• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 13
  • 6
  • 6
  • 3
  • Tagged with
  • 43
  • 28
  • 23
  • 13
  • 11
  • 11
  • 11
  • 9
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Per Geijer iron ore deposits: Characterization based on mineralogical, geochemical and process mineralogical methods

Krolop, Patrick 04 April 2022 (has links)
The Per Geijer iron oxide-apatite deposits are important potential future resources for Luossavaara-Kiirunavaara Aktiebolag (LKAB), which has been continuously mining magnetite/hematite ores in northern Sweden for almost 130 years. The Per Geijer deposits reveal a high phosphorus content and vary from magnetite-dominated to hematite-dominated ores, respectively. The high phosphorus concentration of these ores results from highly elevated content of apatite as gangue mineral. Reliable, robust, and qualitative characterization of the mineralization is required as these ores inherit complex mineralogical and textural features. The precise mineralogical information obtained by optical microscopy, SEM-MLA and Raman improves the characterization of ore types and will benefit future processing strategies for this complex mineralization. The different approaches demonstrate advantages and disadvantages in classification, imaging, discrimination of iron oxides, and time consumption of measurement and processing. A comprehensive mineral-chemical dataset of magnetite, hematite and apatite obtained by electron microprobe analysis (EPMA) and LA-ICP-MS from representative drill core samples is presented. Magnetite, four different types of hematite and five types of apatite constitute the massive orebodies: Primary and pristine magnetite with moderate to high concentrations of Ti (∼61–2180 ppm), Ni (∼11–480 ppm), Co (∼5–300 ppm) and V (∼553–1831 ppm) indicate a magmatic origin for magnetite. The presence of fluorapatite and associated monazite inclusions and disseminated pyrite enclosed by magnetite with high Co:Ni ratios (> 10) in massive magnetite ores are consistent with a high temperature (∼ 800°C) genesis for the deposit. The different and abundant types of hematite, especially hematite type I, state subsequent hydrothermal events. Chromium, Ni, Co and V in both magnetite and hematite have low concentrations in terms of current product regulations and thus no effect on final products in the future. In terms of a possible future hematite product, titanium seems to be the most critical trace element due to very high concentrations in hematite types I and IV, of which type I is most abundant in zones dominated by hematite. Further interest on other products is generated due to the high variability of hematite and apatite in some of these ores. Information obtained from comminution test works in the laboratory scale can be utilized to characterize ore types and to predict the behavior of ore during comminution circuit in the industrial scale. Comminution tests with a laboratory rod and ball mill of 13 pre-defined ore types from the Per Geijer iron-oxide apatite deposits were conducted in this study. The highest P80 values were obtained by grinding in the rod mill for 10 minutes only (step A). Grinding steps B (25 min ball mill) and C (35 min ball mill) reveal very narrow P80 values. Ore types dominated by hematite have significantly higher P80 values after the primary grinding step (A), which indicates different hardness of the ore types. P80 values are generally lowest after the secondary grinding step C ranging between 26 µm (ore type M1a) and 80 µm (ore type H2a). Generally, Fe content increases in the finer particle size classes while CaO and P contents decrease. The influence of silica or phosphorus seems to be dependent on the dominant iron oxide. Magnetite-dominated ore types are more likely to be affected in their comminution behavior by the presence of the silicates. Contrary, hematite-dominant ore types are rather influenced by the presence of apatite. The difference in the degree of liberation of magnetite and hematite between ore types depends rather on size fractions than the amount of gangue in the ore. Davis tube data indicates that magnetite can be separated from gangue quite efficiently in the magnetite-dominated ore types. Contrary to magnetite ore, hematite-dominated ore types cannot be processed by DT. It is favored to use strong magnetic separation in order to achieve a desirable hematite concentrate. The magnetic material recovered by DT is most efficiently separated at an intensity current of 0.2 A, whereas above 0.5 A the separation process is neglectable. Based on comminution and magnetic separation tests a consolidation to eight ore types is favored which supports possible future mining of the Per Geijer deposits.:Contents ABSTRACT ……………………………………………………………………… I CONTENTS ……………………………………………………………………… II LIST OF FIGURES AND TABLES ……………………………………………… IV LIST OF ABBREVIATIONS ……………………………………………… V 1 INTRODUCTION ……………………………………………………… 1 1.1 Background and motivation of study ……………………………… 2 1.2 Previous and current work on the Per Geijer deposits ……………… 3 1.3 The need for mineral processing and in-situ ore description ……………… 4 1.4 General and generic aspects on iron oxide apatite deposits ……………… 5 Chapter A 2 REGIONAL GEOLOGY ………………………………………………. 