• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 335
  • 53
  • 44
  • 40
  • 17
  • 17
  • 12
  • 11
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 673
  • 161
  • 116
  • 89
  • 87
  • 65
  • 56
  • 55
  • 52
  • 50
  • 45
  • 42
  • 41
  • 41
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
641

Präparation und Charakterisierung von TMR-Nanosäulen

Höwler, Marcel 24 July 2012 (has links)
Diese Arbeit befasst sich mit der Nanostrukturierung von magnetischen Schichtsystemen mit Tunnelmagnetowiderstandseffekt (TMR-Effekt), welche in der Form von Nanosäulen in magnetoresistiven Speichern (MRAM) eingesetzt werden. Solche Nanosäulen können zukünftig ebenfalls als Nanoemitter von Mikrowellensignalen eine Rolle spielen. Dabei wird von der Auswahl eines geeigneten TMR-Schichtsystems mit einer MgO-Tunnelbarriere über die Präparation der Nanosäulen mit Seitenisolierung bis hin zum Aufbringen der elektrischen Zuleitungen eine komplette Prozesskette entwickelt und optimiert. Die Strukturen werden mittels optischer Lithographie und Elektronenstrahllithographie definiert, die anschließende Strukturübertragung erfolgt durch Ionenstrahlätzen (teilweise reaktiv) sowie durch Lift-off. Rückmeldung über Erfolg oder Probleme bei der Strukturierung geben Transmissionselektronenmikroskopie (teilweise mit Zielpräparation per Ionenfeinstrahl, FIB), Rasterelektronenmikroskopie sowie die Lichtmikroskopie. Es können so TMR-Nanosäulen mit minimalen Abmessungen von bis zu 69 nm x 71 nm hergestellt werden, von denen Nanosäulen mit Abmessungen von 65 nm x 87 nm grundlegend magneto-elektrisch charakterisiert worden sind. Dies umfasst die Bestimmung des TMR-Effektes und des Widerstandes der Tunnelbarriere (RA-Produkt). Weiterhin wurde das Verhalten der magnetischen Schichten bei größeren Magnetfeldern bis +-200mT sowie das Umschaltverhalten der magnetisch freien Schicht bei verändertem Winkel zwischen magnetischer Vorzugsachse des TMR-Elementes und dem äußeren Magnetfeld untersucht. Der Nachweis des Spin-Transfer-Torque Effektes an den präparierten TMR-Nanosäulen ist im Rahmen dieser Arbeit nicht gelungen, was mit dem zu hohen elektrischen Widerstand der verwendeten Tunnelbarriere erklärt werden kann. Mit dünneren Barrieren konnte der Widerstand gesenkt werden, allerdings führt ein Stromfluss durch diese Barrieren schnell zur Degradation der Barrieren. Weiterführende Arbeiten sollten das Ziel haben, niederohmige und gleichzeitig elektrisch belastbare Tunnelbarrieren in einem entsprechenden TMR-Schichtsystem abzuscheiden. Eine erste Auswahl an Ansatzpunkten dafür aus der Literatur wird im Ausblick gegeben.:Einleitung I Grundlagen 1 Spinelektronik und Magnetowiderstand 1.1 Der Elektronenspin – Grundlage des Magnetismus 1.2 Magnetoresistive Effekte 1.2.1 AnisotroperMagnetowiderstand 1.2.2 Riesenmagnetowiderstand 1.2.3 Tunnelmagnetowiderstand 1.3 Spin-Transfer-Torque 1.4 Anwendungen 1.4.1 Festplattenleseköpfe 1.4.2 Magnetoresistive Random AccessMemory (MRAM) 1.4.3 Nanooszillatoren für drahtlose Kommunikation 2 Grundlagen der Mikro- und Nanostrukturierung 2.1 Belacken 2.2 Belichten 2.2.1 Optische Lithographie 2.2.2 Elektronenstrahllithographie 2.3 Entwickeln 2.4 Strukturübertragung 2.4.1 Die Lift-off Technik 2.4.2 Ätzen 2.5 Entfernen der Lackmaske 2.6 Reinigung 2.6.1 