31 |
Orienting Moduli Spaces of Flow Trees for Symplectic Field TheoryKarlsson, Cecilia January 2016 (has links)
This thesis consists of three scientific papers dealing with invariants of Legendrian and Lagrangian submanifolds. Besides the scientific papers, the thesis contains an introduction to contact and symplectic geometry, and a brief outline of Symplectic field theory with focus on Legendrian contact homology. In Paper I we give an orientation scheme for moduli spaces of rigid flow trees in Legendrian contact homology. The flow trees can be seen as the adiabatic limit of sequences of punctured pseudo-holomorphic disks with boundary on the Lagrangian projection of the Legendrian. So to equip the trees with orientations corresponds to orienting the determinant line bundle of the dbar-operator over the space of Lagrangian boundary conditions on the punctured disk. We define an orientation of this line bundle and prove that it is well-defined in the limit. We also prove that the chosen orientation scheme gives rise to a combinatorial algorithm for computing the orientation of the trees, and we give an explicit description of this algorithm. In Paper II we study exact Lagrangian cobordisms with cylindrical Legendrian ends, induced by Legendrian isotopies. We prove that the combinatorially defined DGA-morphisms used to prove invariance of Legendrian contact homology for Legendrian knots over the integers can be derived analytically. This is proved using the orientation scheme from Paper I together with a count of abstractly perturbed flow trees of the Lagrangian cobordisms. In Paper III we prove a flexibility result for closed, immersed Lagrangian submanifolds in the standard symplectic plane.
|
32 |
On the Riemannian geometry of Seiberg-Witten moduli spacesBecker, Christian January 2005 (has links)
<p>In this thesis, we give two constructions for Riemannian metrics on
Seiberg-Witten moduli spaces. Both these constructions are
naturally induced from the L2-metric on the configuration space.
The construction of the so called quotient L2-metric is very similar
to the one construction of an L2-metric on Yang-Mills moduli spaces as
given by Groisser and Parker. To construct a Riemannian metric on
the total space of the Seiberg-Witten bundle in a similar way, we define the reduced gauge group as a subgroup of the gauge group. We show, that the quotient of the premoduli space by the reduced gauge group is
isomorphic as a U(1)-bundle to the quotient of the premoduli space by the based gauge group. The total space of this new representation of the Seiberg-Witten bundle carries a natural quotient L2-metric, and the bundle projection is a
Riemannian submersion with respect to these metrics. We compute explicit formulae for the sectional curvature of the moduli space in terms of Green operators of the elliptic complex associated with a monopole. Further, we construct a Riemannian metric on the cobordism between moduli spaces for
different perturbations. The second construction of a Riemannian metric on
the moduli space uses a canonical global gauge fixing, which represents the total space of the Seiberg-Witten bundle as a finite dimensional submanifold of the configuration space.</p>
<p>We consider the Seiberg-Witten moduli space on a simply
connected Käuhler surface. We show that the moduli space
(when nonempty) is a complex projective space, if the perturbation
does not admit reducible monpoles, and that the moduli space consists of a single point otherwise. The Seiberg-Witten bundle can then be identified with the Hopf fibration.
On the complex projective plane with a special Spin-C structure, our Riemannian metrics on the
moduli space are Fubini-Study metrics. Correspondingly, the metrics on
the total space of the Seiberg-Witten bundle are Berger
metrics. We show that the diameter of the moduli space shrinks to 0 when the perturbation approaches the wall of reducible perturbations.
