• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 4
  • Tagged with
  • 16
  • 13
  • 9
  • 8
  • 8
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Ortsaufgelöste Messung der Gitterverspannungen in Halbleitern mittels Dunkelfeld off-axis Elektronenholographie

Sickmann, Jan 18 February 2015 (has links) (PDF)
Die Dunkelfeld off-axis Elektronenholographie (DFH) im Transmissionselektronenmikroskop ist eine nanoskalige Interferometriemethode, die es erlaubt, eine ausgewählte Beugungswelle eines Kristalls aufzuzeichnen und anschließend als zweidimensionale Amplituden- und Phasenverteilung zu rekonstruieren. Da sich aus dem Gradientenfeld der Phasenverteilung geometrische Verzerrungen des Kristallgitters bestimmen lassen, ermöglicht die DFH, Deformationsfelder in Kristallen zu vermessen. Damit eröffnen sich der Halbleiterindustrie vielversprechende Analysemöglichkeiten von lokalen mechanischen Verspannungen in Halbleiterkristallen insbesondere im Kanalbereich von Transistoren. Dabei verspricht die DFH eine höhere Ortsauflösung als rasternde, auf Elektronenbeugung mit möglichst fein fokussierten Elektronensonden basierende Methoden wie Nanobeugung. Jedoch steht die DFH als Analysemethode für mechanische Verspannungen bisher noch nicht standardmäßig zur Verfügung. Forschungs- und Entwicklungsbedarf besteht insbesondere hinsichtlich der Anpassung der Methodik auf kompliziertere Halbleiterstrukturen. Am Beispiel des Elementargitters wird demonstriert, wie einerseits die Gitterverzerrung die Phase der Beugungswelle moduliert, und wie andererseits aus dem Gradient der Phase diese Deformation wieder rekonstruiert werden kann. Zusätzlich wird die Modulation der Beugungswelle mit Hilfe eines erst kürzlich veröffentlichten analytischen Modells für den Zweistrahlfall erläutert. Spezielle Anpassungen der DFH im TEM erlauben, die geometrische Phase entweder mit 3...5 nm Lateralauflösung bei 200 nm breitem Gesichtsfeld oder mit 8...10 nm Lateralauflösung bei 800 nm breitem Gesichtsfeld aufzuzeichnen. Da die Deformationskarte durch numerische Ableitung der geometrischen Phase bestimmt wird, hängt die Signalauflösung der Deformationsmessung direkt von der Signalqualität in der rekonstruierten geometrischen Phase ab. Da die Ableitung das Rauschen verstärkt, werden verschiedene Strategien zur Rauschminderung und Signalverbesserung untersucht, u.a. werden Methoden zur Rauschfilterung eines DF-Hologramms oder zur Glättung der Deformationskarte vorgestellt. Durch Rekonstruktion einer gemittelten geometrischen Phase aus einer Dunkelfeldhologrammserie lassen sich Deformationen E mit einer Messabweichung von lediglich Delta_E=+/-0,05% bestimmen. Bei Aufzeichnung und Rekonstruktion der geometrischen Phase treten eine Reihe von Artefakten auf, die durch Fresnelsche Beugungssäume, defekte Detektorpixel sowie Verzeichnungen durch Projektivlinsen und Detektoroptik hervorgerufen werden. Da sie die Bestimmung der Deformationskarte erschweren, werden geeignete Methoden zur Vermeidung oder Korrektur vorgestellt. Die Präparation von TEM-Lamellen mit fokussiertem Ionenstrahl (FIB) verursacht Schädigungen der Probenoberfläche. Durch Vergleiche von DFH-Messungen mit Finite-Elemente-Simulationen wird gezeigt, dass die auf Oberflächenrelaxation zurückzuführenden Abweichungen vom simulierten Deformationszustand bei 120...160 nm Lamellendicke bis zu 10% betragen können. Präparationsbedingte lokale Dickenvariationen (Curtaining) können zu ähnlich großen Abweichungen führen. Anwendbarkeit und Funktionalität der DFH werden an modernen Halbleiterstrukturen untersucht. Die Vermessung einer verspannten SiGe-Schicht auf Si-Substrat zeigt eine sehr gute Übereinstimmung mit einem analytischen Modell. Die Abweichung beträgt ca. 10% und kann durch Oberflächenrelaxation an der SiGe/Si-Grenzfläche erklärt werden. Mittels SiGe an Source und Drain verspannte Transistoren dienen als Testobjekte für einen Vergleich von DFH und Nanobeugung. Beide Methoden liefern identische Ergebnisse. Der Vorteil der DFH besteht jedoch darin, das