11 |
The role of the spleen in Malaria : Cellular changes that affect the development of immunityBeattie, Lynette January 2006 (has links)
Malaria, caused by the apicomplexan parasite Plasmodium, is a major cause of morbidity and mortality throughout the world. This study has focused on the role of the spleen in the control of the blood stage of infection. Three aspects have been examined specifically: the effect of infection on the architecture of the spleen, the role of the spleen in parasite clearance and the formation of B cell memory. Firstly, the effect of infection on the splenic microarchitecture was examined. An essential component of the splenic architecture is the marginal zone (MZ), an area of the spleen that separates the reticuloendothelial red pulp of the spleen from the lymphoid white pulp compartment. Two unique populations of macrophages are found in the marginal zone: marginal zone macrophages (MZM) and marginal metallophilic macrophages (MMM). In the current study, parasitised red blood cells (pRBC) as well as normal RBC located to the MZ thirty minutes after intravenous injection and formed close associations with both MMM and MZM. Eight days after infection, at the time of peak parasitemia, a complete loss of both MMM and MZM was observed. Assays to detect cell death revealed that the loss of both MMM and MZM appeared to occur as a result of apoptosis. The apoptosis was not induced by up regulation of the inflammatory cytokines tumour necrosis factor or interferon-γ and could not be blocked by over expression of the apoptosis inhibitor Bcl2. Significantly, MMM were retained in the absence of CD8+ T cells implicating CD8+ T cells in the loss of MMM. Finally, infection of CD95-/- mice demonstrated that CD95/CD95-ligand (Fas/Fas-ligand) interactions were responsible for some of the CD8+ T cell-mediated loss of MMM. These data provide evidence for a novel interaction between MMM and CD8+ T cellsfollowing infection with Plasmodium. Secondly, the role of the spleen in the control of parasitemia and disease was monitored with an emphasis on determining the role of splenic macrophage populations (MMM, MZM and red pulp macrophages [RPM]) in parasite clearance. A clodronate liposome-mediated macrophage depletion technique was used, and caused a complete loss of all three macrophage sub-populations, as well as 50% of splenic dendritic cells, within 24 hours of administration. Each of the macrophage populations, as well as splenic DC, demonstrated different repopulation kinetics following their depletion from the spleen and these kinetics were utilised to examine each cell population in isolation. RPM depleted mice had significantly higher peak parasitemias than the controls. This peak returned to the level observed in undepleted control animals only after the repopulation of RPM was complete, suggesting that RPM play a role in the control of peak parasitemia following infection. Neither MMM nor MZM played a role in the control of parasitemia. The role of non-splenic macrophages and splenic dendritic cells also was investigated and shown to be insignificant in the absence of splenic macrophages. Finally, the role of RPM in mice immune to infection was investigated and their role shown to be dispensable, with immune mice clearing parasitemia efficiently in the absence of RPM. RPM therefore are important for the innate control of infection with P. chabaudi but are dispensible once adaptive immunity is established. Finally, the role of the spleen in the development of parasite-specific B cell memory was examined. Initial studies demonstrated that germinal centre (GC) development was compromised following infection with P. chabaudi, with an involution of B cell follicles noted early in infection. Adoptive transfer of memory B cells from immunised to naïve mice demonstrated that some protection was conferred on recipient mice by parasite-specific memory B cells. But, the memory B cells could not protect the host from developing parasitemia and did not produce significant amounts of parasite-specific immunoglobulin within seven days of challenge infection. Memory B cells could not be detected ten weeks after infection, indicating that the development, or survival, of parasite-specific memory B cells was compromised. The development of bystander memory B cells was not affected by infection. Finally, long-lived plasma cells were shown to develop in response to infection, although re-exposure of the cells to parasites in the form of recrudescent parasitemia resulted in their loss. This study therefore has identified a defect in the development of long-term, B cell-mediated, protection against infection with P. chabaudi. Each of these factors has significant implications for the understanding of how the spleen contributes to the control of infection with Plasmodium and potential applications for the further development of malaria vaccines and treatment regimens.
