• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 334
  • 53
  • 44
  • 40
  • 17
  • 17
  • 12
  • 11
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 671
  • 161
  • 116
  • 88
  • 86
  • 64
  • 56
  • 55
  • 51
  • 50
  • 45
  • 41
  • 41
  • 41
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
581

INTEGRATED VACUUM TRANSISTORS AND FIELD EMITTER ARRAYS

Shabnam Ghotbi (14034600) 16 June 2023 (has links)
<p>   The arrival of Si transistors and integrated circuit technology more than half a century ago made vacuum electronic technology almost extinct. Today, there are only a few niche applications for vacuum electronics. The main issues with this technology are its high voltage requirement and high-power consumption, difficult and costly fabrication technology, lack of integration capability, and poor reliability characteristics. Some of these issues may be addressed by going to nm scale fabrication that did not exist 60 years ago. Other problems such as reliability and lack of integration capability require alternative solutions to what has been proposed so far. Vacuum is the ultimate conduction media allowing electrons to reach the speed of light without any scattering. Consequently, a vacuum transistor, if designed correctly, can achieve THz frequency performance, while delivering Watt-level powers. No semiconductor technology can compete with vacuum technology to deliver such performance. </p> <p>In this work, novel methods for implementing nanoscale field emitter arrays used in vacuum electronics are proposed. Gated and ungated field emitters are fabricated with self-assembly technology and electron beam lithography. Different anisotropic dry etching recipes are developed to achieve emitters with different sharpness and aspect ratios. Our methods lead to field emitter array operation under low voltages (less than 20 V) and high current densities (around 50 A/cm2) using self-assembly and soft film anode-cathode isolator, and field emitter devices with ~4.5 A/cm2 current density with a turn-on voltage less than 50 V using electron beam lithography and oxide anode-cathode isolator. </p> <p>Making reliable field emitter devices is challenging. Due to Joule heating, ion bombardment, and geometrical variations for each tip in the field emitter arrays, emission current becomes nonuniform across the array. Sharper tips emit at a higher rate and eventually, the heat generated at the tip deforms the tips leading to electron emission at a lower rate. With ultra-low doped emitters, the current of each tip is limited to a few nano-amperes leading to a negligible current fluctuation at the tips. </p> <p>Our fabricated ultra-low doped devices with both self-assembly and electron beam lithography techniques presented constant emission current with almost no change over 24 hours of continuous operation. Such excellent reliability characteristics in vacuum field emitter devices have not been demonstrated to date.</p> <p>The screening effect in close-packed field emitter arrays which occurs by nearby conductive or semiconductive objects is thoroughly investigated and different solutions are proposed to reduce this effect between the emitters. Simulation studies using Sentaurus TCAD, MATLAB, and COMSOL Multiphysics simulators facilitated the design and optimization of gated and ungated field emitter arrays. These studies included the effect of sharpness, the distance between neighboring emitters, enclosing the emitters by a Si block around the emitters as well as anode-cathode separation on the electrical characterization of field emitter arrays. </p> <p>The optimum location and operating voltages which lead to a maximum gate control and emitter current density are also studied for gated field emitter arrays. Instead of individually gating each field emitter, it was found that controlling the emission of a sub-array with a metallic all-around gate is more efficient and it leads to higher current densities. Guided by simulations, gated field emitter arrays with 5×5 and 2×2 sub-arrays are developed. In terms of strength of the grid control (transconductance), turn-on voltage, maximum emission current, and field intensification factor, the device with the 2×2 sub-array was superior to the one with the 5×5 sub-array. The VFET with 5×5 sub-arrays achieved a higher current density due to a larger number of field emitters packed per active emission area. Finally, plans to further improve the technology and transitioning into the fabrication of vacuum integrated circuits are discussed.</p> <p>  </p>
582

Offline study of next generation EUV pellicle materials and performances : From experimental design to material characterization