Deformationsfeld vollständig in Form einer zweidimensionalen Karte abzubilden, anstatt wie die Nanobeugung lediglich einzelne Profilschnitte zu messen. Die Deformationsmessung an SOI-Strukturen wird durch die leicht unterschiedliche Kristallorientierung (Miscut) zwischen SOI und Si-Substrat, das als Referenzbereich dient, erschwert. Die Deformationswerte im SOI zeigen ein Offset von 0,2% Dehnung gegenüber dem Si-Substrat. Der Miscut zwischen SOI und Si-Substrat kann zu 0,3°bestimmt werden. Für Transistoren mit tensiler Deckschicht gelingt es, Dehnungen von +0,3% in perfekter Übereinstimmung mit FE-Simulationen zu messen. Bei Transistoren, bei denen gleichzeitig eine kompressive Deckschicht und SiGe an Source und Drain eingesetzt werden, gelingt es mittels DFH, Stauchungen von -(0,1+/-0,05)% im Transistorkanal 5 nm unterhalb des Gateoxids nachzuweisen. / Dark-field off-axis electron holography (DFH) in a transmission electron microscope is based on the interference of a diffracted wave emanating from adjacent strained and unstrained sample areas to form a dark-field hologram, from which the phase of the diffracted wave can be reconstructed. Since the gradient of the phase parallel to the diffraction vector yields the lattice strain in this direction, a two-dimensional strain map can be derived. Therefore, DFH is considered to be a promising technique for strain metrology by semiconductor industry, especially for local strain measurements in the transistor channel. In particular, DFH offers better lateral resolution than scanning TEM-techniques based on electron diffraction with small focused electron probe like nano-beam diffraction. However, DFH is not yet available as a standard technique for strain metrology. Research is still needed to apply the method to complex devices. Using the example of a strained cosine lattice the phase modulation due to lattice distortions is discussed. In addition, modulation of the diffracted wave is approximated in two-beam diffraction condition. Adjustments of DFH in the TEM provide strain measurements with 3...5 nm lateral resolution at 200 nm field of view or 8...10 nm lateral resolution at 800 nm field of view. During recording and reconstruction of dark-field holograms several artifacts appear, for instance Fresnel diffraction, defective detector pixels, distortions of projective lenses or detector optics. Since they limit strain evaluation, suitable methods to either avoid or correct these artifacts are discussed. Sample preparation with focused ion beam (FIB) causes surface damage. Comparing DFH results with finite-element simulations reveals a deviation of 10% between simulation and experiment at 120...160 nm sample thickness due to surface relaxation. FIB-induced thickness variations (curtaining) lead to comparable deviations. Applicability of DFH for strain metrology is analyzed on several modern device structures. Strain measurements of SiGe-layers on Si-substrate correspond quite well with an analytic model. A residual deviation of 10% can be explained by surface relaxation close to the SiGe/Si-interface. Transistors strained by SiGe-source/drain serve as test objects for a comparison of DFH with nano-beam diffraction. Though both techniques reveal identical results, DFH is able to map the complete two-dimensional strain field, whereas nano-beam diffraction can only provide single line-scans. Strain mapping in silicon-on-insulator (SOI) is limited by the different crystal orientation (miscut) between the SOI layer and the Si-substrate, which serves as reference. Strain values in the SOI show an off-set of 0.2% in comparison to the unstrained Si-substrate. The miscut between SOI and Si-substrate is estimated to 0.3°. In transistor devices with tensile stress overlayers DFH is able to measure +0.3% tensile strain in excellent agreement with finite-element simulations. In devices with compressive overlayers and SiGe-source/drain a strain value of only -(0.1+/-0.05)% can be determined in the transistor channel 5nm beneath the gate oxide.
