• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 192
  • 89
  • 5
  • 1
  • 1
  • Tagged with
  • 290
  • 186
  • 156
  • 151
  • 132
  • 68
  • 41
  • 41
  • 34
  • 34
  • 31
  • 30
  • 29
  • 27
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

[pt] NOWCASTING DE PIB COM MODELOS DE MACHINE LEARNING: EVIDÊNCIA DOS EUA / [en] NOWCASTING GDP WITH MACHINE LEARNING MODELS: EVIDENCE FROM THE US

LUCAS SEABRA MAYNARD DA SILVA 25 May 2020 (has links)
[pt] O presente trabalho investiga o uso de métodos de Machine Learning (ML) para efetuar estimativas para o trimestre corrente (nowcasts) da taxa de crescimento do PIB Real dos EUA. Esses métodos conseguem lidar com um grande volume de dados e séries com calendários de publicação dessincronizados, e os nowcasts são atualizados cada vez que novos dados são publicados ao longo do trimestre. Um exercício pseudo-out-of-sample é proposto para avaliar a performance de previsão e analisar o padrão de seleção de variável desses modelos. O método de ML que merece o maior destaque é o Target Factor, que supera o usualmente adotado DFM para alguns vintages dentro do trimestre. Ademais, as variáveis selecionadas apresentam consistência entre os modelos e com a intuição. / [en] This paper examines the use of Machine Learning (ML) models to compute estimates of current-quarter US Real GDP growth rate (nowcasts). These methods can handle large data sets with unsynchronized release dates, and nowcasts are updated each time new data are released along the quarter. A pseudo-out-of-sample exercise is proposed to assess forecasting performance and to analyze the variable selection pattern of these models. The ML method that deserves more attention is the Target Factor, which overcomes the usually adopted dynamic factor model for some predictions vintages in the quarter. We also analyze the variables selected, which are consistent between models and intuition.
102

[pt] APLICAÇÃO DE TÉCNICAS DE APRENDIZADO DE MÁQUINA PARA A PREDIÇÃO DE INTERNAÇÕES DE ALTO CUSTO / [en] MACHINE LEARNING TO PREDICT HIGH-COST HOSPITALIZATIONS

