• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 38
  • 16
  • 13
  • 6
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 188
  • 65
  • 41
  • 32
  • 28
  • 26
  • 24
  • 23
  • 23
  • 22
  • 22
  • 22
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Methane dynamics in a temperate forest revealed by plot-scale and ecosystem-scale flux measurements / プロットスケールと生態系スケールのフラックス測定によって明らかになった温帯林におけるメタン動態

Sakabe, Ayaka 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第19029号 / 農博第2107号 / 新制||農||1030(附属図書館) / 学位論文||H27||N4911(農学部図書室) / 31980 / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 谷 誠, 教授 北山 兼弘, 教授 川島 茂人 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
102

Design Flood Criteria toward Integrated Watershed Management in the Johor River Watershed, Malaysia / マレーシア・ジョホール川流域における統合的流域管理へ向けた洪水設計基準の構築

Yazawa, Taishi 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20352号 / 工博第4289号 / 新制||工||1664(附属図書館) / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 清水 芳久, 教授 米田 稔, 准教授 KIM,SUNMIN / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
103

Low-latitude Ice Cores and Freshwater Availability

Kehrwald, Natalie Marie 09 September 2009 (has links)
No description available.
104

An Ocean General Circulation Model Study Of The Arabian Sea Mini Warm Pool

Kurian, Jaison 09 1900 (has links)
The most important component of the climate system over the Indian Ocean region is the southwest monsoon, which dictates the life and economy of billions of people in the tropics. Being a phenomena that involves interaction between atmosphere, ocean and land, the southwest monsoon is strongly influenced by upper ocean, primarily through warm sea surface temperature (SST). This is particularly true about the southeastern Arabian Sea (SEAS) and the onset of southwest monsoon over the peninsular India. A localized patch of warm water, known as the Arabian Sea mini warm pool (ASMWP), forms in the SEAS during February–March. It remain as the warmest spot in the northern Indian Ocean till early April. A large region, surrounding the SEAS, attains SST exceeding 30°C during April–May, with often the ASMWP as its core. The ASMWP is believed to have a critical impact on the air-sea interaction during the onset phase of southwest monsoon and on the formation of the onset vortex, during late May or early June. This thesis addresses the formation mechanisms of ASMWP, using a high-resolution Ocean General Circulation Model (OGCM) of the Indian Ocean. In addition to the formation of ASMWP, the SEAS is characterized by several features in its hydrography and circulation, which have been invoked in the past to explain the preferential warming of this oceanic region. During November–January, the prevailing surface currents transport low-salinity water from the Bay of Bengal into the SEAS and leads to strong haline stratification in the upper layer and formation of barrier layer (layer between mixed layer and isothermal layer). The vertical distribution of temperature in the SEAS exhibit inversions (higher subsurface temperature than that at surface) during December–February. A high in sea level and anticyclonic eddies develop in the SEAS during December and they propagate westward. These eddies modify the hydrography through downwelling and play an important role in the redistribution of advected low-salinity water within the SEAS. The seasonally reversing coastal and equatorial currents present in and around SEAS also have a major contribution in setting up the hydrography, through the advection and redistribution of cooler low-salinity water. These features make the SEAS a unique oceanographic region. The first hypothesis on the formation of ASMWP, which has been suggested by diagnostic studies, is based on the barrier layer mechanism. The barrier layer, caused by the influx of low-salinity water at surface, is argued to maintain a shallow mixed layer which can warm more efficiently. In addition, presence of barrier layer can prevent mixed layer cooling, by cutting off the interaction of mixed layer with cooler thermocline water below. However, a coupled model study have shown that there is no significant impact on the ASMWP formation from barrier layer, but only a weak warming effect during it mature phase during April. The second hypothesis, which is based on an OGCM study, has suggested that the temperature inversions present within the barrier layer can heat the mixed layer through turbulent entrainment and in turn lead to the formation of ASMWP during February–March. Both hypotheses rule out the possibility of air-sea heat fluxes being the primary reason in its formation. The strong salinity stratification in the SEAS during December–March is central to the hypotheses about formation of the ASMWP. Observational studies have only limited success in assessing the contribution from barrier layer and temperature inversions, as the ASMWP always form in their presence. OGCMs offer a better alternative. However, modelling processes in the northern Indian Ocean, especially that in the SEAS, is a challenging problem. Previous Indian Ocean models have had serious difficulties in simulating