Finally we show, that the quotient L2-metric on the Seiberg-Witten moduli space
on a Kähler surface is a Kähler metric.</p> / <p>In dieser Dissertationsschrift geben wir zwei Konstruktionen Riemannscher Metriken auf Seiberg-Witten-Modulräumen an. Beide Metriken werden in natürlicher Weise durch die L2-Metrik des Konfiguartionsraumes induziert. Die Konstruktion der sogenannten Quotienten-L2-Metrik entspricht der durch Groisser und Parker angegebenen Konstruktion einer L2-Metrik auf Yang-Mills-Modulräumen. Zur Konstruktion einer Quotienten-Metrik auf dem Totalraum des Seiberg-Witten-Bündels führen wir die sogenannte reduzierte Eichgruppe ein. Wir zeigen, dass der Quotient des Prämodulraumes nach der reduzierten Eichgruppe als U(1)-Bündel isomorph ist zu dem Quotienten nach der basierten Eichgruppe. Dadurch trägt der Totalraum des Seiberg-Witten Bündels eine natürliche Quotienten-L2-Metrik, bzgl. derer die Bündelprojektion eine Riemannsche Submersion ist. Wir berechnen explizite Formeln für die Schnittrümmung des Modulraumes in Ausdrücken der Green-Operatoren des zu einem Monopol gehörigen elliptischen Komplexes. Ferner konstruieren wir eine Riemannsche Metrik auf dem Kobordismus zwischen Modulräumen zu verschiedenen Störungen. Die zweite Konstruktion einer Riemannschen Metrik auf Seiberg-Witten-Modulräumen benutzt eine kanonische globale Eichfixierung, vermöge derer der Totalraum des Seiberg-Witten-Bündels als endlich-dimensionale Untermannigfaltigkeit des Konfigurationsraumes dargestellt werden kann.</p>
<p>Wir betrachten speziell die Seiberg-Witten-Modulräume auf einfach zusammenhängenden Kähler-Mannigfaltigkeiten. Wir zeigen, dass der
Seiberg-Witten-Modulraum (falls nicht-leer) im irreduziblen Fall ein komplex projektiver Raum its und im reduziblen Fall aus einem einzelnen Punkt besteht.
Das Seiberg-Witten-Bündel läßt sich mit der Hopf-Faserung identifizieren. Die L2-Metrik des Modulraumes auf der komplex projektiven Fläche CP2 (mit einer speziellen Spin-C-Struktur) ist die Fubini-Study-Metrik; entsprechend sind die Metriken auf dem Totalraum Berger-Metriken. Wir zeigen, dass der Durchmesser des Modulraumes gegen 0 konvergiert, wenn die Störung sich dem reduziblen Fall nähert. Schließlich zeigen wir, dass die Quotienten-L2-Metrik auf dem Seiberg-Witten-Modulraum einer Kählerfläche eine Kähler-Metrik ist.</p>
|
33 |
Semistable Graph Homology / Semistable Graph HomologyZúñiga, Javier 25 September 2017 (has links)
Using the orbicell decomposition of the Deligne-Mumford compactification of the moduli space of Riemann surfaces studied before by the author, a chain complex based on semistable ribbon graphs is constructed which is an extension of the Konsevich’s graph homology. / En este trabajo mediante la descomposicion orbicelular de la compacticacion de Deligne-Mumford del espacio de moduli de supercies de Riemann (estudiada antes por el autor) construimos un complejo basado en grafos de cinta semiestables, lo cual constituye una extension de la homologa de grafos de Kontsevich.
|
34 |
Espaços de Moduli de complexos quadráticos e de suas superfícies singularesCruz, Juan Antonio Pacheco 19 November 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-05-26T14:32:26Z
No. of bitstreams: 1
juanantoniopachecocruz.pdf: 674238 bytes, checksum: 5fbe428a7cb6ca56e7ceb6582082376f (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-05-26T15:14:36Z (GMT) No. of bitstreams: 1
juanantoniopachecocruz.pdf: 674238 bytes, checksum: 5fbe428a7cb6ca56e7ceb6582082376f (MD5) / Made available in DSpace on 2017-05-26T15:14:36Z (GMT). No. of bitstreams: 1
juanantoniopachecocruz.pdf: 674238 bytes, checksum: 5fbe428a7cb6ca56e7ceb6582082376f (MD5)
Previous issue date: 2015-11-19 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Um complexo de retas quadrático, ou simplesmente um complexo quadrático, é um conjunto de retas do espaço projetivo Pn (n = 3, no nosso caso) que satisfazem uma equação quadrática. Um complexo quadrático também pode ser considerado como um feixe de quádricas e portanto tem um símbolo de Segre bem definido. Sabe-se que as retas de um dado complexo, passando por um ponto p ∈P3, formam em geral um cone quadrático. Os pontos nos quais esses cones são a união de dois planos formam uma superfície em P3, chamada Superfície Singular do complexo. O objetivo desse trabalho é, fixado um símbolo de Segre, construir o espaço de Moduli dos complexos quadráticos, o espaço de Moduli das superfícies singulares desses complexos e então estudar a relação entre esse espaços. / A quadratic line complex, or a quadratic complex, is by definition a set of lines in a projective space Pn (n = 3, in our case) which satisfy a given quadratic equation. A quadratic complex can also be considered as a pencil of quadrics. Hence, it has a well defined Segre symbol. It is a classical fact that lines of a given complex through any point p ∈P3 form in general a quadratic cone. The points such that theses cones break up into two planes form a surface, the Singular Surface of the complex. The objective of this work is, for a fixed Segre symbol, to construct the Moduli space of quadratic complex, the Moduli space of corresponding singular surfaces and to study the relation between them.