ADRIAN MANRESA PEREZ 25 August 2020 (has links)
[pt] Empresas do ramo da Saúde vêm evoluindo seus modelos de gestão, desenvolvendo programas proativos para melhorar a qualidade e a eficiência dos seus serviços considerando informações históricas. Estratégias proativas buscam prevenir e detectar doenças precocemente e também melhorar os resultados das internações. Nesse sentido, uma tarefa desafiadora é identificar quais pacientes devem ser incluídos em programas proativos de saúde. Para isso, a previsão e a modelagem de variáveis relacionadas aos custos estão entre as abordagens mais amplamente utilizadas, uma vez que essas variáveis sào potenciais indicadores do risco, da gravidade e do consumo de recursos médicos de uma internação. A maioria das pesquisas nesta área têm como foco modelar variáveis de custo em uma perspectiva geral e prever variações de custos para períodos específicos. Por outro lado, este trabalho se concentra na previsão dos custos de um evento específico. Em particular, esta dissertação prescreve uma solução para a predição de internações de alto custo, visando dar apoio a gestores de serviços em saúde em suas ações proativas. Para esse fim, foi seguida a metodologia de pesquisa Design Science Research (DSR), aliada ao ciclo de vida de projeto de Ciência de Dados, sobre um cenário real de uma empresa de consultoria em saúde. Os dados fornecidos descrevem internações de pacientes através de suas características demográficas e do histórico de consumo de recursos médicos. Diferentes técnicas estatísticas e de Aprendizado de Máquina foram aplicadas, como Ridge Regression (RR), Least Absolute Shrinkage and Selection Operator (LASSO), Classification and Regression Trees (CART), Random Forest (RF) e Extreme Gradient Boosting (XGB). Os resultados experimentais evidenciaram que as técnicas RF e XGB apresentaram o melhor desempenho, atingindo AUCPR de 0,732 e 0,644, respectivamente. O modelo de predição da técnica RF foi capaz de detectar até 72 porcento, em média, das internações de alto custo com 33 porcento de precisão, o que representa 78,7 porcento do custo total gerado por tais internações. Além disso, os resultados monstraram que o uso de custo prévio e variáveis agregadas de consumo de recursos aumentaram a capacidade de predição do modelo / [en] Healthcare providers are evolving their management models, developing proactive programs to improve the quality and efficiency of their health services, considering the available historical information. Proactive strategies seek not only to prevent and detect diseases but also to enhance hospitalization outcomes. In this sense, one of the most challenging tasks is to identify which patients should be included in proactive health programs. To this end, forecasting and modeling cost-related variables are among the most widely used approaches for identifying such patients, since these variables are potential indicators of the patients hospitalization risk, their severity, and their medical resources consumption. Most of the existing research works in this area aim to model cost variables from an overall perspective and predict cost variations for specific periods. In contrast, this work focuses on predicting the costs of a particular event. Specifically, this thesis prescribes a solution for identifying high-cost hospitalizations, to support health service managers in their proactive actions. To this end, the Design Science Research (DSR) methodology was combined with the Data Science life cycle in a real scenario of a health consulting company. The data provided describes patients hospitalizations through their demographic characteristics and their medical resource consumption. Different statistical and Machine Learning techniques were used to predict high-cost hospitalizations, such as Ridge Regression (RR), Least Absolute Shrinkage and Selection Operator (LASSO), Classification and Regression Trees (CART), Random Forest (RF), and Extreme Gradient Boosting (XGB). The experimental results showed that RF and XGB presented the best performance, reaching an Area Under the Curve Precision-Recall (AUCPR) of 0.732 and 0.644, respectively. In the case of RF, the model was able to detect, on average, 72 percent of the high-cost hospitalizations with a 33 percent of Precision, which represents 78.7 percent of the total cost generated by the high-cost hospitalizations. Moreover, the obtained results showed that the use of prior cost and aggregated variables of resource consumption increased the model s ability to predict high-cost hospitalizations.
103

[en] COUPLING MACHINE LEARNING AND MESOSCALE MODELING TO STUDY THE FLOW OF SEMI-DENSE AND DENSE SUSPENSIONS / [pt] INTERLIGANDO APRENDIZADO DE MÁQUINA E SIMULAÇÃO EM MESOESCALA PARA ESTUDAR O ESCOAMENTO EM SUSPENSÕES SEMI-DENSAS E DENSAS

