Spelling suggestions: "subject:"manifold(mathematics)""
131 |
Ações e folheações polares em variedades de HadamardCaramello Junior, Francisco Carlos 27 February 2014 (has links)
Submitted by Ronildo Prado (ronisp@ufscar.br) on 2016-08-30T20:16:50Z
No. of bitstreams: 1
6841.pdf: 671749 bytes, checksum: fee45931185f019b1c8d5bb4946465b0 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-08-30T20:17:52Z (GMT) No. of bitstreams: 1
6841.pdf: 671749 bytes, checksum: fee45931185f019b1c8d5bb4946465b0 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-08-30T20:18:45Z (GMT) No. of bitstreams: 1
6841.pdf: 671749 bytes, checksum: fee45931185f019b1c8d5bb4946465b0 (MD5) / Made available in DSpace on 2016-08-30T20:19:00Z (GMT). No. of bitstreams: 1
6841.pdf: 671749 bytes, checksum: fee45931185f019b1c8d5bb4946465b0 (MD5)
Previous issue date: 2014-02-27 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / O objetivo principal deste trabalho é apresentar alguns resultados recentes na teoria de folheações polares, também chamadas de folheações riemannianas singulares com seções, em variedades de curvatura não positiva, presentes no artigo [24]. As ações polares também são estudadas, pois são objetos de pesquisa ativa que motivam e ilustram o estudo das folheações polares. Fornecemos uma demonstração de que não existem folheações polares próprias em variedades compactas de curvatura não positiva. Além disso, apresentamos um resultado que descreve globalmente as folheações polares próprias em variedades de Hadamard. Abordamos este resultado também no contexto particular das ações polares, utilizando a teoria de subvariedades taut. As ações adjunta e por conjugação são brevemente estudadas como exemplos clássicos de ações polares. / This work aims at presenting some recent results on the theory of polar foliations, also know as singular riemannian foliations with sections, on nonpositively curved manifolds, as seen in T oben [24]. Polar actions are also studied, for they are active research subject that motivate and illustrate polar foliations. We give a proof of the nonexistence of proper polar foliations on compact manifolds of nonpositive curvature. Then we present a result that globally describes proper polar foliations on Hadamard manifolds. We prove this same result in the special case of polar actions by using the theory of taut submanifolds. The adjoint and conjugation actions are brie y presented as classical examples of polar actions.
|
132 |
Analise espectral de superficies e aplicações em computação grafica / Surface spectral analysis and applications in computer graphicsGoes, Fernando Ferrari de 07 August 2009 (has links)
Orientador: Siome Klein Goldenstein / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-14T02:23:56Z (GMT). No. of bitstreams: 1
Goes_FernandoFerraride_M.pdf: 31957234 bytes, checksum: c369081bcbbb5f360184a1f8467839ea (MD5)
Previous issue date: 2009 / Resumo: Em computação gráfica, diversos problemas consistem na análise e manipulação da geometria de superfícies. O operador Laplace-Beltrami apresenta autovalores e autofunções que caracterizam a geometria de variedades, proporcionando poderosas ferramentas para o processamento geométrico. Nesta dissertação, revisamos as propriedades espectrais do operador Laplace-Beltrami e propomos sua aplicação em computação gráfica. Em especial, introduzimos novas abordagens para os problemas de segmentação semântica e geração de atlas em superfícies / Abstract: Many applications in computer graphics consist of the analysis and manipulation of the geometry of surfaces. The Laplace-Beltrami operator presents eigenvalues and eigenfuncitons which caracterize the geometry of manifolds, supporting powerful tools for geometry processing. In this dissertation, we revisit the spectral properties of the Laplace-Beltrami operator and apply them in computer graphics. In particular, we introduce new approaches for the problems of semantic segmentation and atlas generation on surfaces / Mestrado / Computação Grafica / Mestre em Ciência da Computação
|
133 |
The differential geometry of the fibres of an almost contract metric submersionTshikunguila, Tshikuna-Matamba 10 1900 (has links)
Almost contact metric submersions constitute a class of Riemannian submersions whose
total space is an almost contact metric manifold. Regarding the base space, two types
are studied. Submersions of type I are those whose base space is an almost contact
metric manifold while, when the base space is an almost Hermitian manifold, then the
submersion is said to be of type II.