Quellen von Verunreinigungen 2.6.2 Auswirkungen von Verunreinigungen 2.6.3 Entfernung von Verunreinigungen 2.6.4 Spülen und Trocknen der Probenoberfläche 3 Ionenstrahlätzen 3.1 Physikalisches Ätzen – Sputterätzen 3.2 Reaktives Ionenstrahlätzen – RIBE 3.3 Anlagentechnik 3.3.1 Parameter 3.3.2 Homogenität 3.3.3 Endpunktdetektion II Ergebnisse und Diskussion 4 TMR-Schichtsysteme 4.1 Prinzipielle Schichtfolge 4.2 Verwendete TMR-Schichtsysteme 4.3 Rekristallisation von Kupfer 4.4 Formierung der TMR-Schichtsysteme 4.4.1 Antiferromagnetische Kopplung an PtMn 4.4.2 Rekristallisation an der MgO-Barriere 4.5 Anpassung der MgO-Schicht – TMR-Effekt und RA-Produkt 4.6 Magnetische Charakterisierung 5 Probendesign 5.1 Beschreibung der vier lithographischen Ebenen 5.2 Layout für statische und dynamischeMessungen 5.2.1 Geometrie 5.2.2 Anforderungen für die Hochfrequenzmessung 5.3 Layout für Zuverlässigkeitsmessungen 5.3.1 Geometrie 5.3.2 Voraussetzungen für die Funktion 5.4 Chiplayout 5.4.1 Zusatzstrukturen 5.4.2 Anordnung der Elemente 6 Fertigung eines Maskensatzes für die optische Lithographie 6.1 Vorbereitung desMaskenrohlings 6.2 Strukturierung mittels Elektronenstrahllithographie 6.3 Ätzen der Chromschicht 7 Ergebnisse und Diskussion der Probenpräparation 7.1 Definition der Grundelektrode 7.1.1 Freistellen der Grundelektrode 7.1.2 Gratfreiheit der Grundelektrode 7.1.3 Oberflächenqualität nach der Strukturierung 7.2 Präparation der magnetischen Nanosäulen 7.2.1 Aufbringen einer Ätzmaske 7.2.2 Ionenstrahlätzen der TMR-Nanosäule 7.2.3 Abmessungen der präparierten Nanosäulen 7.3 Vertikale Kontaktierung 7.3.1 Seitenwandisolation 7.3.2 Freilegen der Kontakte 7.3.3 Aufbringen der elektrischen Zuleitungen 7.4 Die komplette Prozesskette und Ausbeute 8 Magneto-elektrische Charakterisierung 8.1 Messung des Tunnelmagnetowiderstandes 8.2 Stabilität der magnetischen Konfiguration 8.3 Spin-Transfer-Torque an TMR-Nanosäulen 9 Zusammenfassung und Ausblick Literaturverzeichnis / This thesis deals with the fabrication of nanopillars with tunnel magnetoresistance effect (TMR-effect), which are used in magnetoresistive memory (MRAM) and may be used as nanooscillators for future near field communication devices. Starting with the selection of a suitable TMR-layer stack with MgO-tunnel barrier, the whole process chain covering the fabrication of the nanopillars, sidewall isolation and preparation of the supply lines on top is developed and optimised. The structures are defined by optical and electron beam lithography, the subsequent patterning is done by ion beam etching (partially reactive) and lift-off. Techniques providing feedback on the nanofabrication are transmission electron microscopy (partially with target preparation by focused ion beam, FIB), scanning electron microscopy and optical microscopy. In this way nanopillars with minimal dimensions reaching 69 nm x 71 nm could be fabricated, of which nanopillars with a size of 65 nm x 87 nm were characterized fundamentally with respect to their magnetic and electric properties. This covers the determination of the TMR-effect and the resistance of the tunnel barrier (RA-product). In addition, the behaviour of the magnetic layers under higher magnetic fields (up to +-200mT) and the switching behaviour of the free layer at different