ERIKA IMADA BARCELOS 09 May 2022 (has links)
[pt] Suspensões correspondem a uma classe de materiais amplamente utilizada em uma grande variedade de aplicações e indústrias. Devido à sua extrema versatilidade, elas têm sido foco de inúmeros estudos nas últimas décadas. Suspensões também são muito flexíveis e podem apresentar diferentes propriedades reológicas e respostas macroscópicas dependendo da escolha dos parâmetros usados como entrada no sistema. Mais especificamente, a resposta reológica de suspensões está intimamente associada ao arranjo microestrutural das partículas que compõem o meio e a fatores externos, como o quão confinadas elas se encontram e a rigidez das partículas. No presente estudo, o efeito da rigidez, confinamento e vazão na microestrutura de suspensões altamente concentradas é avaliado usando Dinâmica Dissipativa de Partículas com Núcleo Modificado. Precedento este estudo principal, foram necessárias outras duas etapas para garantir um sistema de simulação confiável e representativo, que consistiu, essencialmente, na realização de estudos paramétricos para compreender e estimar os valores adequados para os parâmetros de interacção parede-partícula. O presente trabalho aborda estudos paramétricos realizados para auxiliar na escolha dos parâmetros de entrada para evitar a penetração de partículas em um sistema delimitado por paredes. Inicialmente um sistema mais simples, composto por solvente e paredes é construído e os parâmetros de interação e densidades de parede foram ajustados. Em seguida as interações são definidas para suspensões. Neste último caso, vários parâmetros desempenham um papel na penetração e a maneira tradicional de investigar esses efeitos seria exaustiva e demorada. Por isso, optamos por usar uma abordagem de Machine Learning para realizar este estudo. Uma vez ajustados os parâmetros, o estudo de confinamento pôde ser realizado. O objetivo principal deste estudo foi entender como a microestrutura de suspensões concentradas é afetada pela vazão, rigidez das partículas e confinamento. Verificou-se que partículas muito flexíveis sempre formam um aglomerado gigante independente da razão de confinamento; a diferença está em quão compactadas são as partículas. No caso de partículas rígidas, um confinamento mais forte leva à formação de aglomerados maiores. O estudo final aborda um estudo de aprendizado de máquina realizado para prever a reologia de suspensões não confinadas. Com este trabalho foi possível entender e ajustar parâmetros de simulação e desenvolver um domínio computacional que permite estudar sistematicamente efeitos do confinamento em suspensões. / [en] Suspensions correspond to a class of materials vastly used in a large set of applications and industries. Due to its extreme versatility, they have been the focus of numerous studies over the past decades. Suspensions are also very flexible and can display different rheological properties and macroscopic responses depending on the choice of parameters used as input in the system. More specifically, the rheological response of suspensions is intimately associated to the microstructural arrangement of the particles composing the medium and external factors, such as how strongly they are confined and particle rigidity. In the present study, the effect of particle rigidity, confinement and flow rate on the microstructure of highly concentrated suspensions is studied using CoreModified Dissipative Particle Dynamics. Preceding this main study, two other steps were necessary to guarantee a reliable and realistic simulation system, which consisted, essentially, on performing parametric studies to understand and estimate the appropriate values for wall-particle interaction parameters. The present work address parametric studies performed to assist the input parameters choice to prevent particle penetration in a wall-bounded system. Initially a simpler system, composed of solvent and walls, is built and the interaction parameters and wall densities were adjusted. Following, the interactions are set for suspensions. In the latter case multiple parameters play a role in penetration and the traditional way to investigate these effects would be exhaustive and time consuming. Hence, we choose to use a Machine Learning approach to perform this study. Once the parameters were adjusted, the study of confinement could be carried out. The main goal of this study was to understand how the microstructure of concentrated suspensions is affected by flow rate, particle rigidity and confinement. It was found that very soft particles always form a giant cluster regardless the confinement ratio; the difference being on how packed the particles are. In the rigid case, a stronger confinement leads the formation of larger clusters. The final study addresses a machine learning study carried out to predict the rheology of unconfined suspensions. The main contribution of this work is that it was possible to understand and adjust simulation parameters and develop a computational domain that enables to systematically study confinement effects on suspensions.
104

[pt] APLICAÇÃO DE SRV E ESN À PREVISÃO DE SÉRIES DO MERCADO DE SEGUROS / [en] APPLYING SVR AND ESN TO FORECAST INSURANCE MARKET SERIES

