• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 240
  • 96
  • 14
  • 2
  • Tagged with
  • 351
  • 304
  • 229
  • 188
  • 181
  • 141
  • 130
  • 130
  • 76
  • 53
  • 42
  • 37
  • 36
  • 35
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Learning General Concept Inclusions in Probabilistic Description Logics

Kriegel, Francesco 20 June 2022 (has links)
Probabilistic interpretations consist of a set of interpretations with a shared domain and a measure assigning a probability to each interpretation. Such structures can be obtained as results of repeated experiments, e.g., in biology, psychology, medicine, etc. A translation between probabilistic and crisp description logics is introduced and then utilised to reduce the construction of a base of general concept inclusions of a probabilistic interpretation to the crisp case for which a method for the axiomatisation of a base of GCIs is well-known.
242

Evaluating Operational Effects of Innovations in Rail Freight Service Networks using Machine Learning

Pollehn, Tobias 28 May 2024 (has links)
Der Trend zu kleinteiligeren und kapitalintensiveren Transportgütern führt in Kombination mit der in Europa angestrebten Reduktion von Treibhausgasemissionen im Transportsektor zu einer Zunahme der Bedeutung von effizienten Konsolidierungsnetzwerken des Schienengüterverkehrs. Zugehörige Produktionsformen mit Bündelung von Warenströmen wie der Einzelwagenverkehr und der intermodale Verkehr sind somit erfolgskritisch für die Zukunftsfähigkeit des Schienengüterverkehrs. Deren Wettbewerbsfähigkeit kann durch die Einführung und Nutzung von Innovationen gestärkt werden. Beispiele hierfür sind eine Digitale Automatische Kupplung (DAK) sowie Sensoren an Güterwagen und Lokomotiven. Diese Innovationen werden oftmals von einem hohen monetären Aufwand sowie Unsicherheiten hinsichtlich ihrer genauen betrieblichen Wirkung in den Netzwerken begleitet. Für strategische Entscheidungen hinsichtlich einer Einführung solcher Innovationen sind die ökonomischen und betrieblichen Effekte für gezielte Nutzen-Kosten-Betrachtungen aufzuzeigen sowie mögliche Pfade für eine Migration der jeweiligen Innovation für die Produktionsformen und deren zugehörigen Netzwerke zu eruieren. Dabei sind insbesondere die Veränderungen im sogenannten Service Network Design (SND) von großer Bedeutung. Das SND ist Teil der taktischen Netzwerkplanung und definiert das Zuggerüst sowie die Wagenroutenplanung im Netzwerk. Dabei werden die Kosten für den Betrieb von Netzwerken unter Einhaltung definierter Qualitätsstandards minimiert. Das Ergebnis des SND stellt den Rahmen für konkrete Wagenrouten in der betrieblichen Durchführung dar und definiert das zu behandelnde Zuggerüst in den Bündelungsknoten der Netzwerke. Trotz der wichtigen Funktion des SND, ist dieser taktische Planungsprozess in der Praxis noch stark manuell geprägt und daher zeitaufwändig. Außerdem liefert er oft zu ungenaue Aussagen. Das trifft insbesondere auf Aussagen zu den Netzeffekten durch Innovationen zu. Aufgrund der hohen Komplexität von Konsolidierungsnetzwerken des Schienengüterverkehrs und fehlender EDV-Unterstützung basieren Betrachtungen zu den Effekten von Innovationen in Netzwerken im Status Quo auf Expertenbefragungen und Abschätzungen. Insbesondere für Innovationen, deren Migration mit weitreichenden Prozessänderungen im Netzwerk und neuen Betriebsstrategien verbunden ist, bedarf es jedoch objektiver modellbasierter Verfahren zur Entscheidungsunterstützung. Durch deren Einsatz könnten die Auswirkungen in Bezug auf Netzwerkstrukturen und Kosten ermittelt und für Entscheidungsträger:innen transparent dargestellt werden. Die vorliegende Dissertation leistet einen wissenschaftlichen Beitrag, um dieses Potenzial zu erschließen. Hierfür wird im Rahmen der Dissertation eine neue Methode als Beitrag zur Entscheidungsunterstützung für die Einführung und Migration von Innovationen in Konsolidierungsnetzwerken des Schienengüterverkehrs entwickelt: TRENO (TRansparent Evaluation of InNOvation Effects in Rail Freight Service Networks). Die Methode kombiniert dabei eisenbahnbetriebswissenschaftliche Grundlagen mit Ansätzen aus dem Operations Research und dem maschinellen Lernen. Prozessveränderungen durch Innovationen werden analysiert und in einem neuartigen mathematischen Optimierungsmodell für das SND abgebildet. Das Modell ermöglicht die Definition von verschiedenen Betriebsstrategien im Netzwerk und bildet erstmals zeitbezogene Infrastrukturnutzungen von Zügen in den Knoten des Netzwerks ab. Da die Einführung von Innovationen mit hoher Unsicherheit hinsichtlich der Annahmen und Eingangsparameter verbunden ist, sind zahlreiche Szenarien für eine fundierte Entscheidungsunterstützung zu definieren und zu bewerten. Aufgrund der hohen Komplexität von SND Modellen sind Berechnungen mittels mathematischer Optimierung sehr zeitintensiv. Daher nutzt TRENO Klassifizierungs- und Regressionsmodelle aus dem Bereich des maschinellen Lernens, welche die mathematische Optimierung ergänzen. Auf Basis eines Pools von Szenarien, für welche optimale Netzwerkstrukturen mithilfe mathematischer Optimierung berechnet wurden, lernen die Klassifizierungs- und Regressionsmodelle den Zusammenhang zwischen Eingangsdaten und den resultierenden Kennzahlen des Netzwerks. Nach diesem Training können die Modelle dazu eingesetzt werden, die Kennzahlen von Netzwerken (insbesondere Kosten, Zuggerüste sowie Auslastungen von Zügen und Bündelungsknoten) für zahlreiche neue Szenarien innerhalb von Sekunden vorherzusagen. Dies stellt eine maßgebliche Beschleunigung gegenüber der mathematischen Optimierung dar. Die Klassifizierungsmodelle werden genutzt, um die grundsätzliche (Un-)Lösbarkeit eines Szenarios vorherzusagen, die beispielsweise durch unzureichende Kapazitäten in den Zugbildungsanlagen resultieren kann. Die Regressionsmodelle prognostizieren spezifische metrische Kennzahlen des Netzwerks wie Kosten, Zuggerüste und Kapazitätsauslastungen. Neben dieser Kernfunktionalität von TRENO ermöglicht die Integration der SHAP Methode (shapley additive explanations) eine Analyse bezüglich des Einflusses der Eingangsparameter auf die Kennzahlen eines Konsolidierungsnetzwerks. Dies erlaubt den Aufbau eines tiefgründigen Verständnisses der Wirkungszusammenhänge in Konsolidierungsnetzwerken des Schienengüterverkehrs (z. B. durch die Identifikation von maßgeblichen Kostentreibern) und wirkt einem grundsätzlichen Problem aus dem Bereich des maschinellen Lernens, der mangelnden Interpretierbarkeit der Modelle, entgegen. TRENO wird anhand eines praxisnahen Anwendungsfalls validiert, der Planung einer Migration einer DAK in einem exemplarischen europäischen Einzelwagenverkehrsnetz. Hierbei wird mit TRENO untersucht, welchen Einfluss verschiedene Betriebsstrategien während einer Migration einer DAK auf die Kosten und Strukturen im Netzwerk haben. Das Anwendungsbeispiel zeigt auf, dass sich mit TRENO verschiedene komplexe Betriebsstrategien mathematisch modellieren lassen. Durch die Anwendung der Methode werden die konkreten Effekte der Betriebsstrategien auf die definierten Kennzahlen des Netzwerks transparent gemacht. Dies ermöglicht neue Schlussfolgerungen aus eisenbahnbetriebswissenschaftlicher Sicht hinsichtlich der Wahl von Betriebsstrategien während einer Migration. Ferner zeigen die Ergebnisse die hohe Qualität der Prognosen durch die Klassifizierungs- und Regressionsmodelle auf. Beim Test von vier Klassifizierungs- und fünf Regressionsmodellen erzielen Modelle auf Basis des Gradient Boosting