|
12 |
Modulation of B cell access to antigen by passively administered antibodies : an explanation for antibody feedback regulation?Xu, Hui January 2016 (has links)
Antibody responses can be up- or down-regulated by passive administration of specific antibody together with antigen. Depending on the structure of the antigen and the antibody isotype, responses can be completely suppressed or enhanced up to a 1000-fold of what is seen in animals immunized with antigen alone. IgG suppresses primary antibody responses against erythrocytes. Suppression works well in mice lacking Fc-receptors for IgG, C1q, C3, or complement receptor 1 and 2 (CR1/2). Here, we demonstrate that IgG anti-NP given to mice together with NP-conjugated sheep erythrocytes, suppresses the generation of NP-specific extra-follicular antibody-secreting cells, NP-specific germinal center B cells, induction of memory and long-lived plasma cells. IgG increases antigen clearance but this does not explain the suppressed antibody response. It is demonstrated that IgG-mediated suppression of IgG responses is epitope specific, suggesting that epitope masking is the dominant explanation for IgG-mediated suppression of antibody responses. Both IgE and IgG3 can enhance antibody responses against soluble antigens. IgE-antigen complexes bind to recirculating B cells expressing CD23, an Fc-receptor for IgE. Thirty minutes after intravenous administration, IgE-antigen is found in splenic follicles. Subsequently, germinal center responses, antigen-specific T cell proliferation, and antibody responses are enhanced. We show that also antigen conjugated to anti-CD23 can bind to CD23+ B cells and be transported to splenic follicles. CD11+ spleen cells, rather than CD23+ B cells, present IgE-antigen complexes to T cells. Here, it is demonstrated that CD8α− conventional dendritic cells is the CD11c+ cell population presenting IgE-antigen to T cells. IgG3-mediated enhancement is dependent on CR1/2. We find that IgG3-antigen complexes, administered intravenously to mice, bind to marginal zone B cells via CR1/2. These cells then transport IgG3-antigen into splenic follicles and deposit antigen onto follicular dendritic cells. Mice treated with FTY720, a drug which dislocates marginal zone B cells from the marginal zone, impairs this transport. Studies in bone marrow chimeric mice show that CR1/2 on both B cells and follicular dendritic cells are crucial for IgG3-mediated enhancement. In summary, these observations suggest that antibodies can feedback regulate antibody responses by modulating the access of antigen to the immune system.
|
13 |
Molecular genetics of B- and T-lymphocyte developmentWikström, Ingela January 2006 (has links)
Lymphocytes are essential for the generation of specific immunity. Development of B cells in the bone marrow and T cells in the thymus have several analogous features, and are tightly regulated processes. Even though there is an increasing amount of information concerning lymphopoiesis, a lot of questions remain. The aim of this thesis has been to understand some of the molecular events that contribute to the control of lymphocyte development. Expression of the B cell receptor is an important checkpoint in B lymphocyte development. The Dµ protein is a truncated B cell receptor that can induce some of the signals elicited by full length µ, but cannot promote further B cell differentiation. In order to determine if this could stem from an impaired survival signal, we introduced Bcl-2 into RAG2 deficient Dµ transgenic mice. Analysis of these mice showed that Dµ could not support pre-B cell maturation despite extended survival of B cell precursors by Bcl-2. In addition, data from recombination competent Dµ transgenic mice demonstrated that the Dµ induced partial block is permissive for marginal zone B cell development, whereas the formation of follicular B cells is severely reduced. The bHLH family of transcription factors is known to be involved in the regulation of lymphocyte development. Whereas the roles of E2A and HEB have been well documented in both B- and T-lymphocytes, detailed knowledge concerning E2-2 is lacking. To address the role of E2-2 in B cell development, we have reconstituted mice, using E2-2 deficient fetal liver cells, and analysed the B cell compartments. We also measured mRNA expression patterns for the three E-proteins in wildtype mice. Resulting data show that, in addition to a role in B cell lineage entry, E2-2 is required for efficient expansion of pro-B cells, and also influences the follicular versus marginal zone decision. While focusing on assigning a role for E2-2 in T-cell development, we analyzed the expression of the E-proteins during this process and performed functional studies in fetal thymic organ cultures. E2-2 deficient mouse embryos were shown to display a partial block at the DN3 stage, which was not due to proliferation or apoptosis defects. In addition, analysis of expression levels of the pre-Talpha chain suggests that E2-2 may play a role in the regulation of transcription of pre-Talpha, and therefore in the assembly of the pre-T cell receptor.
