strategies to understand and predict surface degradation and stacking faults in battery cathodes, phenomena that have crucial impact on the battery lifetime. The starting point is a detailed first-principles analysis of LiNiO₂ surface degradation, assessing the thermodynamics of oxygen release and its impact on the surface integrity of this prospective cathode material. This research led to the development of a method for the automated enumeration of surface reconstructions and the development of a Python software package implementing the methodology, thereby greatly accelerating the computational surface characterization of electrode materials. The methodology made it feasible to extend the investigation to LiCoO₂ surfaces, comparing their oxygen retention and surface stability with LiNiO₂ and identifying the unique properties of the two transition metals that control their behavior during battery operation. In addition to surface phase changes, stacking faults are another important class of two-dimensional defects that can affect the properties of cathode materials. Combining information from first principles calculations with 17O nuclear magnetic resonance (NMR) spectroscopy provided by collaborators, we uncovered how stacking faults affect the capacity and cyclability of Li₂MnO₃ cathodes, a prototypical lithium-rich material with oxygen redox activity. Although automated first-principles calculations are, in principle, an ideal tool for understanding atomic-scale degradation phenomena in batteries, they are computationally demanding and, therefore, limited to materials with simple compositions. In the final chapter, we explore the application of machine learning for further accelerating computational battery degradation simulations by leveraging existing data first-principles calculations for predicting the stability of new surface reconstructions. This chapter points toward a new direction that should be further explored in the future. The research presented in this thesis not only advances the understanding of lithium-ion battery cathode materials but also introduces more-widely applicable computational methodologies that lay a foundation for the development of advanced materials for energy storage applications. This work demonstrates the benefits of integrating traditional computational methods with machine learning, contributing to ongoing progress in materials science and opening up new possibilities for advancements in energy technology and material engineering.
537

A High-Efficiency Grid-Tie Battery Energy Storage System

Qian, Hao 25 October 2011 (has links)
Lithium-ion based battery energy storage system has become one of the most popular forms of energy storage system for its high charge and discharge efficiency and high energy density. This dissertation proposes a high-efficiency grid-tie lithium-ion battery based energy storage system, which consists of a LiFePO4 battery based energy storage and associated battery management system (BMS), a high-efficiency bidirectional ac-dc converter and the central control unit which controls the operation mode and grid interface of the energy storage system. The BMS estimates the state of charge (SOC) and state of health (SOH) of each battery cell in the pack and applies active charge equalization to balance the charge of all the cells in the pack. The bidirectional ac-dc converter works as the interface between the battery pack and the ac grid, which needs to meet the requirements of bidirectional power flow capability and to ensure high power factor and low THD as well as to regulate the dc side power regulation. A highly efficient dual-buck converter based bidirectional ac-dc converter is proposed. The implemented converter efficiency peaks at 97.8% at 50-kHz switching frequency for both rectifier and inverter modes. To better utilize the dc bus voltage and eliminate the two dc bus bulk capacitors in the conventional dual-buck converter, a novel bidirectional ac-dc converter is proposed by replacing the capacitor leg of the dual-buck converter based single-phase bidirectional ac-dc converter with a half-bridge switch leg. Based on the single-phase bidirectional ac-dc converter topology, three novel three-phase bidirectional ac-dc converter topologies are proposed. In order to control the bidirectional power flow and at the same time stabilize the system in mode transition, an admittance compensator along with a quasi-proportional-resonant (QPR) controller is adopted to allow smooth startup and elimination of the steady-state error over the entire load range. The proposed QPR controller is designed and implemented with a digital controller. The entire system has been simulated in both PSIM and Simulink and verified with hardware experiments. Small transient currents are observed with the power transferred from rectifier mode to inverter mode at peak current point and also from inverter mode to rectifier mode at peak current point. The designed BMS monitors and reports all battery cells parameters in the pack and estimates the SOC of each battery cell by using the Coulomb counting plus an accurate open-circuit voltage model. The SOC information is then used to control the isolated bidirectional dc-dc converter based active cell balancing circuits to mitigate the mismatch among the series connected cells. Using the proposed SOC balancing technique, the entire battery storage system has demonstrated more capacity than the system without SOC balancing. / Ph. D.
538