angles between the easy axis of the TMR-element and the external magnetic field were investigated. The spin transfer torque effect could not be detected in the fabricated nanopillars due to the high electrical resistance of the tunnel barriers which were used. The resistance could be lowered by using thinner barriers, but this led to a quick degradation of the barrier when a current was applied. Continuative work should focus on the preparation of tunnel barriers in an appropriate TMR-stack being low resistive and electrically robust at the same time. A first selection of concepts and ideas from the literature for this task is given in the outlook.:Einleitung I Grundlagen 1 Spinelektronik und Magnetowiderstand 1.1 Der Elektronenspin – Grundlage des Magnetismus 1.2 Magnetoresistive Effekte 1.2.1 AnisotroperMagnetowiderstand 1.2.2 Riesenmagnetowiderstand 1.2.3 Tunnelmagnetowiderstand 1.3 Spin-Transfer-Torque 1.4 Anwendungen 1.4.1 Festplattenleseköpfe 1.4.2 Magnetoresistive Random AccessMemory (MRAM) 1.4.3 Nanooszillatoren für drahtlose Kommunikation 2 Grundlagen der Mikro- und Nanostrukturierung 2.1 Belacken 2.2 Belichten 2.2.1 Optische Lithographie 2.2.2 Elektronenstrahllithographie 2.3 Entwickeln 2.4 Strukturübertragung 2.4.1 Die Lift-off Technik 2.4.2 Ätzen 2.5 Entfernen der Lackmaske 2.6 Reinigung 2.6.1 Quellen von Verunreinigungen 2.6.2 Auswirkungen von Verunreinigungen 2.6.3 Entfernung von Verunreinigungen 2.6.4 Spülen und Trocknen der Probenoberfläche 3 Ionenstrahlätzen 3.1 Physikalisches Ätzen – Sputterätzen 3.2 Reaktives Ionenstrahlätzen – RIBE 3.3 Anlagentechnik 3.3.1 Parameter 3.3.2 Homogenität 3.3.3 Endpunktdetektion II Ergebnisse und Diskussion 4 TMR-Schichtsysteme 4.1 Prinzipielle Schichtfolge 4.2 Verwendete TMR-Schichtsysteme 4.3 Rekristallisation von Kupfer 4.4 Formierung der TMR-Schichtsysteme 4.4.1 Antiferromagnetische Kopplung an PtMn 4.4.2 Rekristallisation an der MgO-Barriere 4.5 Anpassung der MgO-Schicht – TMR-Effekt und RA-Produkt 4.6 Magnetische Charakterisierung 5 Probendesign 5.1 Beschreibung der vier lithographischen Ebenen 5.2 Layout für statische und dynamischeMessungen 5.2.1 Geometrie 5.2.2 Anforderungen für die Hochfrequenzmessung 5.3 Layout für Zuverlässigkeitsmessungen 5.3.1 Geometrie 5.3.2 Voraussetzungen für die Funktion 5.4 Chiplayout 5.4.1 Zusatzstrukturen 5.4.2 Anordnung der Elemente 6 Fertigung eines Maskensatzes für die optische Lithographie 6.1 Vorbereitung desMaskenrohlings 6.2 Strukturierung mittels Elektronenstrahllithographie 6.3 Ätzen der Chromschicht 7 Ergebnisse und Diskussion der Probenpräparation 7.1 Definition der Grundelektrode 7.1.1 Freistellen der Grundelektrode 7.1.2 Gratfreiheit der Grundelektrode 7.1.3 Oberflächenqualität nach der Strukturierung 7.2 Präparation der magnetischen Nanosäulen 7.2.1 Aufbringen einer Ätzmaske 7.2.2 Ionenstrahlätzen der TMR-Nanosäule 7.2.3 Abmessungen der präparierten Nanosäulen 7.3 Vertikale Kontaktierung 7.3.1 Seitenwandisolation 7.3.2 Freilegen der Kontakte 7.3.3 Aufbringen der elektrischen Zuleitungen 7.4 Die komplette Prozesskette und Ausbeute 8 Magneto-elektrische Charakterisierung 8.1 Messung des Tunnelmagnetowiderstandes 8.2 Stabilität der magnetischen Konfiguration 8.3 Spin-Transfer-Torque an TMR-Nanosäulen 9 Zusammenfassung und Ausblick Literaturverzeichnis
642