|
14 |
Étude de l’impact des niveaux élevés de BAFF sur la dérégulation des lymphocytes B de la zone marginale dans le contexte d’infection au virus d’immunodéficience humaineDoyon-Laliberté, Kim 12 1900 (has links)
La thérapie antirétrovirale (ART) a permis d’augmenter l’espérance de vie et sa qualité chez les individus infectés par le VIH-1. Toutefois, l’inflammation chronique persiste et est associée à un excès du « B-cell activating factor » (BAFF). Cette cytokine est un facteur clé de la survie et la différenciation des lymphocytes B, en particulier pour ceux dits de la zone marginale (MZ) qui sont des populations B dites innées possédant un « B-cell receptor » (BCR) polyréactif. Dans le contexte de l’infection au VIH-1, l’excès de BAFF a été associé avec la dérégulation du compartiment B, l’hyperglobulinémie, ainsi que le bris de tolérance et l’apparition de manifestations auto-immunes. De plus, nous avons observé une augmentation de la fréquence d’une population présentant à la fois des caractéristiques de cellules B MZ et transitionnelles immatures (TI) que nous avons nommée « précurseurs des MZ » (MZp) dans le sang des individus infectés. Ces MZp partagent également certains marqueurs phénotypiques avec plusieurs populations B régulatrices (Breg) identifiées chez l’humain.
Les objectifs de ce travail sont de 1) caractériser le potentiel Breg des MZp par l’analyse de leur transcriptome et par cytométrie en flux, puis 2) d’étudier l’impact de l’infection au VIH-1 et d’un excès de BAFF sur le potentiel Breg des MZp sanguins d’individus de la cohorte de la primo-infection (PHI) du réseau FRQS, et 3) d’étudier l’impact de l’infection au VIH-1 et d’un excès de BAFF sur la production d’anticorps spécifiques au VIH-1 et la possible contribution des MZp à l’hyperglobulinémie chez ces individus.
Dans un premier temps, nos résultats démontrent que les MZp d’individus non infectés possèdent un important phénotype Breg caractérisé par l’expression des molécules régulatrices NR4As, CD83, CD39, CD73 et l’IL-10. Les MZp ont également une fonction régulatrice impliquant CD83 et PD-L1. Dans un deuxième temps, nos résultats démontrent que dans le contexte du VIH-1, ce potentiel est complètement altéré vu la diminution d’expression de ces molécules et par la perte de la fonction régulatrice, et qui est directement affectée par un excès de BAFF. Enfin, nous démontrons que les MZp des individus infectés ont un profil associé à l’épuisement et que les gènes impliqués dans l’activation menant à la production d’anticorps sont augmentés, au détriment de ceux associés à la régulation. De façon intéressante, les MZp provenant du sang d’individus infectés expriment à la hausse des transcrits de gènes IGHV impliqués dans la génération d’anticorps neutralisants du VIH-1. De plus, nous démontrons que la quantité et la qualité des IgG spécifiques au virus sont en lien avec le statut de progression de l’infection et le niveau des taux de BAFF qui y est associés. Ainsi, basé sur nos résultats, il serait possible d’envisager une étude avec des avenues thérapeutiques existantes, ciblant BAFF ou l’expression des NR4As, pour tenter de diminuer les niveaux de BAFF ou restaurer le potentiel Breg des MZp respectivement. De telles avenues, en combinaison avec ART, pourraient être intéressantes dans le but de diminuer l’inflammation chronique et restaurer l’immunocompétence chez ces individus. / Antiretroviral therapy (ART) has increased life quality and longevity of HIV-infected individuals. However, chronic inflammation persists and is associated with increased B-cell activating factor (BAFF). BAFF is a key survival and differentiation factor for B-cells, especially for marginal zone B-cells (MZ). MZ are innate-like B-cells that are known for their quick antibody responses and polyreactive B-cell receptor (BCR). In the context of HIV-1 infection, BAFF is found in excess in the blood of infected individuals and is associated with the dysregulation of the B-cell compartment, hyperglobulinemia, breach of tolerance and autoimmune manifestations. We reported an increase in the frequency of precursor-like MZ (MZp) B-cells in the blood of HIV-infected individuals. Interestingly, these MZp possess a phenotype that is similar to certain Breg populations identified in human.