|
35 |
Courbes intégrales : transcendance et géométrie / Integral curves : transcendence and geometryJardim da Fonseca, Tiago 12 December 2017 (has links)
Cette thèse est consacrée à l'étude de quelques questions soulévées par le théorème de Nesterenko sur l'indépendance algébrique de valeurs des séries d'Eisentein E₂, E₄, E₆. Elle est divisée en deux parties.Dans la première partie, constituée des deux premiers chapitres, on généralise les équations différentielles algébriques satisfaites par les séries d'Eisenstein qui se trouvent dans le coeur de la méthode de Nesterenko, les équations de Ramanujan. Ces généralisations, appélées 'équations de Ramanujan supérieures', sont obtenues géométriquement à partir de champs de vecteurs définis, de manière naturelle, sur certains espaces de modules de variétés abéliennes. Afin de justifier l'intérêt des équations de Ramanujan supérieures en théorie de transcendance, on montre aussi que les valeurs d'une solution particulière remarquable de ces équations sont liées aux 'périodes' de variétés abéliennes.Dans la deuxième partie (troisième chapitre), on étudie la méthode de Nesterenko per se. On établit un énoncé géométrique, contenant le théorème de Nesterenko, sur la transcendance de valeurs d'applications holomorphes d'un disque vers une variété quasi-projective sur $overline{mathbf{Q}}$ définies comme des courbes intégrales d'un champ de vecteurs. Ces applications doivent aussi satisfaire une propriété d'intégralité, ainsi qu'une condition de croissance et une forme renforcée de la densité de Zariski, conditions qui sont naturelles pour des courbes intégrales de champs de vecteurs. / This thesis is devoted to the study of some questions motivated by Nesterenko's theorem on the algebraic independence of values of Eisenstein series E₂, E₄, E₆. It is divided in two parts.In the first part, comprising the first two chapiters, we generalize the algebraic differential equations satisfied by Eisenstein series that lie in the heart of Nesterenko's method, the Ramanujan equations. These generalizations, called 'higher Ramanujan equations', are obtained geometrically from vector fields naturally defined on certain moduli spaces of abelian varieties. In order to justify the interest of the higher Ramanujan equations in Transcendence Theory, we also show that values of a remarkable particular solution of these equations are related to 'periods' of abelian varieties.In the second part (third chapter), we study Nesterenko's method per se. We establish a geometric statement, containing the theorem of Nesterenko, on the transcendence of values of holomorphic maps from a disk to a quasi-projective variety over $overline{mathbf{Q}}$ defined as integral curves of some vector field. These maps are required to satisfy some integrality property, besides a growth condition and a strong form of Zariski-density that are natural for integral curves of algebraic vector fields.
|
36 |
K3 surfaces and moduli of holomorphic differentialsBarros, Ignacio 10 July 2018 (has links)
In dieser Arbeit behandeln wir die birationale Geometrie verschiedener Modulräume; die Modulräume von Kurven mit einem k-Differential mit vorgeschierbenen Nullen, besser bekannt als Strata von Differenzialen, Moduln von K3 Flächen mit markierten Punkten und Moduln von Kurven. Für bestimmte Geschlechter nennen wir Abschätzungen der Kodaira-Dimension, konstruieren unirationale Parametrisierungen, rationale deckende Kurven und unterschiedliche birationale Modelle.