Licheri, Susanna January 2019 (has links)
Lithography is the most crucial step in the semiconductor microfabrication workflow. Continuous features size shrinking co-occurs with the reduction of the exposure wavelength: a move from 193 nm light to extreme ultra-violet (EUV) at 13.5 nm is performed. The change poses a vast number of challenges that have been overcome in the past years. Among the others, the protection of the reticle front side from defects is crucial. Shielding can be achieved by means of EUV pellicles: large area (~150 cm2), freestanding, ultra-thin (~50 nm) membranes that prevent particles from landing on the reticle surface. Defects fall on the pellicle membrane, which is out-of-focus with respect to the reticle. During operation, the pellicle has to endure mechanical movements (&gt;100 m/s2) and withstand the EUV scanner environment. With increasing source power (resulting in temperatures &gt;500 ºC) structural and chemical integrity must be guaranteed. With multiple semiconductor manufacturers introducing EUV in HVM, an urgent need for a mass volume production-ready pellicle solution is present.In this thesis project, new generation pellicle materials are exposed to EUV light and gas atmosphere at BESSY II synchrotron beamline. The purpose is to investigate the performances of the new membrane samples in terms of the HVM production specifications. Two sets of 10x10 mm2 samples Type (A – B) with different core thickness are tested. Samples are characterized by using the following techniques: EUV transmittance and reflectance measurements, RBS, XPS, and FTIR. After exposure, all the samples undergo degradation. The main root causes are the atmosphere environment and the temperature. On the other hand, EUV light itself plays a marginal role in the process. The material etching mechanism must be further investigated through additional pellicle tests. This is a necessary step to make towards the high-volume manufacturing standards required for mass production. / Litografi är det mest avgörande steget i arbets flödet för halvledar mikrotillverkning. Kontinuerliga funktioner storlek krympande co-sker med minskning av exponeringen våglängd: en över gången från 193 nm ljus till extrem ultraviolett (EUV) vid 13.5 nm utförs. Förändringen innebär ett stort antal utmaningar som har övervunnits under de senaste åren. Bland de andra, är skyddet av rikt medel fram sidan från defekter avgörande. Avskärmning kan åstadkommas med hjälp av EUV-pellicles: stort område (~ 150 cm2), fristående, ultratunna (~ 50 nm) membran som hindrar partiklar från att landa på rikt medlet ytan. Defekter faller på denna tunna membranet, som är out-of-fokus med avseende på rikt medlet. Under drift har denna tunna att uthärda mekaniska rörelser (&gt; 100 m/s2) och motstå EUV skanner miljö. Med ökande käll effekt (vilket resulterar i temperaturer &gt; 500 º C) måste strukturell och kemisk integritet garanteras. Med flera halvledar tillverkare införa EUV i HVM, ett brådskande behov av en massa volym produktions klara denna tunna lösning är närvarande.I detta arbete, exponeras nya generationens denna tunna material för EUV ljus-och gasatmosfär på BESSY II Synchrotron beamline. Syftet är att undersöka prestandan hos de nya membranproverna i form av HVM-produktionsspecifikationer. Två uppsättningar av 10x10 mm2 prover typ (A – B) med olika kärna tjocklek testas. Proverna kännetecknas av att använda följande tekniker: EUV-transmission och reflektansmätningar, RBS, XPS och FTIR. Efter exponering genomgår alla prover nedbrytning. De viktigaste bakomliggande orsakerna är atmosfären miljö och temperaturen. Å andra sidan spelar EUV-ljuset självt en marginell roll i processen. Materialetsnings mekanismen måste undersökas ytterligare genom ytterligare denna tunna-tester. Detta är ett nödvändigt steg för att göra mot de höga volymer tillverknings standarder som krävs för Mass produktion.
583