Verfahrens die besten Ergebnisse. Für die Klassifizierung erzielt das Modell in 94% der Fälle richtige Vorhersagen. Das Regressionsmodell erzielt im Durchschnitt über alle Kennzahlen ein Bestimmtheitsmaß von 93% und kann damit einen Großteil der Varianz in den Datensätzen erklären. TRENO stellt somit einen anwendbaren Beitrag dar, um den manuellen Prozess zur Planung von Konsolidierungsnetzwerken im Schienengüterverkehr insbesondere für den Fall der Einführung von Innovationen maßgeblich zu beschleunigen und zu automatisieren. Der modellbasierte Ansatz objektiviert die Entscheidungsunterstützung gegenüber dem Status Quo und ermöglicht zudem eine weitreichende Exploration des Einflusses von Innovationen auf die Strukturen des Netzwerks über zahlreiche Szenarien. Hierdurch erweitert die Dissertation das Methodenspektrum der Eisenbahnbetriebswissenschaften durch die Verzahnung mit Verfahren aus dem Operations Research sowie des maschinellen Lernens. / The trend towards small-scale and more capital-intensive transport goods means that the importance of rail freight consolidation networks is increasing. Production forms such as single wagonload transport and intermodal transport are therefore critical for the future potential of rail freight. The competitiveness of rail freight networks can be strengthened through the introduction of innovations such as a Digital Automatic Coupling (DAC) and sensors on freight wagons and locomotives. These innovations are often accompanied by high investment costs and uncertainties regarding their specific operational impact in the networks. For strategic decisions regarding the introduction of such innovations, the economic and operational effects must be identified and quantified, e.g., for benefit-cost considerations. In this context, the changes in the so-called Service Network Design (SND) are of particular importance. The SND determines train service structures and the freight distribution in networks at the tactical planning level. The number and schedule of operated train services in the network significantly determines the costs and quality of consolidation networks in rail freight. It provides the framework for specific railcar routings at the operational level and defines the number of trains to be handled in the bundling nodes of the networks. Despite this outstanding importance of the SND, the tactical planning of consolidation networks is still a manual process in practice lacking computer-based decision support. This is particularly true for statements on network effects of innovations. Due to the high complexity of consolidation networks in rail freight transport and the lack of computer-based decision support, analyses regarding the effects of innovations in service networks are mainly based on expert interviews in the status quo. Especially for innovations whose migration is associated with extensive process transformations and new operating strategies in the network, there is a need for objective model-based methods to support decision-making. Thereby, the operational effects of innovations on service network structures and costs could be determined and made transparent to decision-makers. This dissertation contributes to close this gap and to enable an efficient planning of consolidation networks. For this purpose, the dissertation develops a new method as a contribution to decision support for the introduction and migration of innovations in consolidation networks of rail freight transport: TRENO (TRansparent Evaluation of InNOvation Effects in Rail Freight Service Networks). The method combines rail transport planning with approaches from operations research and machine learning. Process changes due to innovations are analyzed and depicted in a novel mathematical optimization model for the SND. The model enables the definition of different operating strategies in the network and incorporates dynamic infrastructure usages of trains in the nodes of the network. Since the introduction of innovations is associated with a high degree of uncertainty regarding the underlying assumptions and input parameters, numerous scenarios have to be defined and evaluated for a sound decision support. Due to the high complexity of SND models, mathematical optimization is computationally expensive and time-consuming. Therefore, TRENO applies classification and regression models from the field of machine learning complementing mathematical optimization. Based on a set of scenarios for which optimal network structures have been computed using mathematical optimization, the classification and regression models learn the relationship between input data and the resulting key figures of the network. After training, the models can be used to predict the key figures of networks for various new scenarios within seconds (in particular cost structures, the number of operated train services and utilization of trains and yards). This represents a significant acceleration compared to mathematical optimization. The classification models are used to predict the feasibility of a scenario, which can, for example, result from insufficient capacities in the nodes of the network. The regression models predict specific metrics of the network such as costs, train service structures and capacity utilization. In addition to this core functionality of TRENO, the integration of the SHAP method (shapley additive explanations) allows an analysis of the influence of input parameters on the key figures of a consolidation network. This contributes to the understanding of the interdependencies in consolidation networks of rail freight transport (e.g., by identifying major cost drivers) and counteracts a fundamental problem from the field of machine learning, the lack of interpretability of the models. TRENO is validated on the basis of a relevant use case, the planning of a migration of a DAC in an exemplary European single wagonload network. Here, TRENO is used to investigate the influence of different operating strategies during a migration of a DAC on the costs and service structures in the network. The example shows that different complex operating strategies can be modelled with TRENO. By applying the method, the specific effects of the operating strategies on the defined key figures of the network are made transparent. This enables to draw new conclusions from a rail transport planning perspective regarding the choice of operating strategies during a migration. Furthermore, the results show the high quality of the predictions by the classification and regression models. When testing four classification and five regression algorithms, models based on gradient boosting achieve the best results. For classification, the model yields correct predictions in 94% of the cases. The regression model achieves an average coefficient of determination of 93% across all key figures and can thereby explain a large part of the variance in the data. TRENO thus represents an applicable contribution to significantly automate and accelerate the manual process for planning consolidation networks in rail freight transport, especially for the case of the introduction of innovations. The model-based approach provides a more objective decision support compared to the status quo and enables to study the influence of innovations on the structures of service networks over numerous scenarios. Hereby, the dissertation expands the methodological spectrum of rail transport planning by linking it with methods from operations research and machine learning.
243