7 2.1 Local geology of the Kiruna area ……………………………………… 7 2.2 Geology of the Per Geijer deposits ……………………………………… 9 3 METHODOLOGY ……………………………………………………… 12 3.1 Core sampling and preparation ……………………………………… 12 3.2 SEM – MLA in-situ ore ……………………………………………… 14 3.3 Electron Probe Microanalyses (EPMA) ……………………………… 15 3.3.1 Iron oxide measurements ……………………………………… 15 3.3.2 Apatite measurements ……………………………………… 15 3.4 In-situ LA-ICP-MS ……………………………………………………… 16 3.5 Whole-rock geochemistry ……………………………………………… 18 3.5.1 Exploration drill core assays ……………………………… 18 3.5.2 Chemical assays of rock chips ……………………………… 18 4 RESULTS ……………………………………………………………… 19 4.1 Pre-definition of ore types ………………………………...……………. 19 4.2 Mineralogy of in situ ore ……………………………………………… 21 4.2.1 Ore Type M1a ……………………………………………… 21 4.2.2 Ore Type M1b ……………………………………………… 22 4.2.3 Ore Type M2a ……………………………………………… 23 4.2.4 Ore Type M2b ……………………………………………… 25 4.2.5 Ore Type HM1b ……………………………………………… 26 4.2.6 Ore Type HM2a ……………………………………………… 27 4.2.7 Ore Type HM2b ……………………………………………… 28 4.2.8 Ore Type H1a ……………………………………………… 29 4.2.9 Ore Type H1b ……………………………………………… 30 4.2.10 Ore Type H2a ……………………………………………… 31 4.2.11 Ore Type H2b ……………………………………………… 32 4.2.12 Comparison of ore types ……………………………………… 33 4.3 Geochemistry of in situ ore types ……………………………… 36 4.3.1 Whole-rock chemical assays of drill cores ……………………… 36 4.3.2 Whole-rock geochemistry of rock chips ……………………… 39 4.4 Mineral chemistry of iron oxides ……………………………………… 42 4.4.1 Iron oxides and associated minerals ……………………………… 42 4.4.2 Mineral chemistry of magnetite from Per Geijer ……………… 43 4.4.3 Mineral chemistry of hematite from Per Geijer ……………… 47 4.5 Mineral chemistry of apatite ……………………………………… 51 4.5.1 Apatite and associated minerals ……………………………… 51 4.5.2 Mineral chemistry of apatite from Per Geijer ……………… 53 Chapter B 5 COMMINUTION TESTS ……………………………………………… 58 5.1 Methodology of comminution tests ……………………………………… 59 5.1.1 Sampling for comminution tests ……………………………… 59 5.1.2 Comminution circuit ……………………………………………… 61 5.1.3 Energy consumption calculation ……………………………… 62 5.1.4 SEM – MLA ……………………………………………………… 64 6 MAGNETIC SEPARATION TESTS ……………………………… 65 6.1 Methodology of magnetic separation by Davis magnetic tube ……… 66 6.2 Davis magnetic tube tests for characterization of the Per Geijer ore types 66 6.3 Separation analysis based on the Henry-Reinhard charts .……………... 67 7 RESULTS OF COMMINUTION OF ORE TYPES ……………………… 69 7.1 General characteristics of magnetite-dominated ore types ……………… 69 7.2 General characteristics of hematite-dominated ore types ……………… 72 7.3 General characteristics of magnetite/hematite-mixed ore types ……… 75 7.4 General characteristics of low-grade ore types ……………………… 77 7.5 Mineral liberation characteristics of magnetite-dominated ore types 79 7.6 Mineral liberation characteristics of hematite-dominated ore types 83 7.7 Mineral liberation characteristics of magnetite/hematite-mixed ore types 87 7.8 Mineral liberation characteristics of low-grade ore types ……………… 90 7.9 Total energy consumption of ore types from the Per Geijer deposits 94 8 RESULTS OF MAGNETIC SEPARATION OF ORE TYPES ……… 95 8.1 Magnetic separation of magnetite-dominated ore types ……………… 95 8.2 Magnetic separation of hematite-dominated ore types ……………… 96 8.3 Magnetic separation of magnetite/hematite-mixed ore types ……………… 97 8.4 Magnetic separation of low-grade ore types ……………………………… 98 8.5 Henry-Reinhard charts ……………………………………………… 99 9 DISCUSSION ……………………………………………………… 101 9.1 Mineralogy of the in-situ ore types from the Per Geijer deposits ……… 101 9.2 Geochemistry of the in-situ ore types from the Per Geijer deposits ……… 103 9.3 Mineral chemistry of iron oxides from the Per Geijer deposits ……… 105 9.4 Mineral chemistry of apatite from the Per Geijer deposits ……………… 114 9.5 Comminution of ore types from Per Geijer ……………………… 119 9.6 Magnetic separation of ore types from Per Geijer ……………………… 120 9.7 Issues with process mineralogy of in-situ and grinded ore types ……… 121 10 CONCLUSIONS ……………………………………………………… 128 11 IMPLICATIONS FOR FUTURE WORK ……………………………… 131 12 REFERENCES ……………………………………………………………… 134
22