12

Ortsaufgelöste Messung der Gitterverspannungen in Halbleitern mittels Dunkelfeld off-axis Elektronenholographie

Sickmann, Jan 18 December 2014 (has links)
Die Dunkelfeld off-axis Elektronenholographie (DFH) im Transmissionselektronenmikroskop ist eine nanoskalige Interferometriemethode, die es erlaubt, eine ausgewählte Beugungswelle eines Kristalls aufzuzeichnen und anschließend als zweidimensionale Amplituden- und Phasenverteilung zu rekonstruieren. Da sich aus dem Gradientenfeld der Phasenverteilung geometrische Verzerrungen des Kristallgitters bestimmen lassen, ermöglicht die DFH, Deformationsfelder in Kristallen zu vermessen. Damit eröffnen sich der Halbleiterindustrie vielversprechende Analysemöglichkeiten von lokalen mechanischen Verspannungen in Halbleiterkristallen insbesondere im Kanalbereich von Transistoren. Dabei verspricht die DFH eine höhere Ortsauflösung als rasternde, auf Elektronenbeugung mit möglichst fein fokussierten Elektronensonden basierende Methoden wie Nanobeugung. Jedoch steht die DFH als Analysemethode für mechanische Verspannungen bisher noch nicht standardmäßig zur Verfügung. Forschungs- und Entwicklungsbedarf besteht insbesondere hinsichtlich der Anpassung der Methodik auf kompliziertere Halbleiterstrukturen. Am Beispiel des Elementargitters wird demonstriert, wie einerseits die Gitterverzerrung die Phase der Beugungswelle moduliert, und wie andererseits aus dem Gradient der Phase diese Deformation wieder rekonstruiert werden kann. Zusätzlich wird die Modulation der Beugungswelle mit Hilfe eines erst kürzlich veröffentlichten analytischen Modells für den Zweistrahlfall erläutert. Spezielle Anpassungen der DFH im TEM erlauben, die geometrische Phase entweder mit 3...5 nm Lateralauflösung bei 200 nm breitem Gesichtsfeld oder mit 8...10 nm Lateralauflösung bei 800 nm breitem Gesichtsfeld aufzuzeichnen. Da die Deformationskarte durch numerische Ableitung der geometrischen Phase bestimmt wird, hängt die Signalauflösung der Deformationsmessung direkt von der Signalqualität in der rekonstruierten geometrischen Phase ab. Da die Ableitung das Rauschen verstärkt, werden verschiedene Strategien zur Rauschminderung und Signalverbesserung untersucht, u.a. werden Methoden zur Rauschfilterung eines DF-Hologramms oder zur Glättung der Deformationskarte vorgestellt. Durch Rekonstruktion einer gemittelten geometrischen Phase aus einer Dunkelfeldhologrammserie lassen sich Deformationen E mit einer Messabweichung von lediglich Delta_E=+/-0,05% bestimmen. Bei Aufzeichnung und Rekonstruktion der geometrischen Phase treten eine Reihe von Artefakten auf, die durch Fresnelsche Beugungssäume, defekte Detektorpixel sowie Verzeichnungen durch Projektivlinsen und Detektoroptik hervorgerufen werden. Da sie die Bestimmung der Deformationskarte erschweren, werden geeignete Methoden zur Vermeidung oder Korrektur vorgestellt. Die Präparation von TEM-Lamellen mit fokussiertem Ionenstrahl (FIB) verursacht Schädigungen der Probenoberfläche. Durch Vergleiche von DFH-Messungen mit Finite-Elemente-Simulationen wird gezeigt, dass die auf Oberflächenrelaxation zurückzuführenden Abweichungen vom simulierten Deformationszustand bei 120...160 nm Lamellendicke bis zu 10% betragen können. Präparationsbedingte lokale Dickenvariationen (Curtaining) können zu ähnlich großen Abweichungen führen. Anwendbarkeit und Funktionalität der DFH werden an modernen Halbleiterstrukturen untersucht. Die Vermessung einer verspannten SiGe-Schicht auf Si-Substrat zeigt eine sehr gute Übereinstimmung mit einem analytischen Modell. Die Abweichung beträgt ca. 10% und kann durch Oberflächenrelaxation an der SiGe/Si-Grenzfläche erklärt werden. Mittels SiGe an Source und Drain verspannte Transistoren dienen als Testobjekte für einen Vergleich von DFH und Nanobeugung. Beide Methoden liefern identische Ergebnisse. Der Vorteil der DFH besteht jedoch darin, das Deformationsfeld vollständig in Form einer zweidimensionalen Karte abzubilden, anstatt wie die Nanobeugung lediglich einzelne Profilschnitte zu messen. Die Deformationsmessung an SOI-Strukturen wird durch die leicht unterschiedliche Kristallorientierung (Miscut) zwischen SOI und Si-Substrat, das als Referenzbereich dient, erschwert. Die Deformationswerte im SOI zeigen ein Offset von 0,2% Dehnung gegenüber dem Si-Substrat. Der Miscut zwischen SOI und Si-Substrat kann zu 0,3°bestimmt werden. Für Transistoren mit tensiler Deckschicht gelingt es, Dehnungen von +0,3% in perfekter Übereinstimmung mit FE-Simulationen zu messen. Bei Transistoren, bei denen gleichzeitig eine kompressive Deckschicht und SiGe an Source und Drain eingesetzt werden, gelingt es mittels DFH, Stauchungen von -(0,1+/-0,05)% im Transistorkanal 5 nm unterhalb des Gateoxids