Block Copolymer Lithographyfor Nano-porous Oxide Thin Films

Liu, Yandi January 2018 (has links)
This thesis focuses on employing a new patterning technique called block copolymer lithography to transfer the nano-porous pattern from the polymer template to the underlying oxide thin film. Nano-porous block copolymer films are produced by spin-coating polymer solution on wafers followed by annealing, UV exposure and development processes. Reactive-ion etching is then used to etch the oxide films based on the pattern of polymer template and the polymer is then removed. The obtained oxide microstructure is characterized by SEM, showing a nanomesh of microdomains with the same hole size and density as the initial block copolymer layer. The advantages of block copolymer lithography include uniform nanopatterning, cost efficiency and simple processing. The nano-porous oxide thin films could be used as hard mask for nanopatterning in microelectronics and for energy storage applications. / Denna avhandling fokuserar på användningen av en ny mönstringsteknik som kallas block-sampolymerlitografi som används för att överföra nano-porösa mönster från polymermaller till en underliggande oxidtunnfilm. Nano-porösa blocksampolymerfilmer framställs genom spinbeläggningspolymerlösning på skivor följt av glödgning, UV-exponering och utvecklingsprocesser. Reaktionjon etsning används sedan för att etsa oxidfilmerna baserat på mönstret av polymermaller och därefter blir polymeren avlägsnad. Den erhållna oxidmikrostrukturen karakteriseras av SEM, som visar en nanomesh av mikrodomäner med samma hålstorlek och densitet som det ursprungliga blocksampolymerskiktet. Fördelarna med block-sampolymerlitografi innefattar likformig nanomönstring, kostnadseffektivitet och enkel bearbetning. De nanoporösa oxidtunnfilmerna kan användas som en hard mask för nanomönstring i mikroelektronik och för energilagringsapplikationer.
584

Design, Fabrication, And Testing Of High-transparency Deep Ultra-violet Contacts Using Surface Plasmon Coupling In Subwavelength Aluminum Meshes

Mazuir, Clarisse 01 January 2011 (has links)
The present work aims at enhancing the external quantum efficiencies of ultra-violet (UV) sensitive photodetectors (PDs) and light emitting diodes (LEDs)for any light polarization. Deep UV solid state devices are made out of AlGaN or MgZnO and their performances suffer from the high resistivity of their p-doped regions. They require transparent p-contacts; yet the most commonly used transparent contacts have low transmission in the UV: indium tin oxide (ITO) and nickel-gold (Ni/Au 5/5 nms) transmit less than 50% and 30% respectively at 300 nm. Here we investigate the use of surface plasmons (SPs) to design transparent p-contacts for AlGaN devices in the deep UV region of the spectrum. The appeal of using surface plasmon coupling arose from the local electromagnetic field enhancement near the metal surface as well as the increase in interaction time between the field and semiconductor if placed on top of a semiconductor. An in/out-coupling mechanism is achieved by using a grating consisting of two perpendicularly oriented sets of parallel aluminum lines with periods as low as 250 nm. The incident light is first coupled into SPs at the air/aluminum interface which then re-radiate at the aluminum/AlGaN interface and the photons energy is transferred to SP polaritons (SPPs) and back to photons. High transmission can be achieved not only at normal incidence but for a wider range of incident angles. iv A finite difference time domain (FDTD) package from R-Soft was used to simulate and design such aluminum gratings with transparency as high as 100% with tunable peak wavelength, bandwidth and angular acceptance. A rigorous coupled wave analysis (RCWA) was developed in Matlab to validate the FDTD results. The high UV transparency meshes were then fabricated using an e-beam assisted lithography lift-off process. Their electrical and optical properties were investigated. The electrical characterization was very encouraging; the sheet resistances of these meshes were lower than those of the conventionally used transparent contacts. The optical transmissions were lower than expected and the causes for the lower measurements have been investigated. The aluminum oxidation, the large metal grain size and the line edge roughness were identified as the main factors of inconsistency and solutions are proposed to improve these shortcomings. The effect of aluminum oxidation was calculated and the passivation of aluminum with SiO2 was evaluated as a solution. A cold deposition of aluminum reduced the aluminum grain size from 60 nm to 20 nm and the roughness from 5 nm to 0.5 nm. Furthermore, replacing the conventional lift-off process by a dry back-etch process led to much smoother metal line edges and much high optical transparency. The optical measurements were consistent with the simulations. Therefore, reduced roughness and smooth metal line edges were found to be especially critical considerations for deep UV application of the meshes.
585