Magnetic Tunnel Junctions based on spinel ZnxFe3-xO4

Bonholzer, Michael 02 November 2016 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit magnetischen Tunnelkontakten (magnetic tunnel junctions, MTJs) auf Basis des Oxids Zinkferrit (ZnxFe3-xO4). Dabei soll das Potential dieses Materials durch die Demonstration des Tunnelmagnetowiderstandes (tunnel magnetoresistance, TMR) in zinkferritbasierten Tunnelkontakten gezeigt werden. Dazu wurde ein Probendesign für MTJs auf Basis der „pseudo spin valve“-Geometrie entwickelt. Die Basis für dieseStrukturen ist ein Dünnfilmstapel aus MgO (Substrat) / TiN / ZnxFe3-xO4 / MgO / Co. Dieser ist mittels gepulster Laserabscheidung (pulsed laser deposition, PLD) hergestellt. Im Rahmen dieser Arbeit wurden die strukturellen, elektrischen und magnetischen Eigenschaften der Dünnfilme untersucht. Des weiteren wurden die fertig prozessierten MTJ-Bauelemente an einem im Rahmen dieser Arbeit entwickeltem und aufgebautem TMR-Messplatz vermessen. Dabei ist es gelungen einen TMR-Effekt von 0.5% in ZnxFe3-xO4-basierten MTJs nachzuweisen. Das erste Kapitel der Arbeit gibt eine Einführung in die spintronischen Effekte Riesenmagnetowiderstand (giant magnetoresistance, GMR) und Tunnelmagnetowiderstand (TMR). Deren technologische Anwendungen sowie die grundlegenden physikalischen Effekte und Modelle werden diskutiert. Das zweite Kapitel gibt eine Übersicht über die Materialklasse der spinellartigen Ferrite. Der Fokus liegt auf den Materialien Magnetit (Fe3O4) sowie Zinkferrit (ZnxFe3-xO4). Die physikalischen Modelle zur Beschreibung der strukturellen, magnetischen und elektrischen Eigenschaften dieser Materialien werden dargelegt sowie ein Literaturüberblick über experimentelle und theoretische Arbeiten gegeben. Im dritten Kapitel werden die im Rahmen dieser Arbeit verwendeten Probenpräparations- und Charakterisierungsmethoden vorgestellt und technische Details sowie physikalische Grundlagen erläutert. Die Entwicklung eines neuen Probendesigns zum Nachweis des TMR-Effekts in ZnxFe3-xO4-basierten MTJs ist Gegenstand des vierten Kapitels. Die Entwicklung des Probenaufbaus sowie die daraus resultierende Probenprozessierung werden beschrieben. Die beiden letzten Kapitel befassen sich mit der strukturellen, elektrischen und magnetischen Charakterisierung der mittels PLD abgeschiedenen Dünnfilme sowie der Tunnelkontaktstrukturen.
23

Polymere und Nanopartikel - Verfahren für die Chemische Nanotechnologie

Thiessen, Wladimir 24 February 2011 (has links) (PDF)
In der vorliegenden Arbeit soll das weit gefächerte Thema der chemischen Nanotechnologie um neue Resultate bereichert werden. Im Einzelnen handelt es sich um neue Synthesemethoden für magnetische Nanorods (Nanoteilchen mit länglicher Form) und Nanoshells (oxidische Nanokristalle mit einer Hülle aus Edelmetall), ein Verfahren zur Modifizierung diverser Oberflächen mit heterogenen Polymerbürsten durch kontrollierte binäre radikalische Polymerisation, neuartige Copolymere zur Stabilisierung und Funktionalisierung von Nanopartikeln und Herstellung von amphiphilen Nanopartikeln durch Oberflächenbehandlung mit Niotensiden. Es sollen ferner die möglichen Anwendungen diskutiert werden. Die Abb. 1 illustriert die Zusammenhänge der bearbeiteten Thematik.
24

Magnetická modifikace mikrobiálních buněk / Magnetic modification of microbial cells

BALDÍKOVÁ, Eva January 2013 (has links)
Baker´s yeast (Saccharomyces cerevisiae) were magnetically modified by three different methods, namely, surface modification by magnetic fluid, entrapment of cells into alginate and covalent immobilization on particles of magnetic chitosan. The ability of H2O2 decomposition was tested for all types of modification. It is apparent that the most amount of hydrogen peroxid was degraded by magnetic fluid - modified cells (84-95%), while the efficiency of cell which were modified by other methods was much lower (40-60%). Thanks to immobilization on particles of magnetic chitosan, we made completely new type of magnetic material, which was tested for adsorption of Crystal violet and Safranin O. It was founded that magnetic chitosan adsorbs no dyes, so all adsorption belongs to immobilized yeast. The maximum adsorption capacities were determined using Langmuire isotherm at 69,4 mg/g for Crystal violet and 99,0 mg/g for Safranin O.
25

Katalytické systémy založené na jednotlivých atomech / Single Atomic Catalysts

Závodný, Adam January 2016 (has links)
Single atom catalysts are prospective class of materials, which holds promises to reach the ultimate limit of improvement in catalyst performance, selectivity, lifetime and cost reduction. The ability to efficiently capture the adsorbates at the active sites is the key prerequisite for catalytic transformation to the products. In this respect, our experimental study aims to describe the interaction of gas molecules (H2O, CO, O2 and NO) with single metal atoms (Rh, Ir, Cu) on the magnetite surface employing scanning tunneling microscopy.
26

Polymere und Nanopartikel - Verfahren für die Chemische Nanotechnologie

Thiessen, Wladimir 22 December 2010 (has links)
In der vorliegenden Arbeit soll das weit gefächerte Thema der chemischen Nanotechnologie um neue Resultate bereichert werden. Im Einzelnen handelt es sich um neue Synthesemethoden für magnetische Nanorods (Nanoteilchen mit länglicher Form) und Nanoshells (oxidische Nanokristalle mit einer Hülle aus Edelmetall), ein Verfahren zur Modifizierung diverser Oberflächen mit heterogenen Polymerbürsten durch kontrollierte binäre radikalische Polymerisation, neuartige Copolymere zur Stabilisierung und Funktionalisierung von Nanopartikeln und Herstellung von amphiphilen Nanopartikeln durch Oberflächenbehandlung mit Niotensiden. Es sollen ferner die möglichen Anwendungen diskutiert werden. Die Abb. 1 illustriert die Zusammenhänge der bearbeiteten Thematik.
27