Spatially resolved and operando characterization of cathode degradation in Li-ion batteries

Hestenes, Julia Carmen January 2024 (has links)
The global energy transition, involving the widespread adoption of electric vehicles and grid-scale energy storage, demands energy storage devices made up of abundant, inexpensive minerals. For this to be achieved, the large Co content in conventional Li-ion battery cathodes (e.g., LiCoO₂) must be replaced while also maintaining or improving the energy density of the battery. Alternative low-Co and Co-free materials (e.g., layered LiNixMnyCozO₂, spinel LiNi₀.₅Mn₁.₅O₄, and olivine LiFePO₄) are promising alternatives due to their theoretically higher energy densities or improved safety properties from the industry standards. However, in practice, these materials exhibit both bulk and interfacial instabilities that limit their practical energy density and cycle lifetime. It is well known that reactions between the delithiated (charged) cathode surface with the electrolyte generates electrolyte decomposition species that form an interphase layer called the cathode electrolyte interphase (CEI), where such reactions are concomitant with a crystallographic reconstruction of the surface of the bulk material. The CEI is air sensitive, disordered, nanometers thick and evolves as a function of state of charge and cycle number, making it difficult to fully understand its composition and effect on device performance. The dynamic nature of the CEI necessitates development of chemical characterization tools that can analyze surface reactivity during battery operation. Commercial cathode films are also composites including not just the electrochemically active material but also conductive carbon additive and polymer binder, meaning we need spatially resolved tools to study CEI composition across the film to isolate reactivity by film component. In this thesis, we have developed and applied spatially resolved and operando characterization tools to study the CEI of low-Co and Co-free cathode materials and use these data to pinpoint the degradation reactions at play during battery operation. In the first chapter, we introduce the three most prevalent types of cathode materials (layered, spinels, and olivines) used in Li-ion batteries. We then highlight recent progress in the analytical characterization tools that have been developed to elucidate CEI composition, spatial arrangement, and formation pathways during battery operation while discussing the difference in surface reactivity between each cathode active material as revealed by these techniques. Major findings from my own thesis work, detailed in following chapters, are discussed in parallel within this broader context. Finally, equipped with a deeper understanding of the CEI and the processes that lead to its formation, we discuss what remains to be discovered and enabled by optimizing these complex interfaces. The second chapter investigates the composition of the CEI formed by the Li-rich layered cathode material, Li₂RuO₃, to better understand performance decline in this class of materials. To bridge this gap in understanding, we use solid-state NMR (SSNMR) and surface-sensitive dynamic nuclear polarization (DNP) NMR to achieve high resolution compositional assignment of the CEI. We show that the CEI that forms on Li₂RuO₃, when cycled in carbonate-containing electrolytes, is similar to the solid electrolyte interphase (SEI) that has been observed on anode materials, containing components such as polyethylene oxide (PEO) structures, Li acetate, carbonates, and LiF. The CEI composition deposited on the cathode surface on charge is chemically distinct from that observed upon discharge, supporting the notion of crosstalk between the SEI and the CEI, with Li+-coordinating species leaving the CEI during delithiation. We use electrochemical impedance spectroscopy (EIS) to assess the impedance of the CEI on Li₂RuO₃ as a function of state of charge in connection with the migration of CEI species as identified with NMR. Migration of the outer CEI combined with the accumulation of poor ionic conducting components on the static inner CEI may contribute to the loss of performance over time in Li-excess cathode materials. This work demonstrates the utility of SSNMR for studying electrolyte decomposition at the cathode-electrolyte interface which is then applied in the following chapter to more commercially relevant materials. In the third chapter, we study the CEI and surface reactivity of the Ni-rich layered material LiNi₀.₈Mn₀.₁Co₀.₁O₂ (NMC811). The high specific capacities of Ni-rich transition-metal oxides have garnered immense interest for improving the energy density of Li-ion batteries. However, Ni-rich cathodes suffer from interfacial instabilities that lead to formation of electrochemically inactive phases at the cathode particle surface as well as the formation of a CEI layer on the composite surface during electrochemical cycling. We use a combination of ex situ SSNMR spectroscopy and X-ray photoemission electron microscopy (XPEEM) to provide chemical and spatial information, on the nanometer length scale, on the CEI deposited on NMC811 composite cathode films. XPEEM elemental maps offer insight into the lateral arrangement of the electrolyte decomposition products that comprise the CEI and paramagnetic interactions (assessed with electron paramagnetic resonance (EPR) and relaxation measurements) in 