nachzuweisen.:1 Einleitung 2 Grundlagen der Elastizitätstheorie 2.1 Der Verzerrungstensor 2.2 Der Spannungstensor 2.3 Das Hooke’sche Gesetz 2.4 Zusammenfassung 3 Mechanisch verspannte Transistoren 3.1 Der MOSFET 3.2 Techniken zur Spannungserzeugung 3.2.1 SiGe- und Si:C-Source/Drain-Gebiete 3.2.2 Verspannte Deckschichten 3.3 Mechanische Verspannung und Ladungsträgerbeweglichkeit 3.4 Zusammenfassung 4 Beugungswelle und geometrische Phase 4.1 Transmissionselektronenmikroskopie 4.1.1 Aufbau eines Transmissionselektronenmikroskops 4.1.2 Hellfeld- und Dunkelfeldabbildung 4.2 Beugung am Kristallgitter 4.2.1 Bragg- und Laue-Beugungsbedingung 4.2.2 Ewaldkugel 4.2.3 Beugungswelle 4.3 Geometrische Phase 4.3.1 Geometrische Phase in kinematischer Näherung 4.3.2 Veranschaulichung der geometrischen Phase am Elementargitter 4.3.3 Grenzen der geometrische Phase 4.3.4 Geometrische Phase bei dynamischer Streuung 4.3.4.1 Streuung im deformierten Kristall 4.3.4.2 Zweistrahlfall im deformierten Kristall 4.3.4.3 Analytische Lösung für z-unabhängige Verschiebung 4.3.4.4 Näherungslösung für z-abhängige Verschiebung 4.3.4.5 Konsequenzen für die Deformationsmessung 4.4 Zusammenfassung 5 Spezialverfahren der Dunkelfeld off-axis Elektronenholographie 5.1 Aufnahme von Dunkelfeldhologrammen 5.1.1 Voraussetzungen 5.1.2 Versuchsaufbau 5.1.3 Rekonstruktion der Beugungswelle 5.2 Bestimmung der Gitterdeformation 5.2.1 Gitterdeformation in g_ref-Richtung 5.2.2 Gitterdeformation in (x,y)-Ebene 5.3 Optimierung des Tecnai F20 Mikroskops für die Dunkelfeldholographie 5.3.1 Anforderungen 5.3.2 Limitierungen durch experimentellen Aufbau 5.3.3 Zusätzliche Freiheitsgrade mit Cs-Korrektor und Pseudo-Lorentz Linse 5.3.4 Verbleibende Limitierungen 5.3.4.1 Begrenzte Beleuchtungskippung 5.3.4.2 Defokussierte Blende in der hinteren Brennebene 5.4 Aufbereitung und Rekonstruktion von Dunkelfeldhologrammen 5.4.1 Beseitigen fehlerhafter Pixel 5.4.2 Entfernen der Fresnelschen Beugungssäume 5.4.3 Wahl der Rekonstruktionsmaske 5.4.4 Filterung der Hologrammintensität mit Wiener-Filter 5.5 Einfluss und Korrektur von Verzeichnungen 5.5.1 Verzeichnungskorrektur mittels Leerwelle 5.5.2 Verzeichnungskorrektur mittels Verzeichnungskarte 5.5.3 Vergleich der Korrekturmethoden 5.6 Vorzeichen der Beugungswelle 5.7 Numerische Ableitung der Phase und Rauschen 5.8 Kalibrierung von Phasen- und Deformationskarte 5.9 Glättung der Dehnungskarte 5.10 Aufzeichnung und Rekonstruktion einer Dunkelfeldhologrammserie 5.11 Maximierung der Intensität in der Beugungswelle 5.11.1 Zweistrahlfall und gekippte Dunkelfeldbeleuchtung 5.11.2 Optimale Probendicke 5.12 Einfluss der Objektkippung an Grenzflächen 5.13 Präparationseinflüsse 5.13.1 Curtaining 5.13.2 Relaxation in FIB-Lamellen 5.13.3 Amorphe Oberflächen 5.13.4 Verbiegung von FIB-Lamellen 5.14 Zusammenfassung 6 Verspannungsmessungen an aktuellen Halbleiterstrukturen 6.1 Gitterdeformation in SiGe-Schicht auf Si-Substrat 6.2 Mit SiGe verspannte Transistoren auf Bulk-Silizium 6.2.1 Transistorstrukturen mit SiGe-S-Source/Drain-Gebieten 6.2.2 Vergleich von Dunkelfeldholographie und Nanobeugung 6.3 Mit SiGe verspannte Transistoren auf Silicon-on-Insulator (SOI) 6.4 Transistorstrukturen mit verspannten Deckschichten 6.4.1 Erste Experimente 6.4.2 Mittels Wolframschicht verspannte Teststruktur 6.4.3 Mittels TPEN-Schicht verspannter n-MOSFET 6.4.4 Mittels CPEN-Schicht und SiGe verspannter p-MOSFET 6.5 Zusammenfassung 7 Zusammenfassung / Dark-field off-axis electron holography (DFH) in a transmission electron microscope is based on the interference of a diffracted wave emanating from adjacent strained and unstrained sample areas to form a dark-field hologram, from which the phase of the diffracted wave can be reconstructed. Since the gradient of the phase parallel to the diffraction vector yields the lattice strain in this direction, a two-dimensional strain map can be derived. Therefore, DFH is considered to be a promising technique for strain metrology by semiconductor industry, especially for local strain measurements in the transistor channel. In particular, DFH offers better lateral resolution than scanning TEM-techniques based on electron diffraction with small focused electron probe like nano-beam diffraction. However, DFH is not yet available as a standard technique for strain metrology. Research is still needed to apply the method to complex devices. Using the example of a strained cosine lattice the phase modulation due to lattice distortions is discussed. In addition, modulation of the diffracted wave is approximated in two-beam diffraction condition. Adjustments of DFH in the TEM provide strain measurements with 3...5 nm lateral resolution at 200 nm field of view or 8...10 nm lateral