Synthese, Charakterisierung und Selbstassemblierung von Palladium-basierten Nanomaterialien

Werheid, Matthias 12 November 2020 (has links)
Die vorliegende Arbeit befasst sich mit synthetischen Ansätzen zur Verbesserung der Handhabung von Pd-Nanopartikeln in der heterogenen Umwelt- und Elektrokatalyse. Nanopartikuläres Pd an Magnetit sowie an Silica-Sphären mit Magnetit-Kern erreichten eine hohe Aktivität bei der Dechlorierung von Hexachlorbenzol. Im Gegensatz zu ungeträgerten Nanopartikeln gelang die Abtrennung jener mit einem Magnet aus der Reaktionslösung. Weitere Untersuchungen ergaben, dass die Shewanella oneidensis eine heterogene Keimbildung im mikrobiellen Herstellungsverfahren von Pd-Nanomaterialien vermittelte. Die Mikroorganismen waren vermutlich nicht aktiv am Elektronenübergang beteiligt. Die partiell aggregierten Produkte des mikrobiellen Verfahrens ließen sich zur Herstellung von Aerogelen durch Selbstassemblierung verwenden. Elektrodenfilme aus mikrobiell als auch chemisch synthetisiertem nanopartikulären Pd zeigten ähnliche Eigenschaften bei der elektrochemischen Oxidation von Methanol. Darüber hinaus ermöglichte die Anwendung der fraktalen Dimension strukturelle Veränderungen abhängig von Verfahrensparametern bei der Selbstassemblierung festzustellen.:Inhaltsverzeichnis i Abbildungsverzeichnis iii Tabellenverzeichnis v Einleitung 1 1. Grundlagen 5 1.1. Eigenbewegung von Nanopartikeln in Suspension 6 1.2. Die DLVO-Theorie der Stabilität von lyophoben Kolloiden 7 1.3. Aggregation und die fraktale Dimension 11 1.4. Lichtstreuung an Kolloiden 15 1.5. Transmissionselektronenmikroskopie 19 1.6. Röntgenpulverdiffraktometrie 24 2. Edelmetall-Nanopartikel 27 2.1. Synthese von Palladium-Nanopartikeln 30 2.1.1. Reduktion mit Natriumborhydrid 30 2.1.2. Reduktion mit Citrat und Dicarboxyaceton 31 2.1.3. Keimvermitteltes Wachstum 33 2.2. pH- und Temperatur-Stabilität der Suspensionen 35 2.3. Integration in Polymerbeschichtungen 37 2.4. Resümee 41 3. Mikrobiell hergestellte Pd-Nanostrukturen 43 3.1. Dissimilatorische Metall-Reduktion 44 3.2. Eigenschaften von mikrobiellem Pd 49 3.2.1. Herstellung und Präparation 49 3.2.2. Strukturelle Eigenschaften 51 3.2.3. Umsatz und chemische Zusammensetzung 56 3.2.4. Untersuchung der organischen Bestandteile 60 3.2.5. Eigenschaften der Suspensionen 64 3.3. Kontrollversuche zur mikrobiellen Herstellung 66 3.4. Dechlorierung von Hexachlorbenzol 69 3.5. Resümee 71 4. Palladium-Magnetit-Nanokatalysatoren 75 4.1. Synthese von Magnetit-Nanopartikeln 78 4.2. Kombination von Magnetit- und Pd-Nanopartikeln 81 4.3. Abscheidung von Pd an Magnetit 84 4.4. Zwischenfazit 85 4.5. Oberflächen-modifizierte Pd-Magnetit-Komposite 86 4.6. Dechlorierung von Hexachlorbenzol 89 4.7. Resümee 91 5. Selbstassemblierung von Edelmetallnanopartikeln 93 5.1. Verfahren zur Herstellung von Pd-Hydrogelen 96 5.1.1. Variation der Verfahrensparameter 97 5.1.2. Einfluss von Temperatur und Anreicherungsfaktor 99 5.2. Aerogel-Monolithe 103 5.3. Netzwerkstrukuren aus mikrobiellem Pd 105 5.4. Elektrochemische Oxidation von Methanol 106 5.5. Resümee 111 Zusammenfassung und Ausblick 113 A. Terminologie zu Kolloiden, Aggregaten, Gelen & Co. 115 B. Experimentelle Methoden 117 B.1. Synthesevorschriften 118 B.2. Charakterisierungsmethoden 128 B.3. Elektrochemische Untersuchungen an Aerogel-Elektroden 132 Literaturverzeichnis 135 / The present work deals with synthetic approaches for the implementation of Pd-based materials in environmental and electrocatalysis. Nanoparticles of Pd either coupled to magnetite or to silica-spheres with a magnetic core showed a high activity in the dechlorination of hexachlorbenzene similar to unsupported nanoparticles. However, in contrast to unsupported nanoparticles they could be separated from the reaction solution by a magnet. Structural and chemical properties of Pd nanomaterials from a microbial synthesis were comparatively investigated. The results lead to the conclusion that the Shewanella oneidensis were not actively involved into the electron transfer and the microorganisms acted more as a substrate for heterogeneous seeding. Partially nanostructured Pd-aggregates from the microbial synthesis were further subjected to self-assembly to form noble metal aerogels. Electrode films made of both microbially and synthetically produced Pd aerogels showed similar structural and electrochemical properties in the electrooxidation of methanol. Finally, the fractal dimension was implemented as a parameter allowing to monitor the evolution of both aerogel structure and its density during the process of selfassembly.:Inhaltsverzeichnis i Abbildungsverzeichnis iii Tabellenverzeichnis v Einleitung 1 1. Grundlagen 5 1.1. Eigenbewegung von Nanopartikeln in Suspension 6 1.2. Die DLVO-Theorie der Stabilität von lyophoben Kolloiden 7 1.3. Aggregation und die fraktale Dimension 11 1.4. Lichtstreuung an Kolloiden 15 1.5. Transmissionselektronenmikroskopie 19 1.6. Röntgenpulverdiffraktometrie 24 2. Edelmetall-Nanopartikel 27 2.1. Synthese von Palladium-Nanopartikeln 30 2.1.1. Reduktion mit Natriumborhydrid 30 2.1.2. Reduktion mit Citrat und Dicarboxyaceton 31 2.1.3. Keimvermitteltes Wachstum 33 2.2. pH- und Temperatur-Stabilität der Suspensionen 35 2.3. Integration in Polymerbeschichtungen 37 2.4. Resümee 41 3. Mikrobiell hergestellte Pd-Nanostrukturen 43 3.1. Dissimilatorische Metall-Reduktion 44 3.2. Eigenschaften von mikrobiellem Pd 49 3.2.1. Herstellung und Präparation 49 3.2.2. Strukturelle Eigenschaften 51 3.2.3. Umsatz und chemische Zusammensetzung 56 3.2.4. Untersuchung der organischen Bestandteile 60 3.2.5. Eigenschaften der Suspensionen 64 3.3. Kontrollversuche zur mikrobiellen Herstellung 66 3.4. Dechlorierung von Hexachlorbenzol 69 3.5. Resümee 71 4. Palladium-Magnetit-Nanokatalysatoren 75 4.1. Synthese von Magnetit-Nanopartikeln 78 4.2. Kombination von Magnetit- und Pd-Nanopartikeln 81 4.3. Abscheidung von Pd an Magnetit 84 4.4. Zwischenfazit 85 4.5. Oberflächen-modifizierte Pd-Magnetit-Komposite 86 4.6. Dechlorierung von Hexachlorbenzol 89 4.7. Resümee 91 5. Selbstassemblierung von Edelmetallnanopartikeln 93 5.1. Verfahren zur Herstellung von Pd-Hydrogelen 96 5.1.1. Variation der Verfahrensparameter 97 5.1.2. Einfluss von Temperatur und Anreicherungsfaktor 99 5.2. Aerogel-Monolithe 103 5.3. Netzwerkstrukuren aus mikrobiellem Pd 105 5.4. Elektrochemische Oxidation von Methanol 106 5.5. Resümee 111 Zusammenfassung und Ausblick 113 A. Terminologie zu Kolloiden, Aggregaten, Gelen & Co. 115 B. Experimentelle Methoden 117 B.1. Synthesevorschriften 118 B.2. Charakterisierungsmethoden 128 B.3. Elektrochemische Untersuchungen an Aerogel-Elektroden 132 Literaturverzeichnis 135
28