The objective of this work is to first characterize the Breg potential of MZp from HIV-uninfected individuals by RNAseq analyses and flow cytometry, and second to study the impact of HIV-1 infection and excess BAFF on the dysregulation of the Breg potential of MZp from blood samples of individuals from the primo-infection (PHI) cohort of the FRQS. Our third objective is to study the impact of HIV-infection and excess BAFF on HIV-1 specific antibodies and better understand the contribution of MZp to hyperglobulinemia in HIV-1 infected individuals.
Our results showed that MZp from HIV-uninfected individuals possess a stong Breg phenotype characterized by high expression of regulatory molecules such as NR4As, CD83, CD39, CD73 and IL-10. They also have an important Breg function that involves CD83 and PD-L1. We also demonstrate that HIV-1 infection impairs the Breg potential of MZp by downregulating the expression of regulatory markers and by altering their function, which high BAFF levels can directly affect. Also, MZp from HIV-infected individuals present an exhausted profile and an increased expression of genes involved in immunoglobulin (Ig) production. Interestingly, MZp from the blood of HIV-infected individuals show increased expression of IGHV gene transcripts associated with broadly neutralizing antibodies. We find that the quantity and quality of HIV-Env specific IgG is linked with disease progression status and associated levels of BAFF. Our results suggest that existing therapeutic strategies targeting BAFF or NR4As expression could be contemplated in order to try reducing BAFF levels or for restoring Breg potential, respectively. As such, such avenues could be envisaged as adjunct to ART to lower the inflammatory burden and restore immune competence of HIV-infected individuals.
|
15 |
IgG3 Complements IgM in the Complement-Mediated Regulation of Immune ResponsesZhang, Lu January 2017 (has links)
An intact complement system is essential for the initiation of a normal antibody response. Antibodies can regulate their own production against the antigens that they are specific for. Both IgG3 and IgM are able to enhance the antibody response via complement. Here, we have compared the fate of OVA-TNP (ovalbumin-2,4,6-trinitrophenyl) administered intravenously to mice either alone or in complex with monoclonal IgG3 anti-TNP. IgG3-antigen complexes bind to marginal zone (MZ) B cells via complement receptors 1 and 2 (CR1/2) and are transported into splenic follicles. The majority (50% - 90%) of the antigens is deposited on follicular dendritic cells (FDC) and the antigen distribution pattern is strikingly similar to peripheral dendrites/processes of FDC already 2 h after immunization. The development of germinal centers (GC) induced by IgG3-antigen complexes is impaired in mice lacking CR1/2. Experiments on bone marrow chimeric mice show that CR1/2 expression on both MZ B cells and FDC is required for optimal IgG3-mediated enhancement of antibody responses. Complement factors C3 and C1q are essential for OVA-TNP delivery and deposition on splenic FDC. The production of IgG anti-OVA is abrogated in mice lacking CR1/2, C1q, and C3. Further, IgG3-antigen complexes dramatically upregulate the memory response against OVA-TNP by inducing OVA-specific memory cells. Besides small protein OVA, IgG3 can also upregulate humoral responses against large soluble keyhole limpet hemocyanin. To further study the role of MZ B-cells and CR1/2 in enhancement of antibody responses, a knock-in mouse strain, Cμ13, was used. IgM in this mouse strain is unable to activate complement due to a point mutation in the constant µ-heavy chain. Cμ13 mice have a higher proportion of MZ B cells, with higher CR1/2 expression, than wild-type mice. More IgG3-immune complexes are captured by MZ B cells and deposited on FDC in Cμ13 than in WT mice. In spite of this, IgG3 did not enhance the primary antibody response more efficiently in Cμ13 mice. The existence of endogenous IgM-mediated feedback regulation was suggested by the observation that GC development and antibody responses, after priming and boosting with suboptimal doses of SRBC, was lower in Cμ13 than in WT mice.