Nanoscale Patterning and Imaging of Liquid Crystals and Colloids at Surfaces

Pendery, Joel S. 11 June 2014 (has links)
No description available.
586

PARALLEL FABRICATION OF PHOTONIC CRYSTALS USING INTERFERENCE LITHOGRAPHY

CHINCHOLI, ASHWIN 13 July 2005 (has links)
No description available.
587

Direct Write of Chalcogenide Glass Integrated Optics Using Electron Beams

Hoffman, Galen Brandt 16 December 2011 (has links)
No description available.
588

Two phase magnetoelectric epitaxial composite thin films

Yan, Li 07 January 2010 (has links)
Magnetoelectricity (ME) is a physical property that results from an exchange between polar (electric dipole) and spin (magnetic dipole) subsystem: i.e., a change in polarization (P) with application of magnetic field (H), or a change in magnetization (M) with applied electric field (E). Magnetoelectricity can be found both in single phase and composite materials. Compared with single phase multiferroic materials, composite multiferroics have higher ME effects. Through a strictive interaction between the piezoelectricity of the ferroelectric phase and the magnetostriction of the ferromagnetic phase, said multiferroic composites are capable of producing relatively large ME coefficients. This Dissertation focused on the deposition and characterization of two-phase composite magnetoelectric thin films. First, single phase ferroelectric thin films were studied to improve the multiferroic properties of the composite thin films. Then structural, ferroelectric, ferromagnetic, and magnetoelectric properties of composite thin films were researched. Finally, regular nano-array composite films were deposited and characterized. First, for single phase ferroelectric thin films, the phase stability was controlled by epitaxial engineering. Because ferroelectric properties are strongly related to their crystal structure, it is necessary to study the crystal structures in single phase ferroelectric thin films. Through constraint of the substrates, the phase stability of the ferroelectric thin films were able to be altered. Epitaxial thin-layers of Pb(Fe1/2Nb1/2)O3 (or PFN) grown on (001), (110), and (111) SrTiO3 substrates are tetragonal, orthorhombic, and rhombohedral respectively. The larger constraint stress induces higher piezoelectric constants in tetragonal PFN thin film. Epitaxial thin-layers of Pb(Zr0.52Ti0.48)O3 (or PZT) grown on (001), (110), and (111) SrTiO3 substrates are tetragonal, monoclinic C, and rhombohedral respectively. Enhanced ferroelectric properties were found in the low symmetry monoclinic phase. A triclinic phase in BFO was observed when it was deposited on tilted (001) STO substrates by selecting low symmetry (or interim) orientations of single crystal substrates. Then, in two phase composite magnetoelectric thin films, the morphology stability was controlled by epitaxial engineering. Because multiferroic properties are strongly related to the nano-structures of the composite thin films, it is necessary to research the nano-structures in composite thin films. Nano-belt structures were observed in both BaTiO3-CoFe2O4 and BiFeO3-CoFe2O4 systems: by changing the orientation of substrates or annealing condition, the nano-pillar structure could be changed into nano-belts structure. By doing so, the anisotropy of ferromagnetic properties changes accordingly. The multi-ferroic properties and magnetoelectric properties or (001), (110) and (111) self-assembled BiFeO3-CoFe2O4 nano-composite thin film were also measured. Finally, the regular CoFe2O4-BiFeO3 nano-array composite was deposited by pulsed laser deposition patterned using a focused ion beam. Top and cross-section views of the composite thin film showed an ordered CoFe2O4 nano-array embedded in a BiFeO3 matrix. Multiferroic and magnetoelectric properties were measured by piezoresponse force microscopy and magnetic force microscopy. Results show (i) switching of the magnetization in ferromagnetic CoFe2O4 and of the polarization in ferroelectric BiFeO3 phases under external magnetic and electric field respectively, and (ii) changes of the magnetization of CoFe2O4 by applying an electric field to the BiFeO3 phase. / Ph. D.
589

Multifunctional 4D-Printed Sperm-Hybrid Microcarriers for Biomedical Applications