In Kapitel 1 führen wir die zu untersuchenden Objekte ein und geben einen kurzen Überblick ihrer wichtigsten Eigenschaften und offenen Problemen. In Kapitel 2 konstruieren wir einen Hilfsmodulraum, der als Brücke zwischen bestimmten finiten Quotienten von Mgn für kleines g und den Moduln der polarisierten K3 Flächen vom Geschlecht 11 dient. Wir entwickeln die Deformationstheorie, die nötig ist, um die Eigenschaften und die oben genannten Modulräume zu erforschen.
In Kapitel 3 bedienen wir uns dieser Werkzeuge, um birationale Modelle für Moduln polarisierter K3 Flächen vom Geschlecht 11 mit markierten Punkten zu konstruieren. Diese nutzen wir, um Resultate über die Kodaira-Dimension herzuleiten. Wir beweisen, dass der Modulraum von polarisierten K3 Flächen vom Geschlecht 11 mit n markierten Punkten unirational ist, falls n<=6, und uniruled, falls n<=7. Wir beweisen auch, dass die Kodaira-Dimension von Modulraum von polarisierten K3 Flächen vom Geschlecht 11 mit n markierten Punkten nicht-negativ ist für n>= 9. Im letzten Kapitel gehen wir noch auf die fehlenden Fälle der Kodaira-Klassifizierung von Mgnbar ein.
Schliesslich behandeln wir in Kapitel 4 die birationale Geometrie mit Blick auf die Strata von holomorphen und quadratischen Differentialen. Wir zeigen, dass die Strata holomorpher und quadratischer Differentiale von niedrigem Geschlecht uniruled sind, indem wir rationale Kurven mit pencils auf K3 und del Pezzo Flächen konstruieren. Durch das Beschränken des Geschlechts 3<= g<=6 bilden wir projektive Bündel über rationale Varietäten, die die holomorphe Strata mit maximaler Länge g-1 dominieren. Also zeigen wir auch, dass diese Strata unirational sind. / In this thesis we investigate the birational geometry of various moduli spaces; moduli spaces of curves together with a k-differential of prescribed vanishing, best known as strata of differentials, moduli spaces of K3 surfaces with marked points, and moduli spaces of curves. For particular genera, we give estimates for the Kodaira dimension, construct unirational parameterizations, rational covering curves, and different birational models.
In Chapter 1 we introduce the objects of study and give a broad brush stroke about their most important known features and open problems. In Chapter 2 we construct an auxiliary moduli space that serves as a bridge between certain finite quotients of Mgn for small g and the moduli space of polarized K3 surfaces of genus eleven. We develop the deformation theory necessary to study properties of the mentioned moduli space.
In Chapter 3 we use this machinery to construct birational models for the moduli spaces of polarized K3 surfaces of genus eleven with marked points and we use this to conclude results about the Kodaira dimension. We prove that the moduli space of polarized K3 surfaces of genus eleven with n marked points is unirational when n<= 6 and uniruled when n<=7. We also prove that the moduli space of polarized K3 surfaces of genus eleven with n marked points has non-negative Kodaira dimension for n>= 9. In the final section, we make a connection with some of the missing cases in the Kodaira classification of Mgnbar.
Finally, in Chapter 4 we address the question concerning the birational geometry of strata of holomorphic and quadratic differentials. We show strata of holomorphic and quadratic differentials to be uniruled in small genus by constructing rational curves via pencils on K3 and del Pezzo surfaces respectively. Restricting to genus 3<= g<=6 we construct projective bundles over rational varieties that dominate the holomorphic strata with length at most g-1, hence showing in addition, these strata are unirational.