JULIANA CHRISTINA CARVALHO DE ARAÚJO 28 November 2016 (has links)
[pt] A previsão de seguros é essencial para a indústria de seguros e resseguros. Ela fornece subsídios para estratégias de negócios de longo-prazo, e pode servir como um primeiro passo para o planejamento de linhas específicas de produtos. No contexto brasileiro, a previsão de seguros é de especial relevância. O Brasil possui o maior mercado segurador da América-Latina e tem potencial para se tornar um dos mais importantes centros seguradores do mundo no médio-longo- prazo. A SUSEP e a CNseg realizam previsões de carteiras do mercado de seguros brasileiro com base em modelos estatísticos. Entretanto, as séries temporais de prêmios utilizadas para essas previsões exibem comportamento não estacionário e não linear. Assim, a utilização de algoritmos de machine learning, na modelagem de séries de seguros, se justifica em função da habilidade desses algoritmos em capturar componentes de natureza não linear e dinâmica que possam estar presentes nessas séries, sem a necessidade de realizar suposições sobre o processo gerador dos dados. Com base no exposto, este trabalho investiga o uso de redes neurais Echo State (ESN) e GA-SVR na previsão de prêmios de seguros do mercado brasileiro. A base de dados utilizada neste trabalho foi disponibilizada pela SUSEP e compreende as carteiras de Automóveis, Vida e Previdência. Foram realizadas previsões univariadas e multivariadas com ESN e GA-SVR para as três carteiras mencionadas. Os resultados demonstram superioridade preditiva da ESN. / [en] Insurance forecasting is essential for the insurance industry. It provides support for long-term business strategies and can serve as a first-step for planning specific lines of products. In the Brazilian context, insurance forecasting is of special relevance. In the Latin American insurance market, Brazil is the leader in premium, and could become one of the most important insurance centers of the world in the medium- or long-term. SUSEP and CNseg forecast insurance products of the Brazilian market with statistical models. Nevertheless, premium time series exhibit nonstationary and nonlinear behavior. Therefore, the use of machine learning algorithms in the modeling of insurance series is justified, due to the ability of these algorithms in capturing nonlinear and dynamic components, which may be present in those series, without making assumptions about the data generating process. Based on this, this work investigates the use of Echo State neural networks (ESN) and GA-SVR in the forecast of insurance premium of the Brazilian market. The database used in this work was provided by SUSEP and consists of the products Automobiles, Life and Providence. Univariate and multivariate forecasts were made with ESN and GA-SVR for the three aforementioned products. The results show predictive superiority of ESN.
105

[en] A DECISION TREE LEARNER FOR COST-SENSITIVE BINARY CLASSIFICATION / [pt] UMA ÁRVORE DE DECISÃO PARA CLASSIFICAÇÃO BINÁRIA SENSÍVEL AO CUSTO

DANIEL DOS SANTOS MARQUES 30 November 2016 (has links)
[pt] Problemas de classificação foram amplamente estudados na literatura de aprendizado de máquina, gerando aplicações em diversas áreas. No entanto, em diversos cenários, custos por erro de classificação podem variar bastante, o que motiva o estudo de técnicas de classificação sensível ao custo. Nesse trabalho, discutimos o uso de árvores de decisão para o problema mais geral de Aprendizado Sensível ao Custo do Exemplo (ASCE), onde os custos dos erros de classificação variam com o exemplo. Uma das grandes vantagens das árvores de decisão é que são fáceis de interpretar, o que é uma propriedade altamente desejável em diversas aplicações. Propomos um novo método de seleção de atributos para construir árvores de decisão para o problema ASCE e discutimos como este pode ser implementado de forma eficiente. Por fim, comparamos o nosso método com dois outros algoritmos de árvore de decisão propostos recentemente na literatura, em 3 bases de dados públicas. / [en] Classification problems have been widely studied in the machine learning literature, generating applications in several areas. However, in a number of scenarios, misclassification costs can vary substantially, which motivates the study of Cost-Sensitive Learning techniques. In the present work, we discuss the use of decision trees on the more general Example-Dependent Cost-Sensitive Problem (EDCSP), where misclassification costs vary with each example. One of the main advantages of decision trees is that they are easy to interpret, which is a highly desirable property in a number of applications. We propose a new attribute selection method for constructing decision trees for the EDCSP and discuss how it can be efficiently implemented. Finally, we compare our new method with two other decision tree algorithms recently proposed in the literature, in 3 publicly available datasets.
106