13C SSNMR provide information on the radial arrangement of the CEI from the NMC811 particles outward. Using this approach, we find that LiF, Li₂CO₃, and carboxy-containing structures are directly appended to NMC811 active particles, whereas soluble species detected during in situ 1H and 19F solution NMR experiments (e.g., alkyl carbonates, HF, and vinyl compounds) are randomly deposited on the composite surface. We show that the combined approach of ex situ SSNMR and XPEEM, in conjunction with in situ solution NMR, allows spatially resolved, molecular-level characterization of paramagnetic surfaces and new insights into electrolyte oxidation mechanisms in porous electrode films. The in situ solution NMR cell developed here is one of the first of its kind developed specifically for studying electrolyte decomposition products during or directly after battery operation, which is further developed in the next chapter. The fourth chapter focuses on studying the surface reactivity of the high-voltage LiNi₀.₅Mn₁.₅O₄ (LNMO) spinel cathode material. Unfortunately, LNMO-containing batteries suffer from poor cycling performance because of the intrinsically coupled processes of electrolyte oxidation and transition metal dissolution that occurs at high voltage. In this work, we use operando EPR and NMR spectroscopies to study these high voltage reactions, applying the in situ cell design from the previous chapter to operando conditions (characterization during battery charging). We demonstrate that transition metal dissolution in LNMO is tightly coupled to HF formation (and thus, electrolyte oxidation reactions as detected with operando and in situ solution NMR), indicative of an acid-driven disproportionation reaction that occurs during delithiation (battery charging). Leveraging the temporal resolution (s-min) of magnetic resonance, we find that the LNMO particles accelerate the rate of LiPF6 decomposition and subsequent Mn²⁺ dissolution, possibly due to the acidic nature of terminal Mn-OH groups and protic species generated upon oxidizing the solvents. X-ray photoemission electron microscopy (XPEEM) provides surface-sensitive and localized X-ray absorption spectroscopy (XAS) measurements, in addition to X-ray photoelectron spectroscopy (XPS), that indicate disproportionation is enabled by surface reconstruction upon charging, which leads to surface Mn³⁺ sites on the LNMO particle surface that can disproportionate into Mn²⁺(dissolved) and Mn⁴⁺(s). During discharge of the battery, we observe high quantities of metal fluorides (in particular, MnF₂) in the cathode electrolyte interphase (CEI) on LNMO as well as the conductive carbon additives in the composite. Electronic conductivity measurements indicate that the MnF₂ decreases film conductivity by threefold compared to LiF, suggesting that this CEI component may impede both the ionic and electronic properties of the cathode. Ultimately, to prevent transition metal dissolution and the associated side reactions in spinel-type cathodes (particularly those that operate at high voltages like LNMO), the use of electrolytes that offer improved anodic stability and prevent acid byproducts will likely be necessary. In the fifth chapter, we conduct an in situ X-ray spectroscopy, electron microscopy, and electron diffraction experiment to study the oxidation of the surface of Li metal, which is of critical importance for next generation Li metal batteries. Elemental Li is one of the most promising anode materials for high energy density Li batteries if it can replace graphite because it increases the specific capacity by an order of magnitude. However, Li metal is extremely reactive and is easily oxidized by air and moisture, even under inert conditions (e.g., in argon-filled gloveboxes, ultrahigh vacuum chambers). The industrial production of Li metal anodes, their surface evolution upon contact with the electrolyte, and electrodeposition behavior upon battery cycling all rely on the initial oxidative processes that take place prior to cell assembly. To better understand Li metal oxidation, we deposit pure Li on a Cu substrate and dose the Li deposit with various amounts of oxygen gas. During this experiment, we monitor the surface composition in situ using low-energy electron microscopy (LEEM), low-energy electron diffraction (LEED), and XPS measurements. We show that by evaporating Li onto Cu substrates, we can bypass long sputtering times needed to study commercial Li foils that usually exhibit alkali metal impurities and thick contamination layers from their external environment. Combined insights from LEED, LEEM and DFT calculations indicate that upon oxygen dosing of this ultrapure Li film, oxygen adsorbs to Li, forming a disordered layer, followed by (111) oriented polycrystalline Li₂O growth. DFT was particularly instrumental in elucidating the precise work function of the surface for the intermediate oxide phases (timescale of seconds) to correlate with trends observed via in situ LEEM imaging experiments. To conclude, we reflect on the overarching insight on cathode degradation that we have learned from these studies and discuss remaining knowledge gaps in the field. We highlight promising future avenues to study for stabilizing the cathode-electrolyte interface of these materials, such as adapting the characterization methods developed here for more high throughput study of next generation electrolyte formulations.
539