Advancing Plasmon Resonance Engineering via Combinatorics and Artificial Intelligence

Schletz, Daniel 22 April 2024 (has links)
Während die Menschheit bereits seit Jahrtausenden von der Brillanz von Gold und Silber im ausgedehnten Zustand fasziniert ist, bestechen ihre nanoskaligen Gegenstücke mit ihren wundervollen Farben und ihrer breiten Farbpalette. Motiviert durch diese Farben versuchten Wissenschaftler das zugrundeliegende Phänomen dieser Farben, die lokalisierte Oberflächenplasmonenresonanz, zu verstehen, was den Grundstein der Forschung im Bereich Plasmonik legte. Für die Anwendung muss diese lokalisierte Oberflächenplasmonenresonanz umfassend durch Änderung von Material, Größe, Form, Anordnung und Umgebung der Nanopartikel angepasst werden. Es scheint unausweichlich, dass dieser komplexe Parameterraum nur durch die Anwendung von künstlicher Intelligenz verstanden werden kann und die Eigenschaften von solchen komplexen Strukturen — in isolierten oder gekoppelten Strukturen — angepasst werden können. Diese Dissertation untersucht die Anpassung der Plasmonenresonanz in isolierten und gekoppelten Nanostrukturen durch Kombination von Kolloidsynthese, Anordnung und künstlicher Intelligenz. Der erste Teil behandelt die Synthese von Goldnanopartikeln mit Unterstützung des maschinellen Lernens. Durch die Nutzung von baumbasierten Lernalgorithmen wird die Wichtigkeit von bestimmten Syntheseparametern und dessen Auswirkungen auf die finalen Eigenschaften der synthetisierten Nanopartikel beleuchtet. Dabei wird gezeigt, dass der Algorithmus die zugrundeliegenden Chemiekonzepte der Synthese lernen kann, ohne sie explizit zu lehren, sondern ausschließlich durch das Lernen der Synthese- und Charakterisierungsdaten. Der zweite Teil fokussiert sich auf die Anordnung und die optische Charakterisierung von heterogenen Ketten aus Gold- und Silbernanopartikeln. Dabei wird gezeigt, dass nahezu jede Konfiguration bis zu einer Länge von 17 auf einem Quadratzentimeter durch Beschränkungsanordnung angeordnet werden können. Dies löst die synthetische Herausforderung des exponentiell wachsenden Parameterraums, der durch die Einführung eines zweiten Bausteins in der Kette eröffnet wurde. Allerdings ist die Charakterisierung zeitaufwändig und daher für die enorme Menge an Konfigurationen nicht realisierbar. Infolgedessen können elektrodynamische Simulationen hier helfen und diese Lücke schließen. Leider sind diese Simulationen durch ihre Berechnungskomplexität beschränkt, was jedoch durch den Einsatz von rekurrenten neuronalen Netzen im letzten Teil der Dissertation abgemildert wird. Letztlich zeigt diese Dissertation wie innovative Zugänge zu diesen Herausforderungen die Synthese, Charakterisierung und Verständnis von plasmonischen Nanostrukturen ermöglichen und wie die Plasmonenresonanz in Bezug zu ihren Anwendungen angepasst werden kann. / While the brilliance of gold and silver has fascinated humankind for millennia in their bulk state, their nanoscale counterparts captivate with their beautiful colors and broad color range. Motivated by these colors, researchers pursued to understand the underlying phenomenon of these colors, the localized surface plasmon resonance, which sparked the research in the field of plasmonics. In order to be useful, this localized surface plasmon resonance needs to be extensively engineered by variation of material, size, shape, arrangement, and surrounding of the nanoparticles. To explore this complex parameter space, the use of the emerging technology of artificial intelligence seems inevitable to understand and engineer the properties of such complex structures — either in isolated or coupled structures. This thesis investigates the plasmon resonance engineering in isolated and coupled nanostructures by combining colloidal synthesis, assembly, and artificial intelligence. The first part covers the machine learning assisted synthesis of gold nanoparticles, which aims to use tree-based learning algorithms to elucidate the importance of certain synthesis parameters and how they affect the final characteristics of the synthesized nanoparticles. It is shown that the algorithm can learn the underlying concepts of the chemistry of the synthesis without explicitly teaching the algorithm, but purely learning from data that was gathered during synthesis and characterization. The second part focuses on the assembly and optical characterization of heterogeneous chains composed of gold and silver nanospheres. Applying confinement assembly, virtually any configuration up to a length of 17 can be assembled on a square centimeter, which solves the synthetic challenge that is imposed by the exponentially growing configuration space due to the introduction of a second building block in the chain. However, characterization is time-consuming and therefore not feasible for vast amounts of configurations, thus only a tiny subsample is selected for electromagnetic characterization. Consequently, electrodynamicsimulations aid this task and try to fill the gap. Unfortunately, these simulations are limited by computational complexity; however, the use of recurrent neural networks enables to mitigate this problem, as shown in the final part of this thesis. In the end, this thesis showcases how innovative approaches to these challenges can enable the synthesis, characterization, and understanding of plasmonic nanostructures and how they can be used to engineer the plasmonic resonance in accordance with their desired applications.