[en] MASSIVELY PARALLEL GENETIC PROGRAMMING ON GPUS / [pt] PROGRAMAÇÃO GENÉTICA MACIÇAMENTE PARALELA EM GPUS

CLEOMAR PEREIRA DA SILVA 25 February 2015 (has links)
[pt] A Programação Genética permite que computadores resolvam problemas automaticamente, sem que eles tenham sido programados para tal. Utilizando a inspiração no princípio da seleção natural de Darwin, uma população de programas, ou indivíduos, é mantida, modificada baseada em variação genética, e avaliada de acordo com uma função de aptidão (fitness). A programação genética tem sido usada com sucesso por uma série de aplicações como projeto automático, reconhecimento de padrões, controle robótico, mineração de dados e análise de imagens. Porém, a avaliação da gigantesca quantidade de indivíduos gerados requer excessiva quantidade de computação, levando a um tempo de execução inviável para problemas grandes. Este trabalho explora o alto poder computacional de unidades de processamento gráfico, ou GPUs, para acelerar a programação genética e permitir a geração automática de programas para grandes problemas. Propomos duas novas metodologias para se explorar a GPU em programação genética: compilação em linguagem intermediária e a criação de indivíduos em código de máquina. Estas metodologias apresentam vantagens em relação às metodologias tradicionais usadas na literatura. A utilização de linguagem intermediária reduz etapas de compilação e trabalha com instruções que estão bem documentadas. A criação de indivíduos em código de máquina não possui nenhuma etapa de compilação, mas requer engenharia reversa das instruções que não estão documentadas neste nível. Nossas metodologias são baseadas em programação genética linear e inspiradas em computação quântica. O uso de computação quântica permite uma convergência rápida, capacidade de busca global e inclusão da história passada dos indivíduos. As metodologias propostas foram comparadas com as metodologias existentes e apresentaram ganhos consideráveis de desempenho. Foi observado um desempenho máximo de até 2,74 trilhões de GPops (operações de programação genética por segundo) para o benchmark Multiplexador de 20 bits e foi possível estender a programação genética para problemas que apresentam bases de dados de até 7 milhões de amostras. / [en] Genetic Programming enables computers to solve problems automatically, without being programmed to it. Using the inspiration in the Darwin s Principle of natural selection, a population of programs or individuals is maintained, modified based on genetic variation, and evaluated according to a fitness function. Genetic programming has been successfully applied to many different applications such as automatic design, pattern recognition, robotic control, data mining and image analysis. However, the evaluation of the huge amount of individuals requires excessive computational demands, leading to extremely long computational times for large size problems. This work exploits the high computational power of graphics processing units, or GPUs, to accelerate genetic programming and to enable the automatic generation of programs for large problems. We propose two new methodologies to exploit the power of the GPU in genetic programming: intermediate language compilation and individuals creation in machine language. These methodologies have advantages over traditional methods used in the literature. The use of an intermediate language reduces the compilation steps, and works with instructions that are well-documented. The individuals creation in machine language has no compilation step, but requires reverse engineering of the instructions that are not documented at this level. Our methodologies are based on linear genetic programming and are inspired by quantum computing. The use of quantum computing allows rapid convergence, global search capability and inclusion of individuals past history. The proposed methodologies were compared against existing methodologies and they showed considerable performance gains. It was observed a maximum performance of 2,74 trillion GPops (genetic programming operations per second) for the 20-bit Multiplexer benchmark, and it was possible to extend genetic programming for problems that have databases with up to 7 million samples.
107

[en] ASSESSING THE BENEFITS OF MLOPS FOR SUPERVISED ONLINE REGRESSION MACHINE LEARNING / [pt] AVALIAÇÃO DOS BENEFÍCIOS DE MLOPS PARA APRENDIZADO DE MÁQUINA SUPERVISIONADA ONLINE DE REGRESSÃO