resolution at 800 nm field of view. During recording and reconstruction of dark-field holograms several artifacts appear, for instance Fresnel diffraction, defective detector pixels, distortions of projective lenses or detector optics. Since they limit strain evaluation, suitable methods to either avoid or correct these artifacts are discussed. Sample preparation with focused ion beam (FIB) causes surface damage. Comparing DFH results with finite-element simulations reveals a deviation of 10% between simulation and experiment at 120...160 nm sample thickness due to surface relaxation. FIB-induced thickness variations (curtaining) lead to comparable deviations. Applicability of DFH for strain metrology is analyzed on several modern device structures. Strain measurements of SiGe-layers on Si-substrate correspond quite well with an analytic model. A residual deviation of 10% can be explained by surface relaxation close to the SiGe/Si-interface. Transistors strained by SiGe-source/drain serve as test objects for a comparison of DFH with nano-beam diffraction. Though both techniques reveal identical results, DFH is able to map the complete two-dimensional strain field, whereas nano-beam diffraction can only provide single line-scans. Strain mapping in silicon-on-insulator (SOI) is limited by the different crystal orientation (miscut) between the SOI layer and the Si-substrate, which serves as reference. Strain values in the SOI show an off-set of 0.2% in comparison to the unstrained Si-substrate. The miscut between SOI and Si-substrate is estimated to 0.3°. In transistor devices with tensile stress overlayers DFH is able to measure +0.3% tensile strain in excellent agreement with finite-element simulations. In devices with compressive overlayers and SiGe-source/drain a strain value of only -(0.1+/-0.05)% can be determined in the transistor channel 5nm beneath the gate oxide.:1 Einleitung 2 Grundlagen der Elastizitätstheorie 2.1 Der Verzerrungstensor 2.2 Der Spannungstensor 2.3 Das Hooke’sche Gesetz 2.4 Zusammenfassung 3 Mechanisch verspannte Transistoren 3.1 Der MOSFET 3.2 Techniken zur Spannungserzeugung 3.2.1 SiGe- und Si:C-Source/Drain-Gebiete 3.2.2 Verspannte Deckschichten 3.3 Mechanische Verspannung und Ladungsträgerbeweglichkeit 3.4 Zusammenfassung 4 Beugungswelle und geometrische Phase 4.1 Transmissionselektronenmikroskopie 4.1.1 Aufbau eines Transmissionselektronenmikroskops 4.1.2 Hellfeld- und Dunkelfeldabbildung 4.2 Beugung am Kristallgitter 4.2.1 Bragg- und Laue-Beugungsbedingung 4.2.2 Ewaldkugel 4.2.3 Beugungswelle 4.3 Geometrische Phase 4.3.1 Geometrische Phase in kinematischer Näherung 4.3.2 Veranschaulichung der geometrischen Phase am Elementargitter 4.3.3 Grenzen der geometrische Phase 4.3.4 Geometrische Phase bei dynamischer Streuung 4.3.4.1 Streuung im deformierten Kristall 4.3.4.2 Zweistrahlfall im deformierten Kristall 4.3.4.3 Analytische Lösung für z-unabhängige Verschiebung 4.3.4.4 Näherungslösung für z-abhängige Verschiebung 4.3.4.5 Konsequenzen für die Deformationsmessung 4.4 Zusammenfassung 5 Spezialverfahren der Dunkelfeld off-axis Elektronenholographie 5.1 Aufnahme von Dunkelfeldhologrammen 5.1.1 Voraussetzungen 5.1.2 Versuchsaufbau 5.1.3 Rekonstruktion der Beugungswelle 5.2 Bestimmung der Gitterdeformation 5.2.1 Gitterdeformation in g_ref-Richtung 5.2.2 Gitterdeformation in (x,y)-Ebene 5.3 Optimierung des Tecnai F20 Mikroskops für die Dunkelfeldholographie 5.3.1 Anforderungen 5.3.2 Limitierungen durch experimentellen Aufbau 5.3.3 Zusätzliche Freiheitsgrade mit Cs-Korrektor und Pseudo-Lorentz Linse 5.3.4 Verbleibende Limitierungen 5.3.4.1 Begrenzte Beleuchtungskippung 5.3.4.2 Defokussierte Blende in der hinteren Brennebene 5.4 Aufbereitung und Rekonstruktion von Dunkelfeldhologrammen 5.4.1 Beseitigen fehlerhafter Pixel 5.4.2 Entfernen der Fresnelschen Beugungssäume 5.4.3 Wahl der Rekonstruktionsmaske 5.4.4 Filterung der Hologrammintensität mit Wiener-Filter 5.5 Einfluss und Korrektur von Verzeichnungen 5.5.1 Verzeichnungskorrektur mittels Leerwelle 5.5.2 Verzeichnungskorrektur mittels Verzeichnungskarte 5.5.3 Vergleich der Korrekturmethoden 5.6 Vorzeichen der Beugungswelle 5.7 Numerische Ableitung der Phase und Rauschen 5.8 Kalibrierung von Phasen- und Deformationskarte 5.9 Glättung der Dehnungskarte 5.10 Aufzeichnung und Rekonstruktion einer Dunkelfeldhologrammserie 5.11 Maximierung der Intensität in der Beugungswelle 5.11.1 Zweistrahlfall und gekippte Dunkelfeldbeleuchtung 5.11.2 Optimale Probendicke 5.12 Einfluss der Objektkippung an Grenzflächen 5.13 Präparationseinflüsse 5.13.1 Curtaining 5.13.2 Relaxation in FIB-Lamellen 5.13.3 Amorphe Oberflächen 5.13.4 Verbiegung von FIB-Lamellen 5.14 Zusammenfassung 6 Verspannungsmessungen an aktuellen Halbleiterstrukturen 6.1 Gitterdeformation in SiGe-Schicht auf Si-Substrat 6.2 Mit SiGe verspannte Transistoren auf Bulk-Silizium 6.2.1 Transistorstrukturen mit SiGe-S-Source/Drain-Gebieten 6.2.2 Vergleich von Dunkelfeldholographie und Nanobeugung 6.3 Mit SiGe verspannte Transistoren auf Silicon-on-Insulator (SOI) 6.4 Transistorstrukturen mit verspannten Deckschichten 6.4.1 Erste Experimente 6.4.2 Mittels Wolframschicht verspannte Teststruktur 6.4.3 Mittels TPEN-Schicht verspannter n-MOSFET 6.4.4 Mittels CPEN-Schicht und SiGe verspannter p-MOSFET 6.5 Zusammenfassung 7 Zusammenfassung