Magnetit-Nanokomposite als Funktionspartikeln für die Bioseparation / Magnetite nanocomposites as functional particles for bioseparation applications

Tchanque Kemtchou, Valéry 09 December 2014 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit der Herstellung von funktionellen Magnetit-Nanokompositen durch Sprühtrocknung für die Anwendung in der Bioseparation. Dabei liegen die Schwerpunkte auf der Anwendung von Polyelektrolyten als Ionenaustauscher sowie auf der Nachhaltigkeit des Herstellungsprozesses. Basierend auf einem existierenden Herstellungsprozess wurde die Aufgabenstellung konkretisiert. Es wurden Möglichkeiten zur nachhaltigen Prozessgestaltung der Synthese von kationischen bzw. anionischen magnetischen Funktionspartikeln zur Proteinabtrennung vorgestellt. Als magnetische Komponente wurde Magnetit verwendet. Aufgrund seines pseudo-amphiphilen Charakters und seiner besonderen Eigenschaften in Bezug auf die Stabilisierung von Magnetit-Kolloiden wurde Polyvinylbutyral (Mowital B 30T) als Matrixpolymer bei der Sprühtrocknung benutzt. Für die nachhaltige Prozessgestaltung wurden Isopropanol und Tetrahydrofuran als Dichlormethan-Ersatz bei der Sprühtrocknung verwendet. Bei der Synthese kationischer Magnetic Beads wurden verzweigtes Polyethylenimin und lineares Poly(Allyamin) als Anionenaustauscher verwendet. Beide Polykationen sind schwache Polyelektrolyte mit Aminogruppen. Für die Verarbeitung der Polykationen als funktionelle Liganden in magnetischen Funktionspartikeln wurde zwei Herstellungsmethoden vorgestellt: eine Synthese ohne Oberflächenmodifizierung, wobei die mechanische und chemische Stabilität der Funktionspartikeln einzig von der chemischen Struktur der eingesetzten Materialien bzw. vom Matrixpolymer abhängt, und eine Synthese mit Oberflächenmodifizierung. Die Synthese mit Oberflächenmodifizierung ist gekennzeichnet durch die kovalente Bindung von Polyethylenimin bzw. Poly(Allyamin) an der Oberfläche der Funktionspartikeln (Polyvinylbutyral). Dafür wurde 1,1’-Carbonyldiimidazol als „zero length“-Crosslinker benutzt. Die nach beiden Methoden hergestellten Funktionspartikeln wurden charakterisiert, um ihre technische Eignung beurteilen zu können. Für die Charakterisierung der sorptiven Eigenschaften wurde unter anderem der Bowman-Birk Inhibitor (BBI) verwendet. Das Protein ist ein Sojaprodukt und für seine krebsvorbeugende Wirkung bekannt. Um die Selektivität der Abtrennung zu untersuchen, wurden BBI-Produkte mit unterschiedlichen Reinheitsgraden benutzt. Durch die zwei vorgestellten Methoden konnten kationische magnetische Funktionspartikeln erfolgreich hergestellt werden. Alle Funktionspartikeln sind superparamagnetisch, und der Medianwert ihrer Partikelgrößenverteilung liegt im einstelligen Mikrometerbereich. Aufgrund eines höheren Polykationanteils ist die Bindungskapazität der Funktionspartikeln ohne Oberflächenmodifizierung um den Faktor 2,4 größer als die BBI-Bindungskapazität der Funktionspartikeln mit Oberflächenmodifizierung (Qmax=322 mg/g). Das Fehlen eine feste Anbindung des funktionellen Liganden an den Funktionspartikeln ohne Oberflächenmodifizierung verleiht jedoch diesen eine sehr schlechte chemische Stabilität in Lösungen. Es wurde auch gezeigt, dass oberflächenmodifizierte Funktionspartikeln mit ähnlichen Eigenschaften durch den Einsatz von Dichlormethan bzw. Tetrahydrofuran als Lösungsmittelersatz während der Sprühtrocknung hergestellt werden können. Durch den Einsatz von mit Poly(allylamin) oberflächenmodifizierten Funktionspartikeln konnte BBI von technischen Sojamolken unterschiedlicher Reinheitsgrade erfolgreich abgetrennt werden. Anionische Magnetic Beads wurden mit Kationenaustauscherharz als funktionellem Ligand hergestellt. Dabei wurde Isopropanol als organisches Lösungsmittel während der Sprühtrocknung verwendet. Die Synthese wurde analog zur Synthese der kationischen Magnetic Beads ohne Oberflächenmodifizierung durchgeführt. Es wurde auch hier gezeigt, dass anionische magnetische Funktionspartikeln mit guten sorptiven Eigenschaften durch den