244

Machine learning for fast and accurate assessment of earthquake source parameters / Implications for rupture predictability and early warning

Münchmeyer, Jannes 07 November 2022 (has links)
Erdbeben gehören zu den zerstörerischsten Naturgefahren auf diesem Planeten. Obwohl Erdbeben seit Jahrtausenden dokumentiert sing, bleiben viele Fragen zu Erdbeben unbeantwortet. Eine Frage ist die Vorhersagbarkeit von Brüchen: Inwieweit ist es möglich, die endgültige Größe eines Bebens zu bestimmen, bevor der zugrundeliegende Bruchprozess endet? Diese Frage ist zentral für Frühwarnsysteme. Die bisherigen Forschungsergebnisse zur Vorhersagbarkeit von Brüchen sind widersprüchlich. Die Menge an verfügbaren Daten für Erdbebenforschung wächst exponentiell und hat den Tera- bis Petabyte-Bereich erreicht. Während viele klassische Methoden, basierend auf manuellen Datenauswertungen, hier ihre Grenzen erreichen, ermöglichen diese Datenmengen den Einsatz hochparametrischer Modelle und datengetriebener Analysen. Insbesondere ermöglichen sie den Einsatz von maschinellem Lernen und deep learning. Diese Doktorarbeit befasst sich mit der Entwicklung von Methoden des maschinellen Lernens zur Untersuchung zur Erbebenanalyse. Wir untersuchen zuerst die Kalibrierung einer hochpräzisen Magnitudenskala in einem post hoc Scenario. Nachfolgend befassen wir uns mit Echtzeitanalyse von Erdbeben mittels deep learning. Wir präsentieren TEAM, eine Methode zur Frühwarnung. Auf TEAM aufbauend entwickeln wir TEAM-LM zur Echtzeitschätzung von Lokation und Magnitude eines Erdbebens. Im letzten Schritt untersuchen wir die Vorhersagbarkeit von Brüchen mittels TEAM-LM anhand eines Datensatzes von teleseismischen P-Wellen-Ankünften. Dieser Analyse stellen wir eine Untersuchung von Quellfunktionen großer Erdbeben gegenüber. Unsere Untersuchung zeigt, dass die Brüche großer Beben erst vorhersagbar sind, nachdem die Hälfte des Bebens vergangen ist. Selbst dann können weitere Subbrüche nicht vorhergesagt werden. Nichtsdestotrotz zeigen die hier entwickelten Methoden, dass deep learning die Echtzeitanalyse von Erdbeben wesentlich verbessert. / Earthquakes are among the largest and most destructive natural hazards known to humankind. While records of earthquakes date back millennia, many questions about their nature remain open. One question is termed rupture predictability: to what extent is it possible to foresee the final size of an earthquake while it is still ongoing? This question is integral to earthquake early warning systems. Still, research on this question so far has reached contradictory conclusions. The amount of data available for earthquake research has grown exponentially during the last decades reaching now tera- to petabyte scale. This wealth of data, while making manual inspection infeasible, allows for data-driven analysis and complex models with high numbers of parameters, including machine and deep learning techniques. In seismology, deep learning already led to considerable improvements upon previous methods for many analysis tasks, but the application is still in its infancy. In this thesis, we develop machine learning methods for the study of rupture predictability and earthquake early warning. We first study the calibration of a high-confidence magnitude scale in a post hoc scenario. Subsequently, we focus on real-time estimation models based on deep learning and build the TEAM model for early warning. Based on TEAM, we develop TEAM-LM, a model for real-time location and magnitude estimation. In the last step, we use TEAM-LM to study rupture predictability. We complement this analysis with results obtained from a deep learning model based on moment rate functions. Our analysis shows that earthquake ruptures are not predictable early on, but only after their peak moment release, after approximately half of their duration. Even then, potential further asperities can not be foreseen. While this thesis finds no rupture predictability, the methods developed within this work demonstrate how deep learning methods make a high-quality real-time assessment of earthquakes practically feasible.
245