After recalling the known notions and fundamental properties to be used in the
sequel, relationships between the structure of the fibres with that of the total space
are established. When the fibres are almost Hermitian manifolds, which occur in the
case of a type I submersions, we determine the classes of submersions whose fibres
are Kählerian, almost Kählerian, nearly Kählerian, quasi Kählerian, locally conformal
(almost) Kählerian, Gi-manifolds and so on. This can be viewed as a classification of
submersions of type I based upon the structure of the fibres.
Concerning the fibres of a type II submersions, which are almost contact metric
manifolds, we discuss how they inherit the structure of the total space.
Considering the curvature property on the total space, we determine its corresponding
on the fibres in the case of a type I submersions. For instance, the cosymplectic
curvature property on the total space corresponds to the Kähler identity on the fibres.
Similar results are obtained for Sasakian and Kenmotsu curvature properties.
After producing the classes of submersions with minimal, superminimal or umbilical
fibres, their impacts on the total or the base space are established. The minimality of
the fibres facilitates the transference of the structure from the total to the base space.
Similarly, the superminimality of the fibres facilitates the transference of the structure
from the base to the total space. Also, it is shown to be a way to study the integrability
of the horizontal distribution.
Totally contact umbilicity of the fibres leads to the asymptotic directions on the total
space.
Submersions of contact CR-submanifolds of quasi-K-cosymplectic and
quasi-Kenmotsu manifolds are studied. Certain distributions of the under consideration
submersions induce the CR-product on the total space. / Mathematical Sciences / D. Phil. (Mathematics)
|
134 |
Kähler and almost-Kähler geometric flows / Flots géométriques kähleriens et presque-kähleriensPook, Julian 21 March 2014 (has links)
Les objects d'étude principaux de la thèse "Flots géométriques kähleriens et presque-kähleriens" sont des généralisations du flot de Calabi et du flot hermitienne de Yang--Mills. <p> Le flot de Calabi $partial_t omega = -i delbar del S(omega) =- i delbar del Lambda_omega <p> ho(omega) $ tente de déformer une forme initiale kählerienne vers une forme kählerienne $omega_c$ de courbure scalaire constante caractérisée par $S(omega_c) = Lambda_{omega_c} <p> ho(omega_c) = underline{S}$ dans la même classe de cohomologie. La généralisation étudiée est le flot de Calabi twisté qui remplace la forme de Kähler--Ricci $ho$ par $ho + alpha(t)$, où le emph{twist} $alpha(t)$ est une famille de $2$-formes qui converge vers $alpha_infty$. Le but de ce flot est de trouver des métriques kähleriennes $omega_{tc}$ de courbure scalaire twistées constantes caractérisées par $Lambda_{omega_{tc}} (ho(omega_{tc}) +alpha_infty) = underline{S} + underline{alpha}_infty$. L'existence et la convergence de ce flot sont établies sur des surfaces de Riemann à condition que le twist soit défini négatif et reste dans une classe de cohomologie fixe. <p>Si $E$ est un fibré véctoriel holomorphe sur une varieté kählerienne $(X,omega)$, une métrique de Hermite--Einstein $h_{he}$ est caractérisée par la condition $Lambda_omega i F_{he} = lambda id_E$. Le flot hermitien de Yang--Mills donné par $h^{-1}partial_t h =- [Lambda_omega iF_{h} - lambda id_E]$ tente de déformer une métrique hermitienne initiale vers une métrique Hermite--Einstein. La version classique du flot fixe la forme kählerienne $omega$. Le cas où $omega$ varie dans sa classe de cohomologie et converge vers $omega_infty$ est considéré dans la thèse. Il est démontré que le flot existe pour tout $t$ sur des surfaces de Riemann et converge vers une métrique Hermite--Einstein (par rapport à $omega_infty$) si le fibré $E$ est stable. <p> Les généralisations du flot de Calabi et du flot hermitien de Yang--Mills ne sont pas arbitraires, mais apparaissent naturellement comme une approximation du flot de Calabi sur des fibrés adiabatiques. Si $Z,X$ sont des variétés complexes compactes, $pi colon Z \ / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0828 seconds