13

Verspannungstechniken zur Leistungssteigerung von SOI-CMOS-Transistoren

Flachowsky, Stefan 25 October 2010 (has links)
Mit dem Erreichen der Grenzen der konventionellen MOSFET-Skalierung werden neue Techniken untersucht, um die Leistungsfähigkeit der CMOS-Technologie dem bisherigen Trend folgend weiter zu steigern. Einer dieser Ansätze ist die Verwendung mechanischer Verspannungen im Transistorkanal. Mechanische Verspannungen führen zu Kristalldeformationen und ändern die elektronische Bandstruktur von Silizium, so dass n- und p-MOSFETs mit verspannten Kanälen erhöhte Ladungsträgerbeweglichkeiten und demzufolge eine gesteigerte Leistungsfähigkeit aufweisen. Die vorliegende Arbeit beschäftigt sich mit den Auswirkungen mechanischer Verspannungen auf die elektronischen Eigenschaften planarer Silicon-On-Insulator-MOSFETs für Höchstleistungsanwendungen sowie mit deren Optimierung und technologischen Begrenzungen. Der Effekt der Verspannung auf die Bandstruktur von Silizium und die Ladungsträgerbeweglichkeit wird zunächst systematisch mit Hilfe der empirischen Pseudopotenzialmethode und der Deformationspotenzialtheorie untersucht. Verringerte Streuraten und kleinere effektive Massen als Folge der Aufspaltung der Energiebänder sowie von Bandverformungen sind der Hauptgrund für eine erhöhte Löcher- bzw. Elektronenbeweglichkeit. Die unterschiedlichen Konzepte zur Erzeugung der Verspannung werden kurz rekapituliert. Der Schwerpunkt der Untersuchungen liegt auf den verspannten Deckschichten, den Si1-xGex- bzw. Si1-yCy- Source/Drain-Gebieten, den verspannungsspeichernden Prozessen und den verspannten Substraten. Die starke Abhängigkeit dieser Verspannungstechniken von der Transistorstruktur macht die Nutzung numerischer Simulationen unabdingbar. So werden die Auswirkungen von Variationen der Transistorgeometrie sowie von Prozessparametern im Hinblick auf die Verspannung und die Drainstromänderungen der Transistoren neben den Messungen am gefertigten Transistor auch anhand numerischer Simulationen dargestellt und verglichen. Wesentliche Parameter für eine erhöhte Verspannung werden bestimmt und technologische Herausforderungen bei der Prozessintegration diskutiert. Die durchgeführten Simulationen und das erlangte Verständnis der Wirkungsweise der Verspannungstechniken ermöglichen es, das Potenzial dieser Verspannungstechniken für weitere Leistungssteigerungen in zukünftigen Technologiegenerationen abzuschätzen. Dadurch ist es möglich, die Prozessbedingungen und die Eigenschaften der fertigen Bauelemente im Hinblick auf eine gesteigerte Leistungsfähigkeit hin zu optimieren. Mit der weiteren Verkleinerung der Strukturgrößen der Bauelemente wird der zunehmende Einfluss der parasitären Source/Drain-Widerstände als Begrenzung der Effektivität der Verspannungstechniken identifiziert. Anschließend werden die Wechselwirkungen zwischen den einzelnen Verspannungstechniken hervorgehoben bzw. die gegebenenfalls auftretenden Einschränkungen angesprochen. Abschließend wird das Transportverhalten sowohl im linearen ohmschen Bereich als auch unter dem Einfluss hoher elektrischer Feldstärken analysiert und die deutlichen Unterschiede für die Leistungssteigerungen der verspannten n- und p-MOSFETs begründet. / As conventional MOSFET scaling is reaching its limits, several novel techniques are investigated to extend the CMOS roadmap. One of these techniques is the introduction of mechanical strain in the silicon transistor channel. Because strain changes the inter-atomic distances and thus the electronic band structure of silicon, ntype and p-type transistors with strained channels can show enhanced carrier mobility and performance. The purpose of this thesis is to analyze and understand the effects of strain on the electronic properties of planar silicon-on-insulator MOSFETs for high-performance applications as well as the optimization of various stress techniques and their technological limitations. First, the effect of strain on the electronic band structure of silicon and the carrier mobility is studied systematically using the empirical pseudopotential method and the deformation potential