<b>Enhancing Lithium-ion Storage for Low-Temperature Battery Applications</b>

Soohwan Kim (18533676) 20 July 2024 (has links)
<p dir="ltr">This dissertation addresses the significant challenge of enhancing the performance of lithium-ion batteries (LIBs) in extremely low-temperature environments, which is critical for applications in defense and space exploration. By innovating both electrolyte formulations and electrode materials, this research extends the operational boundaries of LIBs to temperatures below -100 ℃. </p>
540

<b>THERMO-ELECTROCHEMICAL INTERACTIONS AND SAFETY ANALYTICS IN LITHIUM-ION BATTERIES</b>

Hanwei Zhou (19131412) 14 July 2024 (has links)
<p dir="ltr">Lithium-ion (Li-ion) batteries are promising electrochemical energy storage and conversion systems to drive the rechargeable world toward a sustainable future. Following the breakthrough of material innovations, advanced Li-ion batteries have significantly mitigated the range and lifetime anxieties of electric vehicles (EVs) and consumer electronics. Nevertheless, state-of-the-art Li-ion chemistries still suffer from several defects, such as rapid degradations under abusive or fast-charge scenarios and unfavorable high thermal instabilities. Essentially, aging mechanisms and safety hazards of Li-ion cells are strongly coupled events. The cell safety factors are most likely to be deteriorated as degradation progresses, making the cell less safe after a long-term deployment. In this thesis, we comprehensively investigate thermo-electrochemical interactions on the safety of Li-ion batteries. Fundamental principles of Li-ion batteries, basic knowledge about material-level thermal instabilities at electrode-electrolyte interphases, thermal characterization approaches, and thermal runaway mechanisms under abusive scenarios are fully overviewed. Thermally unstable characteristics of key cell components, including inter-electrode crosstalk as a result of oxygen liberation from cathode lattice structures, significant electric energy release from massive internal short circuit due to separator collapse, anode-centric lithium-plating-induced early exotherm, and silicon-dopant-driven thermal risks of composite anodes, are specifically discussed to understand their critical role in accelerating cell-level thermal runaway catastrophes. Aging pathways of Li-ion cells under off-normal conditions, particularly overdischarge and fast charging, are thoroughly elucidated using a promising reference electrode architecture, which effectively deconvolutes the electrode behaviors from the complex full-cell performance for precise identification of the root causes in cell failure. Given the profound revelation of degradation-safety sophistication in various Li-ion chemistries, corresponding mitigation and prevention strategies are proposed to maximize cell lifetime and reliability. This thesis provides new insights into aging and safety diagnostics of cutting-edge Li-ion batteries, taking one step further in the online monitoring of battery state of health to develop adaptive battery management systems.</p>

Page generated in 0.068 seconds