Rajabasadi, Fatemeh 10 April 2024 (has links)
The field of biomedical sciences has been expanded through the introduction of a novel cohort of soft and intelligent microrobots that can be remotely operated and controlled through the use of external stimuli, such as ultrasound, magnetic fields, or electric fields, or internal stimuli, such as chemotaxis. The distinguishing factor of these microrobots lies in their propulsion system, which may encompass chemical, physical, or biohybrid mechanisms. Particularly, microrobots propelled by motile cells or microorganisms have found extensive usage because they combine the control/steerability and image-enhancement capabilities of the synthetic microstructures with the taxis and cell-interaction capabilities of the biological components. Spermatozoa (sperms), among other types of motile microorganisms and cells, are promising biological materials for building biohybrid microrobots because they are inherently designed to swim through complex fluids and organs, like those in the reproductive system, without triggering negative immune responses. Sperms are suitable for a variety of gynecological healthcare applications due to their drug encapsulating capability and high drug-carrying stability, in addition to their natural role of fertilization. One objective of this project is to help sperms reach the site of fertilization in vivo where the sperm count is low (20 million sperm per mL), a condition known as oligospermia. In order to reach this goal, we are developing alternative strategies for transporting a significant number of sperms, as well as improving the functionality of sperm-hybrid microcarriers. Here, we use a thermoresponsive hydrogel made of poly(N-isopropylacrylamide) (PNIPAM) and a non-stimuli-responsive polymer (IPS photoresist) to create four dimensional (4D)-printed sperm-hybrid microcarriers via two-photon polymerization (TPP). We present a multifunctional microcarrier that can: i) transport and deliver multiple motile sperms to increase the likelihood of fertilization, ii) capacitate/hyperactivate the sperms in situ through the local release of heparin, and iii) assist the degradation of the hyaluronic acid (HA), present in extracellular matrix (ECM) of oocyte-cumulus surrounded the Egg. HA degradation occurs through the local action of hyaluronidase-loaded polymersomes (HYAL-Psomes) that have been immobilized on the microcarrier's surface. Dual ultrasonic (US)/photoacoustic (PA) imaging technology can also be used to visualize a swarm of microcarriers, making them ideal candidates for upcoming in vivo applications. In addition, as a second objective, we demonstrate that similar sperm-hybrid microcarriers can be utilized to deliver targeted enzymes and medication for the treatment of gynecological cancer. As proof of concept, we show that combined therapy using enzymes and anti-cancer drugs is an appealing strategy for disrupting the tumor tissue microenvironment and inducing cell apoptosis, thereby offering a more effective cancer therapy. To achieve this, we functionalize the microcarriers with polymersomes loaded with enzymes (such as hyaluronidase and collagenase) and anti-cancer drugs (such as curcumin), respectively, and demonstrate their cargo-release capability, enzyme function, and therapeutic effect for targeting cervical cancer cells in vitro.:Abstract iv 1 Introduction 1 1.1 Motivation 1 1.2 Objectives 3 1.3 Structure of this dissertation 4 2 Background 5 2.1 Introduction on additive manufacturing technology 5 2.2 Direct laser writing (DLW) based on two-photon polymerization 6 2.2.1 Writing principles of two-photon lithography 8 2.2.2 Available materials for two-photon lithography 9 2.2.3 Engineering (Preprogrammed designs) 12 2.3 4D Lithography 13 2.3.1 Biodegradable microrobot 13 2.3.2 Stimuli-responsive micromotors 15 2.3.3 Other 4D-printing approaches 17 2.4 Motion at the microscale (Micromotility) 21 2.4.1 Physical propelled micromotors 23 2.4.2 Chemical propelled micromotors 32 2.4.3 Biohybrid micromotors 34 2.5 Other two-photon polymerized microrobots