|
16 |
The genetic basis of T and B cell contribution to autoimmune diabetes in NOD miceMotta, Vinícius January 2006 (has links)
The nonobese diabetic mouse (NOD) is an excellent animal model to study type 1 diabetes. As with some humans, disease in the NOD mouse is effected by a combination of genetic and environmental factors. At least 20 insulin dependent diabetes (Idd) susceptibility loci have been identified so far, both in humans and in the NOD mouse. In this thesis, the overall aim has been to understand the genetic basis of diabetes in the NOD mouse by assessing immunogically-related phenotypes. As lymphocytes are the main players in the onset and progression to overt diabetes, we searched for physiological abnormalities in T and B cells, which could contribute to the breakdown of tolerance to pancreatic antigens. Ultimately, we postulate that abnormalities in the T or B cell compartments, under the genetic control of a previously defined diabetes susceptibility regions (Idds) could unravel the biological mechanisms underlying diabetes susceptibility and facilitate the identification of etiological polymorphisms involved in the disease. NOD T cells are defective in upregulating CTLA-4 upon in vitro activation. Previous studies have shown that this defect is, at least in part, controlled by gene(s) in the Idd5 region on chromosome 1. In paper I, we provide evidence that defective upregulation of the CTLA-4 in NOD T cells is not controlled by the Idd5.1 and Idd5.2 regions, but rather by genes linked to the telomeric region of chromosome 1 and to the Idd3 locus, for which the prime candidate gene is Il-2. Interestingly, we could restore some of the defective CTLA-4 expression in NOD T cells by the addition of exogenous IL-2 during T cell activation in vitro. In paper II, we show that NOD thymocytes are resistant to superantigen-mediated negative selection and that this trait is under control of the Idd5.2 region. Interestingly, it appears to operate in a T cell non-autonomous manner. In paper III, we describe a competitive advantage of NOD thymocytes to mature when they co-develop with B6 thymocytes in embryo aggregation chimeras. These results imply that defects exist in the positive/negative selection mechanisms in the NOD thymus. Apart from T cells, B cells also play an important role in the initiation of diabetes in NOD mice, probably as antigen presenting cells. In paper IV, we report that the genetic basis of an enlarged marginal zone (MZ) B cell population observed in the NOD mice is linked to the Idd9/Idd11 region. Together, these findings contribute to the dissection of the molecular mechanisms underlying diabetes pathogenesis, and shed light on the contribution of central and peripheral tolerance mechanisms to this process.
|
17 |
Functional Analysis of Adapter Protein c-Abl Src Homology 3 Domain-binding Protein 2Chen, Grace Yi-Ying 23 September 2009 (has links)
3BP2 is a pleckstrin homology (PH) domain- and Src homology 2 (SH2) domain-containing adapter protein that has been linked through genetic evidence to a rare human disease called cherubism 146. 3BP2 was originally cloned in a screen to identify c-Abl SH3 binding proteins 23,24. In overexpression studies, 3BP2 has been implicated as a positive regulatory adapter molecule coupled to immunoreceptor on T cells 67,69,70, B cells 68, NK cells 71-73 and mast cells 74,75. It was also evident that 3BP2 forms complexes with a number of signaling molecules, such as Zap-70, LAT, phospholipase C-γ1 (PLC-γ1), Grb2, Cbl, and Fyn in Jurkat cells 67 and Vav1, Vav2, PLC-γ, and Syk in Daudi B cells 68.