Einsatz von Isopropanol als organisches Lösungsmittel hergestellt werden können. Die anionischen Funktionspartikeln besitzen im Vergleich zu Literaturwerten höhere Bindungskapazitäten (bis 280 mg/g; ermittelt mit Lysozym). Im letzten Kapitel wird der kritische Prozessschritt des Lösungsmittelaustausches behandelt. Nach dem Lösungsmittelaustausch sollten die Magnetitnanopartikeln in der organischen Phase stabil sein. Dies ermöglicht sowohl eine homogene Verteilung der Nanopartikeln in der Matrix als auch deren bessere Verkapselung während der Sprühtrocknung. Es wurde festgestellt, dass sich eine vollständige Abtrennung von Dichlormethan durch die angewendete Destillationsmethode nicht erreichen lässt. Anhand von zwei Modellsystemen — Rizinolsäure- und Ölsäure-beschichteten Magnetitnanopartikeln — und Lösungsmittelgemischen wurde die Stabilität von sterisch stabilisierten Magnetitpartikeln in binären Lösungsmittelgemischen untersucht. Der Fokus bei dieser Untersuchung lag auf der Untersuchung der Stabilität der beschichteten Magnetitnanopartikeln in einer möglichst Dichlormethan- bzw. Isooktan-freien organischen Phase. Als zweites Lösungsmittel (als Lösungsmittelersatz betrachtet) wurden neben Tetrahydrofuran und Isopropanol technisch verbreitete Lösungsmittel wie Isooktan und 1-Butanol eingesetzt. Die Untersuchungsergebnisse zeigen, dass die Anwendung der technischen Rizinolsäure bzw. Ölsäure einen zusätzlichen Einfluss auf die Stabilität der Magnetitpartikeln hat, da diese aus anderen Fettsäuren mit unterschiedlichen chemischen Strukturen bestehen. Die Diskrepanz zwischen der berechneten HANSEN-Distanzen und der Stabilität der Magnetitnanopartikeln mit reinen Fettsäuren lässt vermutet, dass die Zusammensetzung der Lösungsmittelgemische an der fest/flüssig-Grenzfläche anders ist als im freien Volumen. Ein Modell zur Beschreibung der Stabilität der Nanopartikeln, das auf einer Anreicherung des Ausgangslösungsmittels an der Grenzfläche basiert, wurde postuliert. Solange die Diffusion des zweiten Lösungsmittels in die Adsorptionsschicht nicht ausreichend genug ist, um die Löslichkeit der Fettsäureketten entscheidend zu reduzieren und somit einen Abfall der Abstoßungskräfte zwischen der Partikeln hervorzurufen, bleiben alle beschichteten Magnetitnanopartikeln stabil im Lösungsmittelgemisch. Dies ist der Fall für die mit der reinen Rizinolsäure beschichteten Magnetitnanopartikeln in allen verwendeten Lösungsmittelgemischen mit 0,5 Vol. % DCM in der kontinuierlichen Phase. Durch die vorgestellten Herstellungsmethoden wurde gezeigt, dass magnetische Funktionspartikeln sowohl mit festen partikelförmigen Ionenaustauschern als auch mit flüssigen schwachen Polyelektrolyten erfolgreich synthetisiert werden können. Eine nachhaltige Prozessgestaltung durch die Reduzierung der Dichlormethanmenge im Sprühtrocknungsprozess ist auch möglich. Für eine erfolgreiche industrielle Anwendung der Funktionspartikeln müssen aber ihre chemischen sowie mechanischen Eigenschaften deutlich verbessert werden. Dies könnte z.B. durch die Verwendung eines anderen Matrixpolymers oder durch die Entfernung von nicht gebundenen Bestandteilen durch gezielte Waschung der Funktionspartikeln erfolgen. Die Bindungskapazität sowie die Selektivität der oberflächenmodifizierten Funktionspartikeln sollte ebenfalls verbessert werden. Dafür wurde einen Ansatz durch die Quaternisierung der Aminogruppen präsentiert. Schließlich würde die Untersuchung der Stabilität der beschichteten Magnetitnanopartikeln in einphasigen reinen Lösungsmitteln nähere Erkenntnisse über das postulierte Modell der Anreicherung von Dichlormethan in der Adsorptionsschicht erbringen. Dabei könnte die Dichlormethanmenge durch mehrstufige Destillation bzw. Rektifikation beim Lösungsmittelaustausch entfernt werden. Eine vollständige Untersuchung dieses Effekts würde zusätzlich eine Antwort auf zahlreiche Fragestellungen der Kolloidchemie in Bezug auf das Stabilitätsverhalten von Pigmentdispersionen (Lacke) oder von beschichteten Nanopartikeln in Polymerlösungen erbringen.
29