and their biomedical applications 35 2.5.1 Functionalized carriers 36 2.5.2 Multiple-cell carrying scaffolds 38 2.5.3 Single particle and cell transporters 39 2.6 Comparison of 3D and 4D-lithography with other fabrication methods 42 3 Materials and methods 44 3.1 Synthesis and fabrication 44 3.1.1 Synthesis of PNIPAM 44 3.1.2 Fabrication of microcarrier 44 3.1.3 Preparation of sperm medium and sperm solution 45 3.1.4 Preparation and composition of different body fluids 45 3.1.5 Fluidics channels 46 3.1.6 In situ preparation of microcarriers and sperms 46 3.1.7 Loading of microcarriers with heparin 46 3.1.8 Synthesis of block copolymers (BCPs) 47 3.1.9 Fabrication of Empty-Psomes A and D 48 3.1.10 Preparation of Curcumin complex CU(βCD)2 and calibration curve 49 3.1.11 Fabrication of cargo-loaded Psomes with enzymes and antitumoral drug 50 3.2 Characterization 51 3.2.1 MTS-Assay 51 3.2.2 Toluidine blue assay 52 3.2.3 Characterization of Empty-Psomes A and D: pH cycles and pH titration by dynamic light scattering (DLS) 53 3.2.4 Characterization of cargo-loaded Psomes with enzymes and antitumoral drug 54 3.2.5 Loading efficiency of HYAL-Psomes 55 3.2.6 Loading efficiency of MMPsomes 56 3.2.7 Loading efficiency, stability and release study of CU(βCD)2-Psomes 57 3.2.8 Size and polydispersity analysis of cargo-loaded Psomes in different simulated body fluids by DLS 58 3.2.9 Conformation and stability study of cargo-loaded Psomes in different simulated body fluids by asymmetric flow field flow fractionation (AF4) 59 3.2.10 Immobilization of the cargo-loaded Psomes on the surfaces 61 3.2.11 Enzymatic assay of HYAL for enzyme activity measurement 62 3.2.12 Enzymes assay in different simulated body fluids 64 3.2.13 Stability study of RhB-HYAL-Psomes in different pH 65 3.2.14 Calculation of the magnetic field flux of an external hand-held magnet 66 3.3 Temperature actuation and imaging 67 3.3.1 Temperature actuation test of PNIPAM and video recording 67 3.3.2 Hybrid ultrasound (US) and photoacoustic (PA) Imaging 67 3.4 Other useful information 68 3.4.1 pH and temperature through the female reproductive tract 68 3.4.2 Calculation of the light-to-heat conversion during imaging process 69 4 Multifunctional 4D-printed sperm-hybrid microcarriers for assisted reproduction 72 4.1 Background 72 4.2 Concept and fabrication of the 4D-printed microcarriers 74 4.3 Sperm coupling and geometrical optimization of microcarrier 77 4.4 Characterization of the 4D-printed streamlined microcarriers 78 4.5 Microcarrier loaded with heparin for in situ sperm capacitation 82 4.6 Microcarriers decorated with HYAL-Psomes for in situ degradation of the HA-cumulus complex 86 4.6.1 Immobilization of HYAL-Psomes on the microcarrier’s surface 89 4.6.2 Qualitative study of cumulus cell removal 90 4.7 Sperm-microcarrier motion performance in oviduct-mimicking fluids 91 4.7.1 Capture, transport, and release of sperms 92 4.7.2 Sperm-microcarrier motion performance on ex vivo oviduct tissue 93 4.8 Tracking of a swarm of microcarriers with a dual ultrasound (US) and photoacoustic (PA) imaging system 95 4.9 Summary 96 5 Polymersomes-decorated micromotors with multiple cargos for gynecological cancer therapy 98 5.1 Background 98 5.2 Characterization and size quantification of Psomes before and after loading of cargoes by DLS, and Cryo-TEM 103 5.3 Characterization and size quantification of cargo-loaded Psomes by DLS, and Cryo-TEM in different simulated bodily fluids 104 5.4 Immobilization and characterization of cargo-loaded Psomes on the microcarrier’s surface 106 5.5 Immobilization and characterization of dual cargo-loaded Psomes on the microcarrier’s surface 108 5.6 Investigation of ECM degradation and antitumoral effect of cargo-loaded Psomes 110 5.7 Magnetic and bio-hybrid guidance of microcarriers toward targeted cargo delivery 115 5.8 Summary 117 6 Conclusion and Outlook 119 6.1 Achievements 119 6.2 Outlook 121 Bibliography I List of Figures and Tables XXI Acknowledgements and funding XXIV Scientific publications and contributions XXVI Curriculum Vitae XXVII
590