Synthese und Charakterisierung molekularer Vorläuferverbindungen für den Einsatz in weichen lithographischen Verfahren sowie katalytisch aktiver elementorganischer Gerüstverbindungen

Fritsch, Julia 07 September 2012 (has links)
In der vorliegenden Arbeit werden zwei Materialklassen behandelt. Im Hauptteil soll die Synthese und Charakterisierung von molekularen Organo-Silber-Komplexen und deren Einsatz als Tintenmaterial in weichen lithographischen Verfahren beschrieben werden. Dadurch sollen strukturierte Schichten des Komplexes zugänglich sein, welche durch entsprechende Nachbehandlung in elementares Silber umgewandelt werden können, wodurch man schließlich strukturierte Silberelektroden erhält. Der Einsatz solcher strukturierter Elektroden ist für die Weiterentwicklung transparenter elektrisch leitender Schichten, welche man im heutigen Alltag in nahezu jedem elektro-optischen Bauteil findet, essentiell. Bisher beruhen transparente Elektroden vorwiegend auf Zinn dotiertem Indiumoxid (ITO), welches zu den transparent leitfähigen Oxiden (TCOs) gehört und sehr gute elektrische Eigenschaften aufweist. TCOs sind transparente Oxide, welche ihre Leitfähigkeit durch den Einbau von Dotierstoffen und eine damit einhergehende Erzeugung von Störstellen im Kristallgitter erhalten. Aufgrund der anhaltenden Indiumverknappung wird allerdings zunehmend nach Alternativen zu ITO gesucht. Neben weiteren transparent leitfähigen Oxiden wie z.B. Antimon oder Fluor dotiertem Zinnoxid besteht die Möglichkeit, auf leitfähige Polymere, Kohlenstoffmaterialien oder Metalle zurückzugreifen. Diese drei Klassen haben den Vorteil des Einsatzes in flexiblen Bauteilen, welcher bei Verwendung der TCOs aufgrund ihrer Brüchigkeit nur begrenzt möglich ist. Metalle weisen dabei die geringsten elektrischen Widerstände auf und sind daher besonders interessant. Die Herausforderung bei der Verwendung von Metallen liegt allerdings im Erreichen der Transparenz. Durch die Strukturierung der Dünnfilme unterhalb des Wellenlängenbereiches des sichtbaren Lichts kann diese gewährleistet werden. Eine Strukturierung kann zum einen durch z.B. chemische oder physikalische Abscheideprozesse und zum anderen durch die bereits angesprochenen weichen lithographischen Verfahren realisiert werden. Die Entwicklung sogenannter Tinten für solche Druckverfahren auf Basis molekularer Organo-Silber-Komplexe stellt daher ein interessantes Forschungsgebiet dar. In einem zweiten, kleineren Teil dieser Arbeit soll die Synthese neuartiger poröser elementorganischer Gerüstverbindungen (EOFs) auf Basis von Phosphor, Antimon und Bismut und deren katalytische Aktivität vorgestellt werden. Die EOFs wurden erstmals 2008 veröffentlicht und zeichnen sich im Gegensatz zu den ebenfalls bekannten metallorganischen Gerüstverbindungen durch kovalente Element-Kohlenstoff-Bindungen aus. Die Materialien, welche meist auf der Basis von Silanen aufgebaut sind, zeichnen sich durch ihre hohe Stabilität gegenüber Luftsauerstoff und Feuchtigkeit aus und zeigen interessante Eigenschaften in der Wasserdampfphysisorption. Die Adsorption von Wasserdampf findet erst in einem hohen Relativdruckbereich statt, was die stark unpolare Oberfläche der EOFs aufzeigt. Durch diese Eigenschaft weisen die Materialien ein großes Potential für die adsorptive Abtrennung von unpolaren Stoffen aus Wasser oder Luft auf. Durch die Substitution des Siliziums durch Zinn konnte gezeigt werden, dass mit geeigneten Metallpräkursoren ebenfalls EOF-Materialien hergestellt werden können, welche neben den bereits genannten Eigenschaften auch Potential für katalytische Anwendungen zeigen. Dieser Weg sollte in der vorliegenden Arbeit aufgegriffen werden. Durch die Integration der Elemente Phosphor, Antimon und Bismut sollten weitere EOF-Materialien synthetisiert und hinsichtlich ihrer katalytischen Eigenschaften untersucht werden. Ein phosphorhaltiges EOF ist vor allem interessant für postsynthetische Infiltration von Übergangsmetallen. Dadurch können essentielle heterogene Katalysatoren zugänglich sein, welche eine große Bedeutung für die Organokatalyse haben, bei denen bisher vorwiegend die homogenen Analoga verwendet werden. Der Ersatz durch heterogene Katalysatoren würde einen wesentlichen synthetischen Fortschritt mit sich bringen, da diese nach der Reaktion einfach abgetrennt werden können und keine aufwendige Aufarbeitung erforderlich ist.
643