Despite the growing body of biochemical data to support the importance of 3BP2 in cells of the hematopoietic lineage, a clear picture of the biological function of 3BP2 has yet to emerge. To elucidate the in vivo function of 3BP2, our laboratory has generated 3BP2 gene-deficient mice through homologous recombination 452. The 3BP2-deficient (3BP2-/-) mice were born at the expected Mendelian frequency and were fertile and viable.
3BP2-/- mice accumulate splenic marginal-zone (MZ) B cells, possess a reduced frequency of peritoneal B-1 B cells, and have a diminished thymus-independent type 2 (TI-2) antigen response. 3BP2-/- B cells demonstrate diminished proliferation and cell survival following cross-linking of the B-cell receptor (BCR). Following BCR ligation, 3BP2 might be recruited to BCR complex through its inducible interaction with BCR costimulatory molecule CD19. In the absence of 3BP2, the activation of BCR downstream effectors such as MAPK Erk1/2, JNK, and c-Abl is normal; however, 3BP2 deficiency leads to defects in Syk phosphorylation and calcium flux.
In addition to defects in peripheral B cell activities, 3BP2 deficiency contributes to defects in neutrophil activities. In response to the chemotactic peptide, fMLF, 3BP2-/- neutrophils fail to establish directional migration in vitro. There is a defect in the accumulation of filamentous actin at the leading edge of migrating 3BP2-/- neutrophils which might be responsible for the random movement of these cells under shallow gradient of fMLF. In vivo, there is a delay in the recruitment of circulating neutrophils to the site of chemically induced inflammation in 3BP2-/- mice. Compared to wildtype neutrophils, 3BP2-/- neutrophils fail to properly produce superoxide anion (O2-) following fMLF stimulation. Defects in both directional migration and superoxide production of 3BP2-/- neutrophils might contribute to the reduction in bacteria clearance and the increased mortality in 3BP2-/- mice post Listeria Monocytogenes infection.
In Chapter 1 of this thesis, I have reviewed basic structures and functions of the domain modules found in adapter proteins. In addition, I have reviewed the findings from numerous reports on the function of 3BP2 in different cell types. A discussion of the physical appearance and some of the initial characterization of 3BP2-deficient mice (3BP2-/-) we have generated in our laboratory are included in Chapter 1. The second part of Chapter 1 consists of an introduction on B cell receptor signaling pathway and B-cell development and activation. A discussion of G protein-coupled receptor-mediated neutrophil functions can also be found in Chapter 1.
Chapter 2 contains all the methods and materials used in my study.
Chapter 3 includes the characterization of peripheral B cell compartment of 3BP2-/- mice as well as the role of 3BP2 downstream of B-cell antigen receptor and in T-independent immune response.
In chapter 4, I present data from experiments designed to examine the role of 3BP2 downstream of a G protein-coupled receptor, fMLF receptor, of neutrophils. I also show the requirement of 3BP2 in the clearance of Listeria Monocytogenes.
In chapter 5, I propose two models for 3BP2 action based on the findings in B cells and neutrophils and discuss future areas for investigation.
|
18 |
Functional Analysis of Adapter Protein c-Abl Src Homology 3 Domain-binding Protein 2Chen, Grace Yi-Ying 23 September 2009 (has links)
3BP2 is a pleckstrin homology (PH) domain- and Src homology 2 (SH2) domain-containing adapter protein that has been linked through genetic evidence to a rare human disease called cherubism 146. 3BP2 was originally cloned in a screen to identify c-Abl SH3 binding proteins 23,24. In overexpression studies, 3BP2 has been implicated as a positive regulatory adapter molecule coupled to immunoreceptor on T cells 67,69,70, B cells 68, NK cells 71-73 and mast cells 74,75. It was also evident that 3BP2 forms complexes with a number of signaling molecules, such as Zap-70, LAT, phospholipase C-γ1 (PLC-γ1), Grb2, Cbl, and Fyn in Jurkat cells 67 and Vav1, Vav2, PLC-γ, and Syk in Daudi B cells 68.