GABRIEL DE ARAUJO CARVALHO 30 October 2023 (has links)
[pt] Contexto: As operações de aprendizagem automática (MLOps) surgiram como um conjunto de práticas que combina desenvolvimento, testes e operações para implementar e manter aplicações de aprendizagem automática. Objetivo: Nesta dissertação, iremos avaliar os benefícios e limitações da utilização dos princípios de MLOps no contexto de modelos supervisionados online, que são amplamente utilizados em aplicações como a previsão meteorológica, tendências de mercado e identificação de riscos. Método: Aplicámos dois métodos de investigação para avaliar os benefícios dos MLOps para aplicações de aprendizagem automática online supervisionada: (i) desenvolvimento de um projeto prático de aprendizagem automática supervisionada para aprofundar a compreensão do problema e das possibilidades de utilização dos princípios MLOps; e (ii) duas discussões de grupo de foco sobre os benefícios e limitações da utilização dos princípios MLOps com seis programadores de aprendizagem automática experientes. Resultados: O projeto prático implementou uma aplicação de aprendizagem automática de regressão supervisionada utilizando KNN. A aplicação utiliza informações sobre as rotas das linhas de autocarros públicos do Rio de Janeiro e calcula a duração da viagem de autocarro com base na hora de partida do dia e no sentido da viagem. Devido ao âmbito da primeira versão e ao facto de não ter sido implementada em produção, não sentimos a necessidade de utilizar os princípios MLOps que esperávamos inicialmente. De facto, identificámos a necessidade de apenas um princípio, o princípio do controlo de versões, para alinhar as versões do código e dos dados. O grupo de discussão revelou que os programadores de aprendizagem automática acreditam que os benefícios da utilização dos princípios MLOps são muitos, mas que não se aplicam a todos os projectos em que trabalham. A discussão revelou que a maioria dos benefícios está relacionada com a prevenção de passos manuais propensos a erros, permitindo restaurar a aplicação para um estado anterior e ter um pipeline robusto de implementação automatizada contínua. Conclusões: É importante equilibrar as compensações do investimento de tempo e esforço na implementação dos princípios de MLOps, considerando o âmbito e as necessidades do projeto. De acordo com os especialistas, esse investimento tende a compensar para aplicativos maiores com implantação contínua que exigem processos automatizados bem preparados. Por outro lado, para versões iniciais de aplicações de aprendizagem automática, o esforço despendido na implementação dos princípios pode alargar o âmbito do projeto e aumentar o tempo de execução. / [en] Context: Machine Learning Operations (MLOps) has emerged as a set of practices that combines development, testing, and operations to deploy and maintain machine learning applications. Objective: In this dissertation, we will assess the benefits and limitations of the use of MLOps principles in the context of online supervised models, which are widely used in applications such as weather forecasting, market trends, and risk identification. Method: We applied two research methods to assess the benefits of MLOps for supervised online machine learning applications: (i) developing a practical supervised machine learning project to deepen the understanding of the problem and of the MLOps principles usage possibilities; and (ii) two focus group discussions on the benefits and limitations of using the MLOps principles with six experienced machine learning developers. Results: The practical project implemented a supervised regression machine learning application using KNN. The application uses information on Rio de Janeiro s public bus line routes and calculates the bus trip duration based on the trip departure time of the day and trip direction. Due to the scope of the first version and given that it was not deployed into production, we didn t feel the need to use the MLOps principles we were expecting at first. Indeed, we identified the need for only one principle, the versioning principle, to align versions of the code and the data. The focus group revealed that machine learning developers believe that the benefits of using MLOps principles are many but that they do not apply to all the projects they worked on. The discussion brought up that most of the benefits are related to avoiding error-prone manual steps, enabling it to restore the application to a previous state, and having a robust continuous automated deployment pipeline. Conclusions: It is important to balance the trade-offs of investing time and effort in implementing the MLOps principles considering the scope and needs of the project. According to the experts, this investment tends to pay off for larger applications with continuous deployment that require well-prepared automated processes. On the other hand, for initial versions of machine learning applications, the effort taken into implementing the principles might enlarge the scope of the project and increase the time needed to deploy a first version to production.
108

[pt] ENGENHARIA DE REQUISITOS PARA SISTEMAS INTEGRADOS COM COMPONENTES DE APRENDIZADO DE MÁQUINA: STATUS QUO E PROBLEMA / [en] REQUIREMENTS ENGINEERING FOR ML-ENABLED SYSTEMS: STATUS QUO AND PROBLEMS