theory. Strain-induced energy band splitting and band deformations alter the electron and hole mobility through modulated effective masses and modified scattering rates. The various concepts for strain generation inside the transistor channel are reviewed. The focus of this work is on strained overlayer films, strained Si1-xGex and Si1-yCy in the source/drain regions, stress memorization techniques and strained substrates. It is shown, that strained silicon based improvements are highly sensitive to the device layout and geometry. For that reason, numerical simulations are indispensable to analyze the efficiency of the strain techniques to transfer strain into the channel. In close relation with experimental work the results from detailed simulation studies including parameter variations and material analyses are presented, as well as a thorough investigation of critical parameters to increase the strain in the transistor channel. Thus, the process conditions and the properties of the fabricated devices can be optimized with respect to higher performance. In addition, technological limitations are discussed and the potential of the different strain techniques for further performance enhancements in future technology generations is evaluated. With the continuing reduction in device dimensions the detrimental impact of the parasitic source/drain resistance on device performance is quantified and projected to be the bottleneck for strain-induced performance improvements. Next, the effects from a combination of individual strain techniques are studied and their interactions or possible restrictions are highlighted. Finally, the transport properties in the low-field transport regime as well as under high electrical fields are analyzed and the notable differences between strained n-type and p-type transistors are discussed.
14

Energiewandlersystem für den Betrieb von autarken Sensoren in Fahrzeugen

Naumann, Gunther 19 December 2003 (has links)
Zur Verminderung der Kosten und zur Erhöhung der Zuverlässigkeit ist es zukünftig erforderlich, den Verkabelungsaufwand bei Sensoren im Kraftfahrzeug zu senken. Ein Ansatz ist der so genannte autarke Sensor, der seine Hilfsenergie drahtlos aus dem Umfeld gewinnt und seine gewonnen Messdaten ebenfalls drahtlos an einen Kommunikationspunkt überträgt. In der vorliegenden Dissertation wurde die autarke Energiegewinnung für Sensoren anhand mechanisch / elektrischer Energiewandlersysteme untersucht, die eine von Kabelverbindungen unabhängige Energieversorgung des Sensors ermöglichen sollen. Für ein System, welches aus einem translatorischen Schwinger mit magnetischer Federung und einer Anordnung von Induktionsspulen ohne Eisenkreis besteht, wurden theoretische und praktische Untersuchungen durchgeführt. Ausgehend von der, die Bewegung des Systems beschreibenden Differentialgleichung wurden die Einflüsse verschiedener Federungs- und Dämpfungskräfte untersucht. Daraus wurde eine effektive Schwingungsgleichung abgeleitet und hinsichtlich der Amplitude und der Phase gelöst. Die umgesetzte elektrische Leistung des Wandlers wurde aus dem Realteil des Stromflusses abgeleitet. Mit einem realen Fahrzeug wurden Testfahrten durchgeführt, um verschiedene signifikante Fahrbahndaten zu erhalten. Mit diesen Prozessparametern erfolgten später Messungen im Labor. Dafür wurde ein Schwingprüfstand aufgebaut und mehrere Funktionsmuster von Energiewandlersystemen untersucht. / In the future a decrease in sensor cabling inside vehicles becomes of greater importance to reduce cost and increase reliability. One approach is the so called autarkic sensor that generates energy wireless from the sensor's environment and transmits the derived measuring data also wireless to a communication node. Purpose of this dissertation is to discuss the autarkic energy recovery sensors based on a mechanical to electrical conversion which should allow a cable less energy supply. Theoretical and practical tests where made for a system which consists out of a translatory vibration with magnetic suspension and coreless coils. Starting from the differential equations describing the movement of the system, the influence of different ways of suspension and damping forces where investigated. As a result, the actual equation of oscillation was derived and solved with respect to amplitude and phase. The gained electrical power was derived from the real part of the current. Multiple test runs inside a car where performed to obtain some realistic measurement values. Based on those measurements, a test stand was set up inside the laboratory which should simulate normal road conditions. Using this test stand, multiple functional models of energy converting systems were investigated.