Transforming First Language Learning Platforms towards Adaptivity and Fairness / Models, Interventions and Architecture

Rzepka, Nathalie 10 October 2023 (has links)
In dieser Arbeit zeige ich in einem groß angelegten Experiment die Auswirkungen adaptiver Elemente in einer Online-Lernplattform. Ich werde darauf eingehen, dass die derzeitige Forschung zu Online-Lernplattformen für den L1-Erwerb hauptsächlich deskriptiv ist und dass nur wenige adaptive Lernumgebungen in der Praxis verbreitet sind. In dieser Dissertation werde ich ein Konzept entwickeln, wie adaptives Lernen in L1-Online-Lernplattformen integriert werden kann, und analysieren, ob dies zu verbesserten Lernerfahrungen führt. Dabei konzentriere ich mich auf die Effektivität und Fairness von Vorhersagen und Interventionen sowie auf die geeignete Softwarearchitektur für den Einsatz in der Praxis. Zunächst werden verschiedene Vorhersagemodelle entwickelt, die besonders in Blended-Learning-Szenarien nützlich sind. Anschließend entwickle ich ein Architekturkonzept (adaptive learning as a service), um bestehende Lernplattformen mithilfe von Microservices in adaptive Lernplattformen umzuwandeln. Darauf aufbauend wird ein groß angelegtes online-kontrolliertes Experiment mit mehr als 11.000 Nutzer*innen und mehr als 950.000 eingereichten Rechtschreibaufgaben durchgeführt. In einer abschließenden Studie werden die Vorhersagemodelle auf ihren algorithmischen Bias hin untersucht. Außerdem teste ich verschiedene Techniken zur Verringerung von Bias. Diese Arbeit bietet eine ganzheitliche Sicht auf das adaptive Lernen beim Online-L1-Lernen. Durch die Untersuchung mehrerer Schlüsselaspekte (Vorhersagemodelle, Interventionen, Architektur und Fairness) ermöglicht die Arbeit Schlussfolgerungen sowohl für die Forschung als auch für die Praxis. / In this work I show in a large scale experiment the effect of adding adaptive elements to an online learning platform. I will discuss that the current research on online learning platforms in L1 acquisition is mainly descriptive and that only few adaptive learning environments are prevalent in practice. In this dissertation, I will develop a concept on how to integrate adaptive L1 online learning and analyse if it leads to improved learning experiences. I focus on the effectiveness and fairness of predictions and interventions as well as on the suitable software architecture for use in practice. First, I develop different prediction models, which are particularly useful in blended classroom scenarios. Subsequently, I develop an architectural concept (adaptive learning as a service) to transform existing learning platforms into adaptive learning platforms using microservices. Based on this, a large-scale online-controlled experiment with more than 11,000 users and more than 950,000 submitted spelling tasks is carried out. In the final study, the prediction models are examined for their algorithmic bias, by comparing different machine learning models, varying metrics of fairness, and multiple demographic categories. Furthermore, I test various bias mitigation techniques. The success of bias mitigation approaches depends on the demographic group and metric. However, in-process methods have proven to be particularly successful. This work provides a holistic view of adaptive learning in online L1 learning. By examining several key aspects (predictive models, interventions, architecture, and fairness), the work allows conclusions to be drawn for both research and practice.
246