ANTONIO PEDRO SANTOS ALVES 06 February 2024 (has links)
[pt] Sistemas que usam Aprendizado de Máquina, doravante Machine Learning (ML), tornaram-se comuns para empresas que deseajam melhorar seus produtos, serviços e processos. A literatura sugere que a Engenharia de Requisitos (ER) pode ajudar a explicar muitos problemas relacionados à engenharia de sistemas inteligentes envolvendo componentes de ML (ML-Enabled Systems). Contudo, o cenário atual de evidências empíricas sobre como ER é aplicado na prática no contexto desses sistemas é amplamente dominado por estudos de casos isolados com pouca generalização. Nós conduzimos um survey internacional para coletar informações de profissionais sobre o status quo e problemas de ER para ML-Enabled Systems. Coletamos 188 respostas completas de 25 países. Realizamos uma análise quantitativa sobre as práticas atuais utilizando bootstrapping com intervalos de confiança; e análises qualitativas sobre os problemas reportados através de procedimentos de codificação open e axial. Encontramos diferenças significativas nas práticas de ER no contexto de projetos de ML, algumas já reportadas na literatura e outras totalmente novas. Por exemplo, (i) atividades relacionadas à ER são predominantemente conduzidas por líderes de projeto e cientistas de dados, (ii) o formato de documentação predominante é baseado em Notebooks interativos, (iii) os principais requisitos não-funcionais incluem qualidade dos dados, confiança e explicabilidade no modelo, e (iv) os principais desafios consistem em gerenciar a expectativa dos clientes e alinhar requisitos com os dados disponíveis. As análises qualitativas revelaram que os praticantes enfrentam problemas relacionados ao baixo entendimento sobre o domínio do negócio, requisitos pouco claros e baixo engajamento do cliente. Estes resultados ajudam a melhorar o entendimento sobre práticas adotadas e problemas existentes em cenários reais. Destacamos a necessidade para adaptar ainda mais e disseminar práticas de ER relacionadas à engenharia de ML-Enabled Systems. / [en] Systems that use Machine Learning (ML) have become commonplace for companies that want to improve their products, services, and processes. Literature suggests that Requirements Engineering (RE) can help to address many problems when engineering ML-Enabled Systems. However, the state of empirical evidence on how RE is applied in practice in the context of MLenabled systems is mainly dominated by isolated case studies with limited generalizability. We conducted an international survey to gather practitioner insights into the status quo and problems of RE in ML-enabled systems. We gathered 188 complete responses from 25 countries. We conducted quantitative statistical analyses on contemporary practices using bootstrapping with confidence intervals and qualitative analyses on the reported problems involving open and axial coding procedures. We found significant differences in RE practices within ML projects, some of them have been reported on literature and some are totally new. For instance, (i) RE-related activities are mostly conducted by project leaders and data scientists, (ii) the prevalent requirements documentation format concerns interactive Notebooks, (iii) the main focus of non-functional requirements includes data quality, model reliability, and model explainability, and (iv) main challenges include managing customer expectations and aligning requirements with data. The qualitative analyses revealed that practitioners face problems related to lack of business domain understanding, unclear requirements, and low customer engagement. These results help to provide a better understanding of the adopted practices and which problems exist in practical environments. We put forward the need to adapt further and disseminate RE-related practices for engineering ML-enabled systems.
109

[pt] IDENTIFICANDO PREOCUPAÇÕES AO ESPECIFICAR SISTEMAS COM COMPONENTES DE APRENDIZADO DE MÁQUINA: UMA ABORDAGEM BASEADA EM PERSPECTIVA / [en] IDENTIFYING CONCERNS WHEN SPECIFYING MACHINE LEARNING-ENABLED SYSTEMS: A PERSPECTIVE-BASED APPROACH