15

Shapeable microelectronics

Karnaushenko, Daniil 04 July 2016 (has links) (PDF)
This thesis addresses the development of materials, technologies and circuits applied for the fabrication of a new class of microelectronic devices that are relying on a three-dimensional shape variation namely shapeable microelectronics. Shapeable microelectronics has a far-reachable future in foreseeable applications that are dealing with arbitrarily shaped geometries, revolutionizing the field of neuronal implants and interfaces, mechanical prosthetics and regenerative medicine in general. Shapeable microelectronics can deterministically interface and stimulate delicate biological tissue mechanically or electrically. Applied in flexible and printable devices shapeable microelectronics can provide novel functionalities with unmatched mechanical and electrical performance. For the purpose of shapeable microelectronics, novel materials based on metallic multilayers, photopatternable organic and metal-organic polymers were synthesized. Achieved polymeric platform, being mechanically adaptable, provides possibility of a gentle automatic attachment and subsequent release of active micro-scale devices. Equipped with integrated electronic the platform provides an interface to the neural tissue, confining neural fibers and, if necessary, guiding the regeneration of the tissue with a minimal impact. The self-assembly capability of the platform enables the high yield manufacture of three-dimensionally shaped devices that are relying on geometry/stress dependent physical effects that are evolving in magnetic materials including magentostriction and shape anisotropy. Developed arrays of giant magnetoimpedance sensors and cuff implants provide a possibility to address physiological processes locally or distantly via magnetic and electric fields that are generated deep inside the organism, providing unique real time health monitoring capabilities. Fabricated on a large scale shapeable magnetosensory systems and nanostructured materials demonstrate outstanding mechanical and electrical performance. The novel, shapeable form of electronics can revolutionize the field of mechanical prosthetics, wearable devices, medical aids and commercial devices by adding novel sensory functionalities, increasing their capabilities, reducing size and power consumption.
16

Shapeable microelectronics

Karnaushenko, Daniil 08 June 2016 (has links)
This thesis addresses the development of materials, technologies and circuits applied for the fabrication of a new class of microelectronic devices that are relying on a three-dimensional shape variation namely shapeable microelectronics. Shapeable microelectronics has a far-reachable future in foreseeable applications that are dealing with arbitrarily shaped geometries, revolutionizing the field of neuronal implants and interfaces, mechanical prosthetics and regenerative medicine in general. Shapeable microelectronics can deterministically interface and stimulate delicate biological tissue mechanically or electrically. Applied in flexible and printable devices shapeable microelectronics can provide novel functionalities with unmatched mechanical and electrical performance. For the purpose of shapeable microelectronics, novel materials based on metallic multilayers, photopatternable organic and metal-organic polymers were synthesized. Achieved polymeric platform, being mechanically adaptable, provides possibility of a gentle automatic attachment and subsequent release of active micro-scale devices. Equipped with integrated electronic the platform provides an interface to the neural tissue, confining neural fibers and, if necessary, guiding the regeneration of the tissue with a minimal impact. The self-assembly capability of the platform enables the high yield manufacture of three-dimensionally shaped devices that are relying on geometry/stress dependent physical effects that are evolving in magnetic materials including magentostriction and shape anisotropy. Developed arrays of giant magnetoimpedance sensors and cuff implants provide a possibility to address physiological processes locally or distantly via magnetic and electric fields that are generated deep inside the organism, providing unique real time health monitoring capabilities. Fabricated on a large scale shapeable magnetosensory systems and nanostructured materials demonstrate outstanding mechanical and electrical performance. The novel, shapeable form of electronics can revolutionize the field of mechanical prosthetics, wearable devices, medical aids and commercial devices by adding novel sensory functionalities, increasing their capabilities, reducing size and power consumption.

Page generated in 0.1146 seconds