Despite the growing body of biochemical data to support the importance of 3BP2 in cells of the hematopoietic lineage, a clear picture of the biological function of 3BP2 has yet to emerge. To elucidate the in vivo function of 3BP2, our laboratory has generated 3BP2 gene-deficient mice through homologous recombination 452. The 3BP2-deficient (3BP2-/-) mice were born at the expected Mendelian frequency and were fertile and viable.
3BP2-/- mice accumulate splenic marginal-zone (MZ) B cells, possess a reduced frequency of peritoneal B-1 B cells, and have a diminished thymus-independent type 2 (TI-2) antigen response. 3BP2-/- B cells demonstrate diminished proliferation and cell survival following cross-linking of the B-cell receptor (BCR). Following BCR ligation, 3BP2 might be recruited to BCR complex through its inducible interaction with BCR costimulatory molecule CD19. In the absence of 3BP2, the activation of BCR downstream effectors such as MAPK Erk1/2, JNK, and c-Abl is normal; however, 3BP2 deficiency leads to defects in Syk phosphorylation and calcium flux.
In addition to defects in peripheral B cell activities, 3BP2 deficiency contributes to defects in neutrophil activities. In response to the chemotactic peptide, fMLF, 3BP2-/- neutrophils fail to establish directional migration in vitro. There is a defect in the accumulation of filamentous actin at the leading edge of migrating 3BP2-/- neutrophils which might be responsible for the random movement of these cells under shallow gradient of fMLF. In vivo, there is a delay in the recruitment of circulating neutrophils to the site of chemically induced inflammation in 3BP2-/- mice. Compared to wildtype neutrophils, 3BP2-/- neutrophils fail to properly produce superoxide anion (O2-) following fMLF stimulation. Defects in both directional migration and superoxide production of 3BP2-/- neutrophils might contribute to the reduction in bacteria clearance and the increased mortality in 3BP2-/- mice post Listeria Monocytogenes infection.
In Chapter 1 of this thesis, I have reviewed basic structures and functions of the domain modules found in adapter proteins. In addition, I have reviewed the findings from numerous reports on the function of 3BP2 in different cell types. A discussion of the physical appearance and some of the initial characterization of 3BP2-deficient mice (3BP2-/-) we have generated in our laboratory are included in Chapter 1. The second part of Chapter 1 consists of an introduction on B cell receptor signaling pathway and B-cell development and activation. A discussion of G protein-coupled receptor-mediated neutrophil functions can also be found in Chapter 1.
Chapter 2 contains all the methods and materials used in my study.
Chapter 3 includes the characterization of peripheral B cell compartment of 3BP2-/- mice as well as the role of 3BP2 downstream of B-cell antigen receptor and in T-independent immune response.
In chapter 4, I present data from experiments designed to examine the role of 3BP2 downstream of a G protein-coupled receptor, fMLF receptor, of neutrophils. I also show the requirement of 3BP2 in the clearance of Listeria Monocytogenes.
In chapter 5, I propose two models for 3BP2 action based on the findings in B cells and neutrophils and discuss future areas for investigation.
|
19 |
Function and Regulation of B-cell Subsets in Experimental Autoimmune ArthritisPalm, Anna-Karin E. January 2015 (has links)
B lymphocytes play a significant role in autoimmune arthritis, with their function stretching beyond autoantibody production to cytokine secretion and presentation of autoantigen. However, the involvement and activation of different B-cell subset in the autoimmune response is not fully clear. The main focus of this thesis has been to understand the contribution of marginal zone (MZ) B cells in the induction of collagen-induced arthritis (CIA), a mouse model for rheumatoid arthritis (RA). We show that MZ B cells in the spleen of naïve mice display a natural self-reactivity to collagen type II (CII), the autoantigen used for immunization of CIA. The CII-reactive MZ B cells expand rapidly following immunization with CII, and produce IgM and IgG antibodies to CII. They also very efficiently present CII to cognate T cells in vitro and in vivo. Moreover, absence of regulatory receptors such as CR1/2 or FcγRIIb on the MZ B cells increases their proliferation and cytokine production in response to toll-like receptor, but not B-cell receptor, activation. Further, FcγRIIb-deficient MZ B cells present CII to T cells more efficiently than wild-type MZ B cells. We additionally demonstrate for the first time the existence of a small population of nodal MZ B cells in mouse lymph nodes. Similar to splenic MZ B cells, the nodal MZ B cells expand after CIA induction, secrete IgM anti-CII antibodies and can present CII to cognate T cells. Finally, we show that mast cells, associated with ectopic B cell follicles in inflamed RA joints, in coculture with B cells promote their expansion, production of IgM and IgG antibodies as well as upregulation of CD19 and L-selectin. Coculture with mast cells further causes the B cells to upregulate costimulators and class II MHC, important molecules for antigen-presenting function. In summary, my findings suggest that splenic and nodal self-reactive MZ B cells participate in breaking T-cell tolerance to CII in CIA. B-cell intrinsic regulation is needed to keep such autoreactive B cells quiescent. Mast cells can potentiate B-cell responses locally in the arthritic joint, thus feeding the autoimmune reaction.