Text Mining for Pathway Curation

Weber-Genzel, Leon 17 November 2023 (has links)
Biolog:innen untersuchen häufig Pathways, Netzwerke von Interaktionen zwischen Proteinen und Genen mit einer spezifischen Funktion. Neue Erkenntnisse über Pathways werden in der Regel zunächst in Publikationen veröffentlicht und dann in strukturierter Form in Lehrbüchern, Datenbanken oder mathematischen Modellen weitergegeben. Deren Kuratierung kann jedoch aufgrund der hohen Anzahl von Publikationen sehr aufwendig sein. In dieser Arbeit untersuchen wir wie Text Mining Methoden die Kuratierung unterstützen können. Wir stellen PEDL vor, ein Machine-Learning-Modell zur Extraktion von Protein-Protein-Assoziationen (PPAs) aus biomedizinischen Texten. PEDL verwendet Distant Supervision und vortrainierte Sprachmodelle, um eine höhere Genauigkeit als vergleichbare Methoden zu erreichen. Eine Evaluation durch Expert:innen bestätigt die Nützlichkeit von PEDLs für Pathway-Kurator:innen. Außerdem stellen wir PEDL+ vor, ein Kommandozeilen-Tool, mit dem auch Nicht-Expert:innen PPAs effizient extrahieren können. Drei Kurator:innen bewerten 55,6 % bis 79,6 % der von PEDL+ gefundenen PPAs als nützlich für ihre Arbeit. Die große Anzahl von PPAs, die durch Text Mining identifiziert werden, kann für Forscher:innen überwältigend sein. Um hier Abhilfe zu schaffen, stellen wir PathComplete vor, ein Modell, das nützliche Erweiterungen eines Pathways vorschlägt. Es ist die erste Pathway-Extension-Methode, die auf überwachtem maschinellen Lernen basiert. Unsere Experimente zeigen, dass PathComplete wesentlich genauer ist als existierende Methoden. Schließlich schlagen wir eine Methode vor, um Pathways mit komplexen Ereignisstrukturen zu erweitern. Hier übertrifft unsere neue Methode zur konditionalen Graphenmodifikation die derzeit beste Methode um 13-24% Genauigkeit in drei Benchmarks. Insgesamt zeigen unsere Ergebnisse, dass Deep Learning basierte Informationsextraktion eine vielversprechende Grundlage für die Unterstützung von Pathway-Kurator:innen ist. / Biological knowledge often involves understanding the interactions between molecules, such as proteins and genes, that form functional networks called pathways. New knowledge about pathways is typically communicated through publications and later condensed into structured formats such as textbooks, pathway databases or mathematical models. However, curating updated pathway models can be labour-intensive due to the growing volume of publications. This thesis investigates text mining methods to support pathway curation. We present PEDL (Protein-Protein-Association Extraction with Deep Language Models), a machine learning model designed to extract protein-protein associations (PPAs) from biomedical text. PEDL uses distant supervision and pre-trained language models to achieve higher accuracy than the state of the art. An expert evaluation confirms its usefulness for pathway curators. We also present PEDL+, a command-line tool that allows non-expert users to efficiently extract PPAs. When applied to pathway curation tasks, 55.6% to 79.6% of PEDL+ extractions were found useful by curators. The large number of PPAs identified by text mining can be overwhelming for researchers. To help, we present PathComplete, a model that suggests potential extensions to a pathway. It is the first method based on supervised machine learning for this task, using transfer learning from pathway databases. Our evaluations show that PathComplete significantly outperforms existing methods. Finally, we generalise pathway extension from PPAs to more realistic complex events. Here, our novel method for conditional graph modification outperforms the current best by 13-24% accuracy on three benchmarks. We also present a new dataset for event-based pathway extension. Overall, our results show that deep learning-based information extraction is a promising basis for supporting pathway curators.
247

Machine learning assisted real‑time deformability cytometry of CD34+ cells allows to identify patients with myelodysplastic syndromes

Herbig, Maik, Jacobi, Angela, Wobus, Manja, Weidner, Heike, Mies, Anna, Kräter, Martin, Otto, Oliver, Thiede, Christian, Weickert, Marie‑Theresa, Götze, Katharina S., Rauner, Martina, Hofbauer, Lorenz C., Bornhäuser, Martin, Guck, Jochen, Ader, Marius, Platzbecker, Uwe, Balaian, Ekaterina 16 May 2024 (has links)
Diagnosis of myelodysplastic syndrome (MDS) mainly relies on a manual assessment of the peripheral blood and bone marrow cell morphology. The WHO guidelines suggest a visual screening of 200 to 500 cells which inevitably turns the assessor blind to rare cell populations and leads to low reproducibility. Moreover, the human eye is not suited to detect shifts of cellular properties of entire populations. Hence, quantitative image analysis could improve the accuracy and reproducibility of MDS diagnosis. We used real-time deformability cytometry (RT-DC) to measure bone marrow biopsy samples of MDS patients and age-matched healthy individuals. RT-DC is a high-throughput (1000 cells/s) imaging flow cytometer capable of recording morphological and mechanical properties of single cells. Properties of single cells were quantified using automated image analysis, and machine learning was employed to discover morpho-mechanical patterns in thousands of individual cells that allow to distinguish healthy vs. MDS samples. We found that distribution properties of cell sizes differ between healthy and MDS, with MDS showing a narrower distribution of cell sizes. Furthermore, we found a strong correlation between the mechanical properties of cells and the number of disease-determining mutations, inaccessible with current diagnostic approaches. Hence, machine-learning assisted RT-DC could be a promising tool to automate sample analysis to assist experts during diagnosis or provide a scalable solution for MDS diagnosis to regions lacking sufficient medical experts.
248