(Metallo-)Dendrimers in Catalysis, Nanoparticle Stabilization and Biological Application / (Metallo-)Dendrimere in Katalyse, Nanopartikelstabilisierung und Biologischen Anwendungen

Dietrich, Sascha 06 January 2012 (has links)
(Metallo-)Dendrimers in Catalysis, Nanoparticle Stabilization and Biological Application Technische Universität Chemnitz, Fakultät für Naturwissenschaften Dissertation 2011, 165 Seiten Die vorliegende Dissertationsschrift befasst sich mit der Darstellung, Charakterisierung und Anwendung neuartiger (Metallo-)Dendrimere. Den Schwerpunkt der Arbeit bildet dabei die terminale Funktionalisierung (Poly)amidoamin-basierender Dendrimere kleiner Generationen. Durch Standardpeptid-Knüpfungsreaktionen von 1,1´-(Diphenylphosphino)ferrocen-carbonsäure an dendritische (Poly)amidoamine ist eine Serie entsprechend funktionalisierter Metallodendrimere zugänglich. Die metallorganischen, Dendrimer-immobilisierten Engruppen können durch Zugabe von [Pd(3-C3H5)Cl]2 in heterobimetallische Übergangsmetallkomplexe umgewandelt werden und finden Einsatz als katalytisch aktive Systeme in C,C-Kreuzkupplungsreaktionen nach Heck. Ein weiterer Gegenstand der Arbeit ist die terminale Modifikation von (dendritischen) Ami-nen mit (Sp)-2-(Diphenylphosphino)ferrocen-1-carbonsäure. Nach erfolgter Umsetzung mit [Pd(3-C3H5)Cl]2 werden die erhaltenen planar-chiralen Verbindungen als Katalysatoren in asymmetrischen allylischen Substitutionsreaktionen eingesetzt. Ferner ist die Darstellung (Oligo)ethylenglykolether-terminierter (Poly)amidoamin-Dendrimere beschrieben. Diese werden als Stabilisatoren zur in-situ Generierung von Gold- sowie Magnetit-Nanopartikeln eingesetzt. Der Einfluss der dendritischen Template auf die Kolloidgrößen und Morphologien sowie die Eigenschaften der gebildeten Hybridmaterialien werden aufgezeigt. Darüber hinaus befasst sich die Arbeit mit der Verwendung biokompatibler (Oligo)ethylenglykolether-Dendrimere als Wirkstoffträger für Zytostatika bei der Krebsthera-pie. Die im Rahmen von in vitro Untersuchungen erhaltenen Ergebnisse werden präsentiert.:Table of Contents Bibliografische Beschreibung und Referat ii Selbstständigkeitserklärung iii Table of Contents vii List of Abbreviations xi Präambel xvi A Introduction 1 1. Dendrimers 1 2. Nanomaterials 4 3. References 7 B State of Knowledge 12 1. Dendrimers 12 1.1. Synthesis and Characterization 12 1.2. Functional Dendrimers 15 2. Characterization Techniques for Dendrimer-Nanomaterial Assemblies 24 3. Motivation 26 4. References 27 C Amidoamine-based Dendrimers with End-grafted Pd-Fe Units: Synthesis, Characterization and Their Use in the Heck Reaction 34 1. Introduction 34 2. Results and Discussion 35 2.1. Synthesis of Amidoamine Dendrimers 35 2.2. Synthesis of Metallo- and Selenium-Phosphine Amidoamine Dendrimers 36 2.3. Catalysis with Heterobimetallic Iron-Palladium Amidoamine Dendrimers 39 3. Conclusions 41 4. Experimental 42 4.1. Materials and Methods 42 4.2. Preparation of 2 43 4.3. Preparation of 9-Fe 43 4.4. Preparation of 5-Fe-Pd 44 4.5. Preparation of 6-Fe-Pd 44 4.6. Preparation of 7-Fe-Pd 45 4.7. Preparation of 8-Fe-Pd 46 4.8. Preparation of 9-Fe-Pd 46 4.9. Preparation of 5-Fe-Se 47 4.10. Preparation of 9-Fe-Se 48 4.11. General Procedure for the Heck-Reaction 48 5. Acknowledgement 49 6. References 49 D A Preparation of Planar-Chiral Multidonor Phosphanyl-Ferrocene Carboxamides and Their Application as Ligands for Palladium-Catalyzed Asymmetric Allylic Alkylation 52 1. Introduction 52 2. Results and Discussion 53 2.1. Syntheses and Characterization 53 2.2. Solid-State Structure of (Sp)–2 55 2.3. Catalytic Tests 57 3. Conclusions 58 4. Experimental 59 4.1. Materials and Methods 59 4.2. Preparation of Simple Amides. A General Procedure 59 4.3. Preparation of 6 61 4.4. Preparation of (Sp,Sp)–4 61 4.5. Preparation of 7 62 4.6. Preparation