Polymer-Optical Waveguides for Biosensing

Landgraf, René 15 July 2024 (has links)
The reliable quantitative detection of biomarkers and pathogens at picomolar or even lower concentration would be a great help in point-of-care testing but is not readily available today. Integrated optical waveguides, which interact with the biochemical species to be monitored, are promising candidates for the detection of such ultra-low concentrations. The focus of this thesis is on optical waveguides in the shape of micro-ring or micro-racetrack resonators that are manufactured by UV-assisted nanoimprint lithography. This replica manufacturing technology is analyzed using analytical and numerical models in order to identify and quantify the main influence factors that determine the limit of detection of such biosensors. Potential biosensor applications are evaluated and general design rules are derived. The resulting measurements confirm the high potential of the chosen approach with respect to excellent sensitivity, low limit of detection and high dynamic range. With suitable optimization of the sensor layout, a further improvement of the performance by one to two orders of magnitude is possible.:Editor’s Preface Variables and constants Abbreviations 1 Introductions 1.1 Medical laboratory diagnostics 1.2 Biosensor technologies for point-of-care testing 1.3 Integrated optical waveguides and microresonators 1.4 Outline of the thesis 2 Basics 2.1 Guided waves in planar optical waveguides 2.1.1 Planar optical waveguides 2.1.2 Propagation of optical waves 2.1.3 Coupled modes in waveguides 2.2 Planar optical microresonators 2.2.1 Basic layouts and parameters 2.2.2 Manufacturing 2.2.3 Biosensing 2.3 Functionalization and biofunctionalization 3 UV-NIL Polymer Microresonator Biosensor Design 3.1 UV-assisted nanoimprint lithography 3.2 Waveguide cross-sections and refractive indices 3.2.1 Analytical waveguide modeling 3.2.2 Mode diagrams 3.2.3 Conclusions 3.3 Waveguide coupling 3.4 Waveguide losses 3.4.1 Absorption loss 3.4.2 Roughness loss 3.4..3 Substrate loss 3.4.4 Radiation loss due to bending 3.5 Sensitivity of the effective index to analyte binding 3.6 Overall sensitivity and detection limit 3.7 Generic design guidelines 3.8 Parameter selection for UV-NIL polymer waveguides 3.9 Comparison of polymer and silicon-based waveguides 3.9.1 Waveguide geometry 3.9.2 Radiation loss due to bending 3.9.3 Material damping 3.9.4 Surface roughness 3.9.5 Coupling channel widths and coupling coefficients 3.9.6 Conclusions 4 Characterization and Proof of Concept 4.1 Manufacturing-based design limits and chosen designs 4.2 Measurement setup and characterization process 4.3 Optical properties of UV-NIL polymer microresonators 4.4 Proof of concept 4.4.1 Sensitivity to bulk solutions 4.4.2 Reproducibility and drift 4.4.3 Comparison with theory 4.4.4 Comparison with literature 4.4.5 Sensitivity improvement 4.5 Asymmetry of the resonance curves 4.5.1 Cavity lifetime 4.5.2 Thermal influence 4.5.3 Summary 4.6 Conclusions 5 Integration into a biosensor platform 5.1 Chemical functionalization by oxygen plasma 5.2 Preparation of a biosensor characterization assay 5.2.1 Binding of fluorescent nanoparticles onto polymer surfaces 5.3 Microfluidic system 5.3.1 Programmable microfluidic system 5.3.2 System evaluation and improvement 5.4 Conclusions 6 Conclusions Declaration of authorship Acknowledgements Publications and awards / Der zuverlässige quantitative