|
37 |
Geometric cycles on moduli spaces of curvesTarasca, Nicola 24 May 2012 (has links)
Ziel dieser Arbeit ist die explizite Berechnung gewisser geometrischer Zykel in Modulräumen von Kurven. In den letzten Jahren wurden Divisoren auf $\Mbar_{g,n}$ ausgiebig untersucht. Durch die Berechnung von Klassen in Kodimension 1 konnten wichtige Ergebnisse in der birationalen Geometrie der Räume $\Mbar_{g,n}$ erzielt werden. In Kapitel 1 geben wir einen Überblick über dieses Thema. Im Gegensatz dazu sind Klassen in Kodimension 2 im Großen und Ganzen unerforscht. In Kapitel 2 betrachten wir den Ort, der im Modulraum der Kurven vom Geschlecht 2k durch die Kurven mit einem Büschel vom Grad k definiert wird. Da die Brill-Noether-Zahl hier -2 ist, hat ein solcher Ort die Kodimension 2. Mittels der Methode der Testflächen berechnen wir die Klasse seines Abschlusses im Modulraum der stabilen Kurven. Das Ziel von Kapitel 3 ist es, die Klasse des Abschlusses des effektiven Divisors in $\Mbar_{6,1}$ zu berechnen, der durch punktierte Kurven [C, p] gegeben ist, für die ein ebenes Modell vom Grad 6 existiert, bei dem p auf einen Doppelpunkt abgebildet wird. Wie Jensen gezeigt hat, erzeugt dieser Divisor einen extremalen Strahl im pseudoeffektiven Kegel von $\Mbar_{6,1}$. Ein allgemeines Ergebnis über gewisse Familien von Linearsystemen mit angepasster Brill-Noether-Zahl 0 oder -1 wird eingeführt, um die Berechnung zu vervollständigen. / The aim of this thesis is the explicit computation of certain geometric cycles in moduli spaces of curves. In recent years, divisors of $\Mbar_{g,n}$ have been extensively studied. Computing classes in codimension one has yielded important results on the birational geometry of the spaces $\Mbar_{g,n}$. We give an overview of the subject in Chapter 1. On the contrary, classes in codimension two are basically unexplored. In Chapter 2 we consider the locus in the moduli space of curves of genus 2k defined by curves with a pencil of degree k. Since the Brill-Noether number is equal to -2, such a locus has codimension two. Using the method of test surfaces, we compute the class of its closure in the moduli space of stable curves. The aim of Chapter 3 is to compute the class of the closure of the effective divisor in $\M_{6,1}$ given by pointed curves [C,p] with a sextic plane model mapping p to a double point. Such a divisor generates an extremal ray in the pseudoeffective cone of $\Mbar_{6,1}$ as shown by Jensen. A general result on some families of linear series with adjusted Brill-Noether number 0 or -1 is introduced to complete the computation.
|
38 |
Surfaces des espaces homogènes de dimension 3 / Surfaces in 3-dimensional homogeneous spacesCartier, Sébastien 15 September 2011 (has links)
Ce mémoire porte sur l'étude des surfaces minimales et de courbure moyenne constante dans les espaces homogènes de dimension 3. Nous établissons les formules de Sym-Bobenko pour les surfaces de courbure moyenne constante 1/2 de H^2xR et minimales du groupe de Heisenberg, et donnons des exemples de construction de telles immersions par la méthode DPW. Nous montrons également que des propriétés de symétrie passent aux correspondances de type surfaces sœurs et cousines, ce qui entraîne l'existence de graphes entiers de courbure moyenne constante 1/2 à bout vertical dans H^2xR qui ne sont pas de révolution. Nous reprenons ensuite l'étude des bouts verticaux d'immersions de courbure moyenne constante 1/2 dans H^2xR. Nous munissons une famille de graphes entiers d'une structure de variété lisse et en déduisons un analogue pour H^2xR d'un théorème de A. E. Treibergs pour l'espace de Minkowski. Nous nous intéressons également aux déformations des anneaux de révolution. Une conséquence directe est l'existence d'anneaux immergés qui ne sont pas de révolution. Nous construisons notamment des anneaux dont les bouts n'ont pas le même axe. Enfin, nous décrivons les invariants de Nœther correspondant aux isométries des espaces homogènes pour les surfaces minimales et de courbure moyenne constante. Nous utilisons le formalisme de la géométrie de contact qui permet l'écriture de formules explicites en toute généralité, et nous étudions l'évolution des formes de Nœther sous l'action des isométries des espaces homogènes. Nous calculons ces invariants dans le cas des anneaux déformés de H^2xR, et dans celui des anneaux horizontaux du groupe de Heisenberg / The present dissertation deals with the study of minimal and constant mean curvature surfaces in 3-dimensional homogeneous spaces. In a first part, we establish Sym-Bobenko formulæ for constant mean curvature 1/2 surfaces in H^2xR and minimal surfaces in the Heisenberg group, and give examples of construction of such immersions using the DPW method. We also