Noisy Bayesian Optimization of Variational Quantum Eigensolvers

Iannelli, Giovanni 21 August 2024 (has links)
Der Variationsquanten-Eigensolver (VQE) ist ein hybrider quanten-klassischer Algorithmus, der dazu dient, den Grundzustand eines Hamiltonians mit Hilfe von Variationsmethoden aufzufinden. Er hat ein breites Spektrum an möglichen Anwendungen, von der Quanten Chemie bis hin zu Gittereichtheorien in der Hamiltonformulierung. VQE stützt sich auf Quantencomputer, um die Energie eines Systems in Form von Schaltkreisparametern zu berechnen und minimiert diese parametrisierte Energie mit einer klassischen Optimierungsroutine. Diese Doktorarbeit bebenutzt als Algorithmus eine Bayes'sche Optimierung (BO). Der Algorithmus wurde speziell für die Minimierung der parametrisierten Energie, wie sie mit einem Quantencomputer berechnet wird, entwickelt. Die BO basiert auf der Gaußschen Prozessregression (GPR) und ist ein Algorithmus zum Auffinden des globalen Minimums einer Black-Box Kostenfunktion, z.~B.~der Energie. Die BO arbeitet mit einer sehr geringen Anzahl von Iterationen selbst bei Verwendung von Daten, die durch statistisches Rauschen beeinflusst sind. Außerdem erwies sich das für diese Arbeit entwickelte GPR-Verfahren als sehr vielseitig, da wir es auch für die Berechnung diskreter Integraltransformationen von verrauschten Daten verwenden konnten. Insbesondere wurde dieses Verfahren zur Rekonstruktion von Parton Verteilungsfunktionen aus Gitter-QCD-Daten verwendet. / The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm used to find the ground state of a Hamiltonian using variational methods. It has a wide range of potential applications, from quantum chemistry to lattice gauge theories in the Hamiltonian formulation. VQE relies on quantum computers to evaluate the energy of the system in terms of circuit parameters, and it minimizes this parametrized energy with a classical optimization routine. This work describes a Bayesian optimization (BO) algorithm specifically designed to minimize the parametrized energy obtained with a quantum computer. BO based on Gaussian process regression (GPR) is an algorithm for finding the global minimum of a black-box cost function, e.g. the energy, with a very low number of iterations even when using data affected by statistical noise. Furthermore, the GPR procedure developed for this work proved to be very versatile as we also used it to compute discrete integral transforms of noisy data. In particular, this procedure was used to reconstruct parton distribution functions from lattice QCD data.
249

Hand Gesture Recognition using mm-Wave RADAR Technology

Zhao, Yanhua 24 July 2024 (has links)
Die Interaktion zwischen Mensch und Computer ist zu einem Teil unseres täglichen Lebens geworden. Radarsensoren sind aufgrund ihrer geringen Größe, ihres niedrigen Stromverbrauchs und ihrer Erschwinglichkeit sehr vielversprechend. Im Vergleich zu anderen Sensoren wie Kameras und LIDAR kann RADAR in einer Vielzahl von Umgebungen eingesetzt werden, und wird dabei nicht durch Licht beeinträchtigt. Vor allem aber besteht keine Gefahr, dass die Privatsphäre des Benutzers verletzt wird. Unter den vielen Radararten wird das FMCW-Radar für die Gestenerkennung genutzt, da es mehrere Ziele beobachten, Reichweite, Geschwindigkeit und Winkel messen kann und die Hardware und Signalverarbeitung relativ einfach sind. Die radargestützte Gestenerkennung kann in einer Vielzahl von Bereichen eingesetzt werden. So kann z. B. bei Gesundheits- und Sicherheitsaspekten durch den Einsatz radargestützter Gestenerkennungssysteme Körperkontakt vermieden und die Möglichkeit einer Kontamination verringert werden. Auch in der Automobilbranche kann die berührungslose Steuerung bestimmter Funktionen, wie z. B. das Einschalten der Klimaanlage, das Benutzererlebnis verbessern und zu einem sichereren Fahrverhalten beitragen. Bei der Implementierung eines auf künstlicher Intelligenz basierenden Gestenerkennungssystems unter Verwendung von RADAR gibt es noch viele Herausforderungen, wie z. B. die Interpretation von Daten, das Sammeln von Trainingsdaten, die Optimierung der Berechnungskomplexität und die Verbesserung der Systemrobustheit. Diese Arbeit konzentriert sich auf die Bewältigung dieser Herausforderungen. Diese Arbeit befasst sich mit wichtigen Aspekten von Gestenerkennungssystemen. Von der Radarsignalverarbeitung, über maschinelle Lernmodelle, Datenerweiterung bis hin zu Multisensorsystemen werden die Herausforderungen der realen Welt angegangen. Damit wird der Grundstein für den umfassenden Einsatz von Gestenerkennungssystemen in der Praxis gelegt. / Human-computer interaction has become part of our daily lives. RADAR stands out as a very promising sensor, with its small size, low power consumption, and affordability. Compared to other sensors, such as cameras and LIDAR, RADAR can work in a variety of environments, and it is not affected by light. Most importantly, there is no risk of infringing on user's privacy. Among the many types of RADAR, FMCW RADAR is utilised for gesture recognition due to its ability to observe multiple targets and to measure range, velocity and angle, as well as its relatively simple hardware and signal processing. RADAR-based gesture recognition can be applied in a variety of domains. For example, for health and safety considerations, the use of RADAR-based gesture recognition systems can avoid physical contact and reduce the possibility of contamination. Similarly, in automotive applications, contactless control of certain functions, such as turning on the air conditioning, can improve the user experience and contribute to safer driving. There are still many challenges in implementing an artificial intelligence-based gesture recognition system using RADAR, such as interpreting data, collecting training data, optimising computational complexity and improving system robustness. This work will focus on addressing these challenges. This thesis addresses key aspects of gesture recognition systems. From RADAR signal processing, machine learning models, data augmentation to multi-sensor systems, the challenges posed by real-world scenarios are tackled. This lays the foundation for a comprehensive deployment of gesture recognition systems for many practical applications.
250