3D and 4D lithography of untethered microrobots

Rajabasadi, Fatemeh, Schwarz, Lukas, Medina-Sánchez, Mariana, Schmidt, Oliver G. 16 July 2021 (has links)
In the last decades, additive manufacturing (AM), also called three-dimensional (3D) printing, has advanced micro/nano-fabrication technologies, especially in applications like lightweight engineering, optics, energy, and biomedicine. Among these 3D printing technologies, two-photon polymerization (TPP) offers the highest resolution (even at the nanometric scale), reproducibility and the possibility to create monolithically 3D complex structures with a variety of materials (e.g. organic and inorganic, passive and active). Such active materials change their shape upon an applied stimulus or degrade over time at certain conditions making them dynamic and reconfigurable (also called 4D printing). This is particularly interesting in the field of medical microrobotics as complex functions such as gentle interactions with biological samples, adaptability when moving in small capillaries, controlled cargo-release profiles, and protection of the encapsulated cargoes, are required. Here we review the physics, chemistry and engineering principles of TPP, with some innovations that include the use of micromolding and microfluidics, and explain how this fabrication schemes provide the microrobots with additional features and application opportunities. The possibility to create microrobots using smart materials, nano- and biomaterials, for in situ chemical reactions, biofunctionalization, or imaging is also put into perspective. We categorize the microrobots based on their motility mechanisms, function, and architecture, and finally discuss the future directions of this field of research.
644

Development of a Microfluidic Platform for Cell-Cell Communication

Watson, Craig 23 May 2022 (has links)
No description available.
645

Automation of the design process of printed circuit boards : Determining minimum distance required by auto-routing software

Ström, Simon, Qhorbani, Ali January 2018 (has links)
This thesis project aims to create an overview of new technologies in printed circuit board manufacturing which when automated could become part of an Industry 4.0 production flow. Potential design limits imposed by new technologies are then applied in the creation process of a minimum distance estimation function. The intended purpose of this function is to correctly estimate the minimum distance required for the auto-routing software FreeRouting to be able to successfully route between two components. This is achieved by using a brute-force attack to progressively decrease the distance between components using a bisectional approach to find the minimum distance at which the auto-routing software can still successfully route for a specific design. Using the results from this brute-force attack a couple of linear functions based on different base designs are created and then used to implement a minimum distance function. The minimum distance estimation function is then intended to be used to implement limits to how close components can be placed to each other in a printed circuit board design tool which purpose is to enable people with lesser knowledge of printed circuit boards to still be able to realize their design ideas. / Detta examensarbete ämnar skapa en överblick av nya tekniker inom mönsterkorts-tillverkning som när de automatiseras skulle kunna bli en del av ett Industri 4.0 produktionsflöde. Eventuella designbegränsningar som uppstår till följd av dessa tekniker kommer sedan appliceras i skapningsprocessen av en minsta avståndsfunktion. Syftet med denna funktion är att korrekt uppskatta det minimala avståndet som krävs för att auto-routing mjukvaran FreeRouting ska kunna dra ledningar mellan två komponenter. Detta görs genom en brute-force attackvinkel där avståndet mellan komponenter fortsätter minskas med bisektionsmetoden tills ett minsta avstånd hittats där auto-routing mjukvaran fortfarande kan dra ledningar för en specifik design. Genom användande av resultaten från denna brute-force attack skapas sedan ett par linjära funktioner baserade på olika bas-designer och dessa används sedan för att implementera minsta avståndsfunktionen. Denna minsta avståndet-funktion är sedan ämnad att implementeras som begränsningar för hur nära komponenter kan placeras varandra i ett program för design av mönsterkort vars syfte är att möjliggöra folk utan kunskaper inom mönsterkortsdesign att ändå kunna realisera sina designidéer.
646

Death and Memory in the Napoleonic and American Civil Wars

Fields, Kyle David 15 July 2010 (has links)
No description available.
647

Face Value: The Reproducible Portrait in France, 1830-1848

DeLouche, Sean 15 October 2014 (has links)
No description available.
648

Energy Minimization in Nematic Liquid Crystal Systems Driven by Geometric Confinement and Temperature Gradients with Applications in Colloidal Systems