HUGO RICARDO GUARIN VILLAMIZAR 05 February 2024 (has links)
[pt] A engenharia de sistemas habilitados em Machine Learning (ML) bem-sucedidos apresenta vários desafios, tanto do lado teórico quanto prático. Entre esses desafios estão como abordar eficazmente às expectativas irrealistas das capacidades de ML por parte de clientes, gestores e até mesmo outros membros da equipe de desenvolvimento, e como ligar o valor do negócio às atividades de engenharia e ciência de dados compostas por equipes interdisciplinares. Nesta tese, estudamos o estado da prática e da literatura da engenharia de requisitos para ML para propor PerSpecML, uma abordagem baseada em perspectiva para especificar sistemas habilitados para ML que ajuda os profissionais a identificar quais atributos, incluindo componentes de ML e não-ML, são importantes para contribuir para a qualidade geral do sistema. A abordagem envolve a análise de 60 preocupações relacionadas a 28 tarefas que os profissionais normalmente enfrentam em projetos de ML, agrupando-as em cinco perspectivas: objetivos do sistema, experiência do usuário, infraestrutura, modelo e dados. Juntas, essas perspectivas servem para mediar a comunicação entre gestores de projeto, especialistas de domínio, designers, engenheiros de software/ML e cientistas de dados. A criação da PerSpecML envolveu uma série de validações realizadas em diferentes contextos: (i) na academia, (ii) com representantes da indústria e (iii) em dois estudos de casos industriais reais. Como resultado das diversas validações e melhorias contínuas, PerSpecML se destaca como uma abordagem promissora, preparada para impactar positivamente a especificação de sistemas habilitados para ML, ajudando particularmente a revelar componentes-chave que, de outra forma, teriam sido perdidos sem o uso da PerSpecML. / [en] Engineering successful machine learning (ML)-enabled systems poses various challenges from both a theoretical and a practical side. Among those challenges are how to effectively address unrealistic expectations of ML capabilities from customers, managers and even other team members, and how to connect business value to engineering and data science activities composed by interdisciplinary teams. In this thesis, we studied the state of the practice and literature of requirements engineering (RE) for ML to propose PerSpecML, a perspective-based approach for specifying ML-enabled systems that helps practitioners identify which attributes, including ML and non-ML components, are important to contribute to the overall system s quality. The approach involves analyzing 60 concerns related to 28 tasks that practitioners typically face in ML projects, grouping them into five perspectives: system objectives, user experience, infrastructure, model, and data. Together, these perspectives serve to mediate the communication between business owners, domain experts, designers, software and ML engineers, and data scientists. The conception of PerSpecML involved a series of validations conducted in different contexts: (i) in academia, (ii) with industry representatives, and (iii) in two real industrial case studies. As a result of the diverse validations and continuous improvements, PerSpecML stands as a promising approach, poised to positively impact the specification of ML-enabled systems, particularly helping to reveal key components that would have been otherwise missed without using PerSpecML.
110

[en] A THEORY BASED, DATA DRIVEN SELECTION FOR THE REGULARIZATION PARAMETER FOR LASSO / [pt] SELECIONANDO O PARÂMETRO DE REGULARIZAÇÃO PARA O LASSO: BASEADO NA TEORIA E NOS DADOS

DANIEL MARTINS COUTINHO 25 March 2021 (has links)
[pt] O presente trabalho apresenta uma nova forma de selecionar o parâmetro de regularização do LASSO e do adaLASSO. Ela é baseada na teoria e incorpora a estimativa da variância do ruído. Nós mostramos propriedades teóricas e simulações Monte Carlo que o nosso procedimento é capaz de lidar com mais variáveis no conjunto ativo do que outras opções populares para a escolha do parâmetro de regularização. / [en] We provide a new way to select the regularization parameter for the LASSO and adaLASSO. It is based on the theory and incorporates an estimate of the variance of the noise. We show theoretical properties of the procedure and Monte Carlo simulations showing that it is able to handle more variables in the active set than other popular options for the regularization parameter.

Page generated in 0.0649 seconds