the low-salinity water in the Bay of Bengal and its intrusion into the SEAS. The northward advection of low-salinity water in the SEAS, along the west coast of India, is used to be absent in model simulations. Moreover, the coarse resolution inhibited those models from simulating faster surface currents and vigorous eddies as seen in the observations. In this thesis, we use an OGCM of the Indian Ocean, based on the recent version of Modular Ocean Model (MOM4p0), to study the ASMWP. The model has high resolutions in the horizontal (1/4o x 1/4o) and vertical (40 levels, with 5 m spacing in upper 60 m), and has been forced with daily values momentum, heat and freshwater fluxes. The turbulent (latent and sensible) and long wave heat fluxes have been calculated as a function of model SST. The freshwater forcing consists of precipitation, evaporation and river runoff, and there are no surface restoring or flux adjustments. The river runoff has been distributed over several grid points about the river mouth instead of discharging into a singe grid point, which has resulted in remarkable improvements in salinity simulation. The model simulates the Indian Ocean temperature, salinity and circulation remarkably well. The pattern of model temperature distribution and evolution matches very well with that in the observations. Significant improvements have been made in the salinity simulation, including the Bay of Bengal freshwater plume and intrusion of low-salinity water from the bay into the SEAS. The salinity distribution within the SEAS is also well represented in the model. The use of appropriate horizontal friction parameters has resulted in the simulation of realistic currents. The observed features in the SEAS, including the life cycle of the ASMWP, low-salinity water, barrier layer, temperature inversions, eddies and currents are well represented in the model. Present study has unraveled the processes involved in the life cycle of barrier layer and temperature inversions in the SEAS. Presence of low-salinity water is necessary for their formation. Barrier layer develops in the SEAS during November, after the intrusion of low-salinity water from the Bay of Bengal. The barrier layer is thickest during January–February, and it dissipates during March–April. The variations and peak of barrier layer thickness is controlled by variations in isothermal layer depth, which in turn is dominated by the downwelling effects of anticyclonic eddies. The intense solar heating during March–April leads to the formation of shallow isothermal layer and results in the dissipation of barrier layer. Temperature inversions starts developing in the SEAS during December, reaches its peak during January–February and dissipates in the following months. Advection of cooler low-salinity water over warmer salty water and penetrating shortwave radiation is found to cause temperature inversions within the SEAS, whereas winter cooling is also important to the north and south of the SEAS. There is significant variation in the magnitude, depth of occurrence and formation mechanisms of temperature inversions within the SEAS. Analysis of model mixed layer heat budget has shown that the SEAS SST is mainly controlled by atmospheric forcing, including the life cycle of ASMWP. It has also shown that the heating from temperature inversions do not contribute to the formation of ASMWP. In an experiment in which a constant salinity of 35 psu was maintained over the entire model domain, the ASMWP evolved very similar to that in the standard run, suggesting that the salinity effects are not necessary for the formation of ASMWP. Examination of wind field show that the winds over the SEAS during November–February are low due to the blocking of northeasterly winds by Western Ghats. Several process experiments by modifying the wind and turbulent heat fluxforcing fields have shown that these low winds lead to the formation of ASMWP in the SEAS during February–March. The low winds reduce latent heat loss, resulting in net heat gain by the ocean. This helps the SEAS to keep warmer SST while the surrounding region experience intense cooling under the strong dry northeasterly winds. As the winds are weak over the SEAS, the mixed layer is not able to feel the stratification beneath and the mixed layer depth is determined by solar heating, with or without salinity effects. In addition, the weak winds are not able to entrain the temperature inversions present in the barrier layer. The winds are weak during March–April too, and the air-sea heat fluxes dictate the SST evolution during this period. Therefore, during November–April, the SEAS acts as a low wind heat-dominated regime, where the evolution of sea surface temperature is solely determined by atmospheric forcing. We show that, in such regions, the evolution of surface layer temperature is not dependent on the characteristics of subsurface ocean, including the presence of barrier layer and temperature inversions.
105

Space-Time Evolution of the Intraseasonal Variability in the Indian Summer Monsoon and its Association with Extreme Rainfall Events : Observations and GCM Simulations