show that certain symmetry properties are shared by sister or cousin surfaces, which implies the existence non rotational entire graphs of constant mean curvature 1/2 in H^2xR with a vertical end.In a second part, we treat in more details the study of vertical ends of constant mean curvature 1/2 immersions in H^2xR. We endow a particular family entire graphs with a structure of smooth manifold and deduce an analogue in H^2xR to a theorem by A. E. Treibergs in the Minkowski space. We are also interested in deforming rotational annuli. A direct consequence is the existence of immersed non rotational annuli, and in particular we construct annuli with ends that do not have the same axis. Finally, we describe the Nœther invariants corresponding to isometries of the ambient homogeneous space for minimal and constant mean curvature surfaces. To do so, we use the formalism of contact geometry which allows general and explicit formulæ. We then study the evolution of Nœther form under the action of isometries in homogeneous spaces. We compute these invariants in the case of deformed annuli in H^2xR, and in the case of horizontal annuli in Heisenberg group
|
39 |
Geometry of moduli spaces of meromorphic connections on curves, Stokes data, wild nonabelian Hodge theory, hyperkahler manifolds, isomonodromic deformations, Painleve equations, and relations to Lie theory.Boalch, Philip 12 December 2012 (has links) (PDF)
Short summary of main work since 1999
|
40 |
Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes / Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordismsCazassus, Guillem 12 April 2016 (has links)
L'homologie instanton-symplectique est un invariant associé à une variété de dimension trois close orientée, qui a été dé?ni par Manolescu et Woodward, et qui correspond conjecturalement à une version symplectique d'une homologie des instantons de Floer. Dans cette thèse nous étudions le comportement de cet invariant sous l'effet d'une somme connexe, d'une chirurgie de Dehn, et d'un cobordisme de dimension quatre. Nous établissons une formule de Künneth pour la somme connexe : si Y et Y' désignent deux variétés closes orientées de dimension trois, l'homologie instanton-symplectique associée à leur somme connexe est isomorphe à la somme directe du produit tensoriel de leurs groupes d'homologie instantonsymplectique respectifs, et de leur produit de torsion (après décalage des degrés). Nous définissons des versions tordues de cette homologie, et prouvons un analogue de la suite exacte de Floer, reliant les groupes associés à une triade de chirurgie. Cette suite exacte nous permet de calculer le rang des groupes associés à des familles de variétés, notamment les revêtements doubles ramifiés d'entrelacs quasi-alternés, des chirurgies entières de grande pente le long de certains noeuds, ainsi que certaines variétés obtenues par plombage de fibrés en disques au-dessus de sphères. Nous définissons enfin des invariants pour des cobordismes de dimension 4 prenant la forme d'applications entre groupes d'homologie instantonsymplectique des bords, et prouvons que deux des morphismes intervenant dans la suite exacte de chirurgie s'interprètent comme de telles applications, associées aux cobordismes d'attachement d'anses. Nous donnons également un critère d'annulation pour de telles applications associées à des éclatements. / Symplectic instanton homology is an invariant for closed oriented three-manifolds, defined by Manolescu and Woodward, which conjecturally corresponds to a symplectic version of a variant of Floer's instanton homology. In this thesis we study the behaviour of this invariant under connected sum, Dehn surgery, and four-dimensional cobordisms. We prove a Künneth-type formula for the connected sum: let Y and Y' be two closed oriented three-manifolds, we show that the symplectic instanton homology of their connected sum is isomorphic to the direct sum of the tensor product of their symplectic instanton homology, and a shift of their torsion product. We define twisted versions of this homology, and then prove an analog of the Floer exact sequence, relating the invariants of a Dehn surgery triad. We use this exact sequence to compute the rank of the groups associated to branched double covers of quasi-alternating links, some plumbings of disc bundles over spheres, and some integral Dehn surgeries along certain knots. We then define invariants for four dimensional cobordisms as maps between the symplectic instanton homology of the two boundaries. We show that among the three morphisms in the surgery exact sequence, two are such maps, associated to the handle-attachment cobordisms. We also give a vanishing criteria for such maps associated to blow-ups.
|
Page generated in 0.0565 seconds