Kolacz, Jakub 02 December 2015 (has links)
No description available.
649

Atomically controlled device fabrication using STM

Ruess, Frank Joachim, Physics, Faculty of Science, UNSW January 2006 (has links)
We present the development of a novel, UHV-compatible device fabrication strategy for the realisation of nano- and atomic-scale devices in silicon by harnessing the atomic-resolution capability of a scanning tunnelling microscope (STM). We develop etched registration markers in the silicon substrate in combination with a custom-designed STM/ molecular beam epitaxy system (MBE) to solve one of the key problems in STM device fabrication ??? connecting devices, fabricated in UHV, to the outside world. Using hydrogen-based STM lithography in combination with phosphine, as a dopant source, and silicon MBE, we then go on to fabricate several planar Si:P devices on one chip, including control devices that demonstrate the efficiency of each stage of the fabrication process. We demonstrate that we can perform four terminal magnetoconductance measurements at cryogenic temperatures after ex-situ alignment of metal contacts to the buried device. Using this process, we demonstrate the lateral confinement of P dopants in a delta-doped plane to a line of width 90nm; and observe the cross-over from 2D to 1D magnetotransport. These measurements enable us to extract the wire width which is in excellent agreement with STM images of the patterned wire. We then create STM-patterned Si:P wires with widths from 90nm to 8nm that show ohmic conduction and low resistivities of 1 to 20 micro Ohm-cm respectively ??? some of the highest conductivity wires reported in silicon. We study the dominant scattering mechanisms in the wires and find that temperature-dependent magnetoconductance can be described by a combination of both 1D weak localisation and 1D electron-electron interaction theories with a potential crossover to strong localisation at lower temperatures. We present results from STM-patterned tunnel junctions with gap sizes of 50nm and 17nm exhibiting clean, non-linear characteristics. We also present preliminary conductance results from a 70nm long and 90nm wide dot between source-drain leads which show evidence of Coulomb blockade behaviour. The thesis demonstrates the viability of using STM lithography to make devices in silicon down to atomic-scale dimensions. In particular, we show the enormous potential of this technology to directly correlate images of the doped regions with ex-situ electrical device characteristics.
650

Atomically controlled device fabrication using STM

Ruess, Frank Joachim, Physics, Faculty of Science, UNSW January 2006 (has links)
We present the development of a novel, UHV-compatible device fabrication strategy for the realisation of nano- and atomic-scale devices in silicon by harnessing the atomic-resolution capability of a scanning tunnelling microscope (STM). We develop etched registration markers in the silicon substrate in combination with a custom-designed STM/ molecular beam epitaxy system (MBE) to solve one of the key problems in STM device fabrication ??? connecting devices, fabricated in UHV, to the outside world. Using hydrogen-based STM lithography in combination with phosphine, as a dopant source, and silicon MBE, we then go on to fabricate several planar Si:P devices on one chip, including control devices that demonstrate the efficiency of each stage of the fabrication process. We demonstrate that we can perform four terminal magnetoconductance measurements at cryogenic temperatures after ex-situ alignment of metal contacts to the buried device. Using this process, we demonstrate the lateral confinement of P dopants in a delta-doped plane to a line of width 90nm; and observe the cross-over from 2D to 1D magnetotransport. These measurements enable us to extract the wire width which is in excellent agreement with STM images of the patterned wire. We then create STM-patterned Si:P wires with widths from 90nm to 8nm that show ohmic conduction and low resistivities of 1 to 20 micro Ohm-cm respectively ??? some of the highest conductivity wires reported in silicon. We study the dominant scattering mechanisms in the wires and find that temperature-dependent magnetoconductance can be described by a combination of both 1D weak localisation and 1D electron-electron interaction theories with a potential crossover to strong localisation at lower temperatures. We present results from STM-patterned tunnel junctions with gap sizes of 50nm and 17nm exhibiting clean, non-linear characteristics. We also present preliminary conductance results from a 70nm long and 90nm wide dot between source-drain leads which show evidence of Coulomb blockade behaviour. The thesis demonstrates the viability of using STM lithography to make devices in silicon down to atomic-scale dimensions. In particular, we show the enormous potential of this technology to directly correlate images of the doped regions with ex-situ electrical device characteristics.

Page generated in 0.1215 seconds