Nachweis von Biomarkern und Krankheitserregern in pikomolarer oder noch niedrigerer Konzentration wäre eine große Hilfe bei Tests am Point-of-Care, ist aber heute nicht ohne weiteres verfügbar. Integrierte optische Wellenleiter, die mit den zu überwachenden biochemischen Spezies interagieren, sind vielversprechende Kandidaten für den Nachweis solcher ultraniedriger Konzentrationen. Der Schwerpunkt dieser Arbeit liegt auf optischen Wellenleitern in Form von Mikro-Ring- oder Mikro-Spur-Resonatoren, die durch UV-unterstützte Nanoimprint-Lithographie hergestellt werden. Diese Replika-Herstellungstechnologie wird mit Hilfe analytischer und numerischer Modelle analysiert, um die wichtigsten Einflussfaktoren zu identifizieren und zu quantifizieren, die die Nachweisgrenze solcher Biosensoren bestimmen. Potenzielle Biosensoranwendungen werden bewertet und allgemeine Designregeln abgeleitet. Die daraus resultierenden Messungen bestätigen das hohe Potenzial des gewählten Ansatzes in Bezug auf ausgezeichnete Empfindlichkeit, niedrige Nachweisgrenze und hohen Dynamikbereich. Bei geeigneter Optimierung des Sensorlayouts ist eine weitere Verbesserung der Leistung um ein bis zwei Größenordnungen möglich.:Editor’s Preface Variables and constants Abbreviations 1 Introductions 1.1 Medical laboratory diagnostics 1.2 Biosensor technologies for point-of-care testing 1.3 Integrated optical waveguides and microresonators 1.4 Outline of the thesis 2 Basics 2.1 Guided waves in planar optical waveguides 2.1.1 Planar optical waveguides 2.1.2 Propagation of optical waves 2.1.3 Coupled modes in waveguides 2.2 Planar optical microresonators 2.2.1 Basic layouts and parameters 2.2.2 Manufacturing 2.2.3 Biosensing 2.3 Functionalization and biofunctionalization 3 UV-NIL Polymer Microresonator Biosensor Design 3.1 UV-assisted nanoimprint lithography 3.2 Waveguide cross-sections and refractive indices 3.2.1 Analytical waveguide modeling 3.2.2 Mode diagrams 3.2.3 Conclusions 3.3 Waveguide coupling 3.4 Waveguide losses 3.4.1 Absorption loss 3.4.2 Roughness loss 3.4..3 Substrate loss 3.4.4 Radiation loss due to bending 3.5 Sensitivity of the effective index to analyte binding 3.6 Overall sensitivity and detection limit 3.7 Generic design guidelines 3.8 Parameter selection for UV-NIL polymer waveguides 3.9 Comparison of polymer and silicon-based waveguides 3.9.1 Waveguide geometry 3.9.2 Radiation loss due to bending 3.9.3 Material damping 3.9.4 Surface roughness 3.9.5 Coupling channel widths and coupling coefficients 3.9.6 Conclusions 4 Characterization and Proof of Concept 4.1 Manufacturing-based design limits and chosen designs 4.2 Measurement setup and characterization process 4.3 Optical properties of UV-NIL polymer microresonators 4.4 Proof of concept 4.4.1 Sensitivity to bulk solutions 4.4.2 Reproducibility and drift 4.4.3 Comparison with theory 4.4.4 Comparison with literature 4.4.5 Sensitivity improvement 4.5 Asymmetry of the resonance curves 4.5.1 Cavity lifetime 4.5.2 Thermal influence 4.5.3 Summary 4.6 Conclusions 5 Integration into a biosensor platform 5.1 Chemical functionalization by oxygen plasma 5.2 Preparation of a biosensor characterization assay 5.2.1 Binding of fluorescent nanoparticles onto polymer surfaces 5.3 Microfluidic system 5.3.1 Programmable microfluidic system 5.3.2 System evaluation and improvement 5.4 Conclusions 6 Conclusions Declaration of authorship Acknowledgements Publications and awards

Page generated in 0.0513 seconds