Karmakar, Nirupam January 2016 (has links) (PDF)
In this thesis, we investigated modes of intraseasonal variability (ISV) observed in the Indian monsoon rainfall and how these modes modulate rainfall over India. We identified a decreasing trend in the intensity of low-frequency intraseasonal mode with increasing strength in synoptic variability over India. We also made an attempt to understand the reason for these observed trends using numerical simulations. In the first part of the thesis, satellite rainfall estimates are used to understand the spatiotem-poral structures of convection in the intraseasonal timescale and their intensity during boreal sum-mer over south Asia. Two dominant modes of variability with periodicities of 10–20-days (high-frequency) and 20–60-days (low-frequency) are found, with the latter strongly modulated by sea surface temperature. The 20–60-day mode shows northward propagation from the equatorial In-dian Ocean linked with eastward propagating modes of convective systems over the tropics. The 10–20-day mode shows a complex space-time structure with a northwestward propagating anoma-lous pattern emanating from the Indonesian coast. This pattern is found to be interacting with a structure emerging from higher latitudes propagating southeastwards. This could be related to ver-tical shear of zonal wind over northern India. The two modes exhibit variability in their intensity on the interannual time scale and contribute a significant amount to the daily rainfall variability in a season. The intensities of the 20–60-day and 10–20-day modes show significantly strong inverse and direct relationship, respectively, with the all-India June–September rainfall. This study also establishes that the probability of occurrence of substantial rainfall over central India increases significantly if the two intraseasonal modes simultaneously exhibit positive anomalies over the region. There also exists a phase-locking between the two modes. In the second part of the thesis, we investigated the changing nature of these intraseasonal modes over Indian region, and their association with extreme rainfall events using ground based observed rainfall. We found that the relative strength of the northward propagating 20–60-day mode has a significant decreasing trend during the past six decades, possibly attributed to the weakening of large-scale circulation in the region during monsoon. This reduction is compensated by a gain in synoptic-scale (3–9 days) variability. The decrease in the low-frequency ISV is associated with a significant decreasing trend in the percentage of extreme events during the active phase of the monsoon. However, this decrease is balanced by a significant increasing trend in the percentage of extreme events in break phase. We also find a significant rise in occurrence of extremes during early- and late-monsoon months, mainly over the eastern coastal regions of India. We do not observe any significant trend in the high-frequency ISV. In the last part of the thesis, we used numerical simulations to understand the observed changes in the ISV features. Using the atmospheric component of a global climate model (GCM), we have performed two experiments: control experiment (CE) and heating experiment (HE). The CE is the default simulation for 10 years. In HE, we prescribed heating in the atmosphere in such a way that it mimics the conditions for extreme rainfall events as observed over central India during June– September. Heating is prescribed primarily during the break phase of the 20–60-day mode. This basically increases the number of extremes, majority of which are in break phase. The design of the experiment reflects the observed current scenario of increased extreme events during breaks. We found that the increased extreme events in the HE decreased the intensity of the 20–60-day mode over the Indian region. This reduction is associated with a reduction of rainfall in active phase and increase in the length of break phase. A reduction in the seasonal mean over India is also observed. The reduction of active phase rainfall is linked with an increased stability of the atmosphere over central India. Lastly, we propose a possible mechanism for the reduction of rainfall in active phase. We found that there is a significant reduction in the strength of the vertical easterly shear over the northern Indian region during break–active transition phase. This basically weakens the conditions for the growth of Rossby wave instability, thereby elongating break phase and reducing the rainfall intensity in the following active phase. This study highlights the redistribution of rainfall intensity among periodic (low-frequency) and non-periodic (extreme) modes in a changing climate scenario, which is further tested in a modeling study. The results presented in this thesis will provide a pathway to understand, using observations and numerical model simulations, the ISV and its relative contribution to the Indian summer monsoon. It can also be used for model evaluation.
106

Early-Holocene to present palaeoenvironmental shifts and short climate events from the tropical wetland and lake sediments, Kukkal Lake, Southern India: Geochemistry and palynology

Rajmanickam, Vijayaraj, Achyuthan, Hema, Eastoe, Christopher, Farooqui, Anjum 03 1900 (has links)
The Kukkal basin, Tamil Nadu, India, receives most of its rain from the southwest monsoon (SWM). A sediment core from Kukkal Lake preserves a continuous sediment record from the early-Holocene to present (9000 yr BP to present). The present lake is situated at an elevation of similar to 1887m a.s.l., in a small basin that appears to have alternated between a and wetland depositional environment. Climate proxies, including sediment texture