On the Efficient Utilization of Dense Nonlocal Adjacency Information In Graph Neural Networks

Bünger, Dominik 14 December 2021 (has links)
In den letzten Jahren hat das Teilgebiet des Maschinellen Lernens, das sich mit Graphdaten beschäftigt, durch die Entwicklung von spezialisierten Graph-Neuronalen Netzen (GNNs) mit mathematischer Begründung in der spektralen Graphtheorie große Sprünge nach vorn gemacht. Zusätzlich zu natürlichen Graphdaten können diese Methoden auch auf Datensätze ohne Graphen angewendet werden, indem man einen Graphen künstlich mithilfe eines definierten Adjazenzbegriffs zwischen den Samplen konstruiert. Nach dem neueste Stand der Technik wird jedes Sample mit einer geringen Anzahl an Nachbarn verknüpft, um gleichzeitig das dünnbesetzte Verhalten natürlicher Graphen nachzuahmen, die Stärken bestehender GNN-Methoden auszunutzen und quadratische Abhängigkeit von der Knotenanzahl zu verhinden, welche diesen Ansatz für große Datensätze unbrauchbar machen würde. Die vorliegende Arbeit beleuchtet die alternative Konstruktion von vollbesetzten Graphen basierend auf Kernel-Funktionen. Dabei quantifizieren die Verknüpfungen eines jeden Samples explizit die Ähnlichkeit zu allen anderen Samplen. Deshalb enthält der Graph eine quadratische Anzahl an Kanten, die die lokalen und nicht-lokalen Nachbarschaftsinformationen beschreiben. Obwohl dieser Ansatz in anderen Kontexten wie der Lösung partieller Differentialgleichungen ausgiebig untersucht wurde, wird er im Maschinellen Lernen heutzutage meist wegen der dichtbesetzten Adjazenzmatrizen als unbrauchbar empfunden. Aus diesem Grund behandelt ein großer Teil dieser Arbeit numerische Techniken für schnelle Auswertungen, insbesondere Eigenwertberechnungen, in wichtigen Spezialfällen, bei denen die Samples durch niedrigdimensionale Vektoren (wie z.B. in dreidimensionalen Punktwolken) oder durch kategoriale Attribute beschrieben werden. Weiterhin wird untersucht, wie diese dichtbesetzten Adjazenzinformationen in Lernsituationen auf Graphen benutzt werden können. Es wird eine eigene transduktive Lernmethode vorgeschlagen und präsentiert, eine Version eines Graph Convolutional Networks (GCN), das auf die spektralen und räumlichen Eigenschaften von dichtbesetzten Graphen abgestimmt ist. Schließlich wird die Anwendung von Kernel-basierten Adjazenzmatrizen in der Beschleunigung der erfolgreichen Architektur “PointNet++” umrissen. Im Verlauf der Arbeit werden die Methoden in ausführlichen numerischen Experimenten evaluiert. Zusätzlich zu der empirischen Genauigkeit der Neuronalen Netze liegt der Fokus auf wettbewerbsfähigen Laufzeiten, um die Berechnungs- und Energiekosten der Methoden zu reduzieren. / Over the past few years, graph learning - the subdomain of machine learning on graph data - has taken big leaps forward through the development of specialized Graph Neural Networks (GNNs) that have mathematical foundations in spectral graph theory. In addition to natural graph data, these methods can be applied to non-graph data sets by constructing a graph artificially using a predefined notion of adjacency between samples. The state of the art is to only connect each sample to a low number of neighbors in order to simultaneously mimic the sparse behavior of natural graphs, play into the strengths of existing GNN methods, and avoid quadratic scaling in the number of nodes that would make the approach infeasible for large problem sizes. In this thesis, we shine light on the alternative construction of kernel-based fully-connected graphs. Here the connections of each sample explicitly quantify the similarities to all other samples. Hence the graph contains a quadratic number of edges which encode local and non-local neighborhood information. Though this approach is well studied in other settings including the solution of partial differential equations, it is typically dismissed in machine learning nowadays because of its dense adjacency matrices. We thus dedicate a large portion of this work to showcasing numerical techniques for fast evaluations, especially eigenvalue computations, in important special cases where samples are described by low-dimensional feature vectors (e.g., three-dimensional point clouds) or by a small set of categorial attributes. We then continue to investigate how this dense adjacency information can be utilized in graph learning settings. In particular, we present our own proposed transductive learning method, a version of a Graph Convolutional Network (GCN) designed towards the spectral and spatial properties of dense graphs. We furthermore outline the application of kernel-based adjacency matrices in the speedup of the successful PointNet++ architecture. Throughout this work, we evaluate our methods in extensive numerical experiments. In addition to the empirical accuracy of our neural network tasks, we focus on competitive runtimes in order to decrease the computational and energy cost of our methods.

Page generated in 0.0766 seconds