of (Sp,Sp,Sp)–5 62 4.7. Asymmetric Allylic Alkylation. A General Procedure 63 4.8. X-ray Crystallography 63 5. Acknowledgements 64 6. References 64 E Au Nanoparticles Stabilized by PEGylated Low-Generation PAMAM Dendrimers: Design, Characterization and Properties 68 1. Introduction 68 2. Materials and Methods 69 2.1. Synthesis of Stabilizers 69 2.2. Preparation Procedure for Gold Nanoparticles 70 3. Results and Discussion 70 3.1. Dendritic Stabilizers 70 3.2. Dendritic Stabilized Gold Nanoparticles 72 3.3. Physical and Chemical Characterization 73 4. Conclusion 79 5. Acknowledgement 80 6. Supplementary Material 80 7. References 80 F Design, Characterization and Magnetic Properties of Fe3O4-Nanoparticle Arrays Coated with PEGylated-Dendrimers 86 1. Introduction 86 2. Materials and Methods 88 2.1. Materials and Instruments 88 2.2. Synthesis Procedure for Fe3O4 Nanoparticles 89 3. Results and Discussion 91 3.1. Preparation and Characterization of Dendrimer-Surfaced Fe3O4 Nanoparticles 91 3.2. Magnetic Characterization of Dendrimer-Coated Fe3O4 Nanoparticles 96 4. Conclusion 99 5. Acknowledgement 100 6. References 100 G Dendrimer - Doxorubicin Conjugate for Enhanced Therapeutic Effects for Cancer 103 1. Introduction 103 2. Experimental Section 105 2.1. Materials and Methods 105 2.2. Synthesis of OEGylated Poly(amidoamine) Dendrimer 2 106 2.3. Cell Viability Studies 107 2.4. Doxorubicin Loading and Release 107 2.5. In Vitro Cellular Uptake of Dendrimer-DOX Conjugate 109 3. Results and Discussion 109 3.1. Drug Loading and Release 109 3.2. Surface Potential of the Dendrimer-Drug Assembly 110 3.3. Structural Analysis of Dendrimer-DOX Conjugate 111 3.4. In Vitro DOX Release Profile from Dendrimer-Drug Conjugate 114 3.5. Cell Viability Studies of the Dendrimer-DOX Conjugate 117 3.6. Cellular Uptake by the Dendrimer-DOX Conjugate 118 3.7. Protein Adsorption Studies 119 4. Conclusions 119 5. Acknowledgements 120 6. Supplementary Material 120 7. References 121 H Summary 123 1. Summary 123 2. Zusammenfassung 129 Danksagung 136 I Appendix 137 1. Appendix Chapter C 137 2. Appendix Chapter D 139 3. Appendix Chapter E 140 4. Appendix Chapter F 142 5. Appendix Chapter G 144 Lebenslauf 145 Liste der Publikationen, Vorträge und Posterpräsentationen 147 Publikationen 147 Poster 148 Vorträge 149
30

Magnetometrické a spektrometrické analýzy polétavého prachu z lokalit s emisním znečištěním ovzduší převážně z automobilové dopravy (Pražský okruh) a z průmyslu (poblíž ostravských hutí) s využitím meteorologických dat / Magnetometrical and spectrometrical analyses of fly ashes from the areas with emissonal air pollution mainly from automobile traffic (near Prague's D0 motorway) and from industry (near Ostrava's iron-mills) with a use of meteorological data

Hrušková, Gloria January 2018 (has links)
The content of analytical part of this thesis is the study of airborne dust samples collected in places with its higher concentration: by the Prague Ring (D0 motorway) and near the Ostrava's iron-mills. In both places, automobile transportation or industrial production are the primary sources of particulate matter emissions in the air. Received samples of PM1, PM2, PM10 a TSP filters were obtained by a standard air pollution monitoring procedure. This study examines the relationship between the magnetic parameters of the samples, their level of concentration of metals frequently present in emissions from these sources, the total mass of the dust fraction in the samples and the meteorological parameters (for Ostrava samples). The magnetic properties of the filters were investigated by magnetometric analyzes using a vibration sampling magnetometer. The concentrations of the metals were monitored by X-ray fluorescence spectrometer, the weight of parts of dust filtres was measured on laboratory scales.

Page generated in 0.046 seconds