|
20 |
Caractérisation moléculaire des délétions du chromosome 7q dans les lymphomes B de la zone marginale splénique / Molecular characterisation of chromosome 7q deletion in splenic marginal zone B cell lymphomaJallades, Laurent 19 December 2012 (has links)
La délétion du chromosome 7q est l'anomalie cytogénétique la plus caractéristique du lymphome de la zone marginale splénique (LZMS). Une étude par hybridation génomique comparative de haute résolution a été conduite sur une série de 27 échantillons de LZMS afin de détecter des micro-remaniements du chromosome 7q. Une région commune de délétion (RCD) de 10,6 Mb a été délimitée sur le chromosome 7q. De plus, une microdélétion somatique du gène AHCYL2 (S-adenosyl-homocystéine hydrolase-like 2) a été détectée au sein de la RCD, définissant la plus petite RCD connue sur le chromosome 7q32 dans le SMZL et l'anomalie la plus fréquente de notre série (10/27, 37%). Bien que le séquençage du gène AHCYL2 n'a pas mis en évidence de mutation somatique, la délétion monoallélique du gène AHCYL2 est corrélée à la sous-expression de transcrits du gène AHCYL2 indiquant une haplo-insuffisance. La fonction précise de AHCYL2 reste inconnue, mais certaines données suggèrent que les protéines de type AHCYL peuvent réguler l'activité de l'enzyme AHCY (Sadénosyl- homocystéine hydrolase) et par conséquent affecter les mécanismes de transméthylation. En outre, nous avons identifié, pour la première fois dans le LZMS, une mutation R882H du gène DNMT3A (1/27, 3,7%) impliqué également dans les processus de méthylation. Ces résultats suggèrent que la dérégulation des voies métaboliques impliquées dans la méthylation peut jouer un rôle crucial dans la pathogenèse du LZMS / The chromosome 7q deletion is the most characteristic alteration in splenic marginal zone lymphoma (SMZL). High-resolution genome-focused approach was performed on 27 SMZL samples to identify submicroscopic genetic alterations on chromosome 7q. A 10.6 Mb-length common deleted region (CDR) of chromosome 7q was precisely delineated and a somatic microdeletion of the S-adenosyl-homocysteine hydrolase-like 2 (AHCYL2) gene was further detected within the CDR, defining the most frequent finding in this series (10/27, 37%) and the smallest CDR on chromosome 7q32. Although the sequencing of AHCYL2 gene did not show any evidence of somatic mutation, the monoallelic AHCYL2 gene deletion was directly correlated with underexpression of AHCYL2 transcripts, indicating a typical pattern of haploinsufficiency. The precise role of AHCYL2 remains unknown, but some data suggest that the AHCY-like proteins may regulate the activity of AHCY (S adenosylhomocysteine hydrolase) and consequently may affect the methylation metabolism. In addition, we report on a DNMT3A-R882H mutation (1/27, 3.7%) for the first time in SMZL. These findings suggest that methylation pathway dysfunction may play a crucial role in the pathogenesis of SMZL
|
Page generated in 0.0619 seconds