• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 38
  • 16
  • 13
  • 6
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 188
  • 65
  • 41
  • 32
  • 28
  • 26
  • 24
  • 23
  • 23
  • 22
  • 22
  • 22
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Simulation Of Monsoon Precipitation And Its Variation By Atmospheric General Circulation Models

Surendran, Sajani 07 1900 (has links) (PDF)
No description available.
62

Sediment Flux Through the Rio Grande River: A Monsoonal Effect

Hiatt, Troy C. 16 June 2010 (has links)
Climate has historically been recognized as an influence on sediment flux and deposition. The North American Monsoon is suggested as the forcing mechanism of deltaic progradational events of the Rio Grande River delta. Interpretations of reflection seismic profiles reveal that eustatic rise in sea-level from the Last Glacial Maximum to present is accompanied by several regressional events of the Rio Grande delta 5.5, 9.5, and 11.5 ka BP. Much of the migration of depositional facies within a delta system is forced by hinterland tectonics and base-level rise and fall. However, we suggest that the movement of facies within the Rio Grande delta system represent climate forcing as the most dominant influence on sediment deposition during this short time period. While dominance of climate influence is possible, the sensitivity of an increase in monsoon precipitation and its effect on sediment flux has not yet been tested. We test monsoonal effects using relationships between sediment flux, river discharge, and precipitation. Heavy water management and withdrawal and complexity of precipitation timing and events within the region make the relationship between precipitation and sediment flux difficult to quantify using modern data sources. Therefore, it is necessary to numerically simulate stream discharge to test potential sensitivities of the system to monsoonal precipitation using a stream discharge model. Precipitation input into the stream discharge model is gathered from a suite of climate model simulation outputs. Suspended sediment flux is derived from the outputs of the flow models using empirically derived sediment rating curves. Results of sediment modeling show that increased precipitation during the monsoon months of July-September, 6 ka BP increased monthly suspended sediment flux by 79 percent. The suite of climate models does not include 9 or 11 ka BP, but we suggest the monsoon may have been stronger during this time based on greater received insolation at these times. This study also shows that duration and intensity of monsoonal precipitation events can more greatly affect stream discharge and sediment flux than increased precipitation with constant storm intensity.
63

Severe Weather during the North American Monsoon and Its Response to Rapid Urbanization and a Changing Global Climate within the Context of High Resolution Regional Atmospheric Modeling

Luong, Thang Manh January 2015 (has links)
The North American monsoon (NAM) is the principal driver of summer severe weather in the Southwest U.S. With sufficient atmospheric instability and moisture, monsoon convection initiates during daytime in the mountains and later may organize, principally into mesoscale convective systems (MCSs). Most monsoon-related severe weather occurs in association with organized convection, including microbursts, dust storms, flash flooding and lightning. The overarching theme of this dissertation research is to investigate simulation of monsoon severe weather due to organized convection within the use of regional atmospheric modeling. A commonly used cumulus parameterization scheme has been modified to better account for dynamic pressure effects, resulting in an improved representation of a simulated MCS during the North American monsoon experiment and the climatology of warm season precipitation in a long-term regional climate model simulation. The effect of urbanization on organized convection occurring in Phoenix is evaluated in model sensitivity experiments using an urban canopy model (UCM) and urban land cover compared to pre-settlement natural desert land cover. The presence of vegetation and irrigation makes Phoenix a "heat sink" in comparison to its surrounding desert, and as a result the modeled precipitation in response to urbanization decreases within the Phoenix urban area and increase on its periphery. Finally, analysis of how monsoon severe weather is changing in association with observed global climate change is considered within the context of a series of retrospectively simulated severe weather events during the period 1948-2010 in a numerical weather prediction paradigm. The individual severe weather events are identified by favorable thermodynamic conditions of instability and atmospheric moisture (precipitable water). Changes in precipitation extremes are evaluated with extreme value statistics. During the last several decades, there has been intensification of organized convective precipitation, but these events occur with less frequency. A more favorable thermodynamic environment for monsoon thunderstorms is the driver of these changes, which is consistent with the broader notion that anthropogenic climate change is presently intensifying weather extremes worldwide.
64

Asian monsoon over mainland Southeast Asia in the past 25 000 years

Chabangborn, Akkaneewut January 2014 (has links)
The objective of this research is to interpret high-resolution palaeo-proxy data sets to understand the Asian summer monsoon variability in the past. This was done by synthesizing published palaeo-records from the Asian monsoon region, model simulation comparisons, and analysing new lake sedimentary records from northeast Thailand. Palaeo-records and climate modeling indicate a strengthened summer monsoon over Mainland Southeast Asia during the Last Glacial Maximum (LGM), compared to dry conditions in other parts of the Asian monsoon region. This can be explained by the LGM sea level low stand, which exposed Sundaland and created a large land-sea thermal contrast. Sea level rise ~19 600 years before present (BP), reorganized the atmospheric circulation in the Pacific Ocean and weakened the summer monsoon between 20 000 and 19 000 years BP. Both the Mainland Southeast Asia and the East Asian monsoon hydroclimatic records point to an earlier Holocene onset of strengthened summer monsoon, compared to the Indian Ocean monsoon. The asynchronous evolution of the summer monsoon and a time lag of 1500 years between the East Asian and the Indian Ocean monsoon can be explained by the palaeogeography of Mainland Southeast Asia, which acted as a land bridge for the movement of the Intertropical Convergence Zone. The palaeo-proxy records from Lake Kumphawapi compare well to the other data sets and suggest a strengthened summer monsoon between 10 000 and 7000 years BP and a weakening of the summer monsoon thereafter. The data from Lake Pa Kho provides a picture of summer monsoon variability over 2000 years. A strengthened summer monsoon prevailed between BC 170-AD 370, AD 800-960 and since AD 1450, and was weaker about AD 370-800 and AD 1300-1450. The movement of the mean position of the Intertropical Convergence Zone explains shifts in summer monsoon intensity, but weakening of the summer monsoon between 960 and 1450 AD could be affected by changes in the Walker circulation. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript..</p>
65

Evaluating the Impacts of Eastern North Pacific Tropical Cyclones on North America Utilizing Remotely Sensed and Reanalysis Data

Wood, Kimberly January 2012 (has links)
The eastern North Pacific Ocean has the highest density of tropical cyclone genesis events of any tropical basin in the world, and many of these systems form near land before moving westward. However, despite the level of tropical cyclone activity in this basin, and the proximity of the main genesis region to land, tropical cyclone behavior in the eastern North Pacific has been relatively unexplored. When synoptic conditions are favorable, moisture from northward-moving tropical cyclones can be advected into northern Mexico and the southwestern United States, often leading to the development of summertime thunderstorms during the North American monsoon season. An interaction with a mid-latitude trough produces the most rainfall, and the spatial variability of precipitation is greatly affected by the complex topography of the region. Moisture can be advected from a tropical cyclone around the subtropical ridge in place for much of the eastern North Pacific hurricane season and contribute to precipitation. This ridge, when it extends westward over the Pacific Ocean, can also prevent tropical cyclone moisture from impacting the southwestern United States. Northward-moving tropical cyclones often enter an environment with decreasing sea surface temperatures, increasing vertical wind shear, and meridional air temperature and moisture gradients. These key ingredients for extratropical transition are generally present in the eastern North Pacific, but the subtropical ridge prevents many named systems from moving northward, and only 9% of eastern North Pacific tropical cyclones from 1970 to 2011 complete ET according to cyclone phase space. However, over half of the systems that do not complete ET dissipate as cold core cyclones, a structural change that has yet to be explored in other tropical basins. It is difficult to estimate tropical cyclone intensity in a vast ocean area with few direct measurements available. The deviation angle variance technique, an objective method independent of the current techniques widely used today, was successfully applied to seven years of eastern North Pacific tropical cyclones. The RMS error of 13.5 kt for all seven years is comparable to the RMS errors found for other basins.
66

Flash Flood Causing Mechanisms of the North American Monsoon System in the Sonoran Desert

Bieda, Stephen W. January 2012 (has links)
The North American Monsoon System (NAMS) is a significant weather and climate phenomenon that brings critical rainfall to the southwestern United States and northwestern Mexico. As a result of the North American Monsoon Experiment, and research efforts surrounding the field campaign, the understanding of the NAMS has increased considerably over the last 15 years. In addition questions concerning potential flash flood causing mechanisms of the NAMS have not been thoroughly investigated. This dissertation is comprised of two papers that collectively address the aspects of the literary understanding of the NAMS as we know it today and conduct an investigation into the complex interactions between various weather systems that may influence the NAMS. In the first paper, a review of the major research of the NAMS literature since the last comprehensive review 15 years ago is conducted. The results of his review are assessed for where our understanding has been improved and where future research needs to be guided for purposes of the second paper. Based upon the results from the literature review, the second paper focuses on identification of inverted troughs and gulf surges based upon lower- and mid-level atmospheric parameters for purposes of assessing the impacts on National Weather Service Storm Report flash flood dates. This research contributes to the synthesis of the current knowledge of the NAMS in general and to the specific regional impacts that do occur during periods of heavy precipitation over the NAMS region for purposes of improving meteorological predictability of flash flooding. The results can (1) gauge our understanding of the NAMS literature to date and (2) improve meteorological forecasts through the recognition of synoptic and sub-synoptic patterns related to the NAMS that are most likely to cause flash floods.
67

Některé aspekty dynamiky letního monsunu v Asii v reanalyzovaných meteorologických datech / Některé aspekty dynamiky letního monsunu v Asii v reanalyzovaných meteorologických datech

Jajcay, Nikola January 2013 (has links)
The Asian summer monsoon (ASM) is a high-dimensional and highly complex phenomenon affecting more than one fifth of the world population. The intraseasonal component of the ASM undergoes periods of active and break phases associated respectively with enhanced and reduced rainfall over the Indian subcontinent and surroundings. In this thesis the nonlinear nature of the intraseasonal monsoon variability is investigated using the leading Empirical Orthogonal Functions of ERA-40 sea level pressure reanalyses field over the ASM region. The probability density function is then computed in spherical coordinates using the Epaneshnikov kernel method. Three significant modes are identified. They represent respectively (i) the East - West mode with above normal sea level pressure over East China sea and below normal pressure over Himalayas, (ii) the mode with above normal sea level pressure over East China sea (without compensating centre of opposite sign as in (i)) and (iii) the mode with below normal sea level pressure over East China sea (same as (ii) but with opposite sign). The relationship with large-scale forcing is also investigated by stratifying the PCs according to representing indices. The regimes derived from spherical PDFs appear to be opposite under opposite large-scale conditions. EOF technique with...
68

Paléodrainage, paléoenvironnements et paléoclimats de l'Éocène birman : implications sur l'origine et l'évolution précoce des anthropoïdes asiatiques / Paleodrainage, paleoenvironments and paleoclimate of the Burmese Eocene series : implications on the origin and the early evolution of Asian anthropoids

Licht, Alexis 26 November 2013 (has links)
Les plus anciens anthropoïdes fossiles sont issus de plusieurs formations géologiques asiatiques de l'Eocène moyen à tardif (47 à 34 millions d'années), parmi lesquelles la formation de Pondaung (Birmanie) a délivré la faune la plus diverse. L'objectif de cette thèse est de reconstituer la paléogéographie, l'environnement et le climat de l'Eocène birman afin de mieux comprendre leur histoire évolutive. Dans un premier temps, l'évolution de la provenance du sédiment de Birmanie centrale a été étudiée par une approche alliant pétrographie, lithostratigraphie et géochimie isotopique. L'étude montre que la Birmanie centrale est restée à l'écart de tout apport sédimentaire himalayen et tibétain et formait, à l'Eocène, une bande côtière connectant l'avant-pays indien avec la région de la Sonde. Les paléoenvironnements de la formation de Pondaung ont ensuite été reconstitués par une approche combinant sédimentologie fluviale, pédologie et paléobotanique. Ces approches révèlent un paysage de marécages saisonniers, de forêts ripariennes et d'espaces ouverts, développés sous un climat tropical à forte saisonnalité. Les bois fossiles identifiés représentent différents écotones forestiers similaires à ceux des forêts de mousson actuelles. L'étude en isotope stable de gastéropodes fossiles et de dents de mammifères confirme un régime de précipitation semblable à la mousson moderne. Les paléoenvironnements de Pondaung contrastent avec l'idée d'épaisses forêts primaires comme habitat préférentiel des premiers anthropoïdes et lient leur biodiversité aux zones tropicales saisonnières, où les plus grosses espèces, comme les amphipithécidés, étaient particulièrement compétitives. / The fossil record of the first anthropoids is currently fed by several Middle to Late Eocene Asian strata (47 to 34 millions years ago), of which the Pondaung Formation in Myanmar has yielded the most diverse and prolific fauna. The aim of this PhD is to reconstruct the paleogeography, paleoenvironments, and paleoclimate of the Eocene Burmese successions in order to better constrain the early evolutionary history of the anthropoids. The sediment provenance of central Myanmar was first studied using a multi-proxy approach, combining petrography, sedimentology and isotope geochemistry. Results show that central Myanmar was isolated from any Himalayan or Tibetan input and additionally formed a narrow coastal band linking the Indian foreland with the Sunda area during the Eocene. Alluvial palaeoenvironments of the Pondaung Formation were then reconstructed through a combined sedimentological, pedological and paleobotanical approach. Results revealed a mosaic landscape with seasonal swamps, riparian forests, and open areas, expanding under a tropical climate with significant seasonality. Fossil woods form different ecotones similar to those of modern days monsoonal forests. Paleoclimate reconstruction through stable isotope geochemistry on mammalian fossil teeth and fossil gastropods confirms a monsoonal, modern-like rainfall regime in the Eocene. Pondaung paleoenvironments contrast with the idea of Eocene evergreen rainforests as a preferential living environment for the first anthropoids and link the Eocene biodiversity of anthropoid fauna to the tropical seasonal areas, where the biggest species, such as the amphipithecids, were particularly competitive.
69

Atividade elétrica e precipitação de monção no estado de São Paulo no período 2008-2011 / Electrical activity and monsoon precipitation in São Paulo state in the period 2008-2011

Freitas, Stefane Fonseca, Freitas, Stefane Fonseca 14 March 2016 (has links)
Submitted by Maria Beatriz Vieira (mbeatriz.vieira@gmail.com) on 2017-05-29T15:21:29Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) dissertacao_stefane_fonseca_freitas.pdf: 9974670 bytes, checksum: 3ea4d15c96cc9d436e5f1afce583167b (MD5) / Approved for entry into archive by Aline Batista (alinehb.ufpel@gmail.com) on 2017-05-29T21:23:06Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) dissertacao_stefane_fonseca_freitas.pdf: 9974670 bytes, checksum: 3ea4d15c96cc9d436e5f1afce583167b (MD5) / Made available in DSpace on 2017-05-29T21:23:06Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) dissertacao_stefane_fonseca_freitas.pdf: 9974670 bytes, checksum: 3ea4d15c96cc9d436e5f1afce583167b (MD5) Previous issue date: 2016-03-14 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / As Descargas Elétricas Atmosféricas (DEA) desde tempos remotos despertam o interesse da humanidade, devido tanto a seu aspecto visual quanto ao poder de destruição atrelado a este fenômeno. Este trabalho tem por finalidade caracterizar as distribuições espaço-temporais das DEA e da precipitação em superfície durante os meses quentes dos anos de 2008 a 2011, na região sudeste do Brasil. Para este período, foi verificada a ocorrência de sistema de monção na América do Sul, a partir da análise dos campos de anomalias dos ventos. Foram utilizados dados de DEA detectadas pela RINDAT e dados de precipitação em superfície provenientes de observações de estações automáticas do INMET. Os campos de ventos foram confeccionados com dados de reanálise do modelo NCEP-DOE. Foram elaborados campos de densidades de descargas, distribuídas em seis categorias de intensidade. Verificou-se que a maior ocorrência de DEA ocorreu sobre regiões metropolitanas, mas na maioria dos meses estudados, as regiões de maior ocorrência de DEA não coincidiram com as regiões onde foram observados os maiores acumulados mensais de chuva. O mês de janeiro de 2010 apresentou o maior número de descargas detectadas em todos os meses estudados. Para o período analisado, foram identificadas características típicas de monção na América do Sul, como o desenvolvimento da Alta da Bolívia, estabelecimento de um cavado no Nordeste Brasileiro e atuação dos jatos de altos níveis. Assim, foi presumível a influência de um regime de monção, com destaque para o período compreendido entre julho de 2009 a janeiro de 2010, onde as mudanças na direção de vento sazonal foram mais claras que os demais períodos. / The lightning since ancient times arouse the interest of humanity, due to both its visual aspect as the power of destruction linked to this phenomenon. The objective of this study is to characterize the spatial and temporal distributions of lightning and surface precipitation during the warm months of the years 2008-2011, in southeastern Brazil. For this period, the occurrence of monsoon system in South America was found from the analysis of the wind anomaly fields. It was used lightning data from RINDAT network and rainfall data from INMET automatic stations. The wind fields were made with data from reanalysis NCEP-DOE model. Lightning densities fields were developed and distributed in six classes of severity. It was found that the higher incidence of lightning occurred on metropolitan areas, but in most months studied, the regions with the highest occurrence of lightning did not coincide with the regions where the highest monthly accumulated rainfall were observed. The month of January 2010 had the highest number of detected lightning in all the months studied. For the analyzed period, typical features were identified monsoon in South America, such as the development of the Bolivian High, establishment of a trough in the Brazilian Northeast and performance of high levels jets. Thus, it was presumed the influence of a monsoon regime, especially the period from July 2009 to January 2010, where the seasonal changes in wind direction were lighter than other periods.
70

Modeling and Projection of the North American Monsoon Using a High-Resolution Regional Climate Model

Meyer, Jonathan D.D. 01 May 2017 (has links)
This dissertation aims to better understand how various climate modeling approaches affect the fidelity of the North American Monsoon (NAM), as well as the sensitivity of the future state of the NAM under a global warming scenario. Here, we improved over current fully-coupled general circulation models (GCM), which struggle to fully resolve the controlling dynamics responsible for the development and maintenance of the NAM. To accomplish this, we dynamically downscaled a GCM with a regional climate model (RCM). The advantage here being a higher model resolution that improves the representation of processes on scales beyond that which GCMs can resolve. However, as all RCM applications are subject to the transference of biases inherent to the parent GCM, this study developed and evaluated a process to reduce these biases. Pertaining to both precipitation and the various controlling dynamics of the NAM, we found simulations driven by these bias-corrected forcing conditions performed moderately better across a 32-year historical climatology than simulations driven by the original GCM data. Current GCM consensus suggests future tropospheric warming associated with increased radiative forcing as greenhouse gas concentrations increase will suppress the NAM convective environment through greater atmospheric stability. This mechanism yields later onset dates and a generally drier season, but a slight increase to the intensity during July-August. After comparing downscaled simulations forced with original and corrected forcing conditions, we argue that the role of unresolved GCM surface features such as changes to the Gulf of California evaporation lead to a more convective environment. Even when downscaling the original GCM data with known biases, the inclusion of these surface features altered and in some cases reversed GCM trends throughout the southwest United States. This reversal towards a wetter NAM is further magnified in future bias-corrected simulations, which suggest (1) fewer average number of dry days by the end of the 21st century (2) onset occurring up to two to three weeks earlier than the historical average, and (3) more extreme daily precipitation values. However, consistent across each GCM and RCM model is the increase in inter-annual variability, suggesting greater susceptibility to drought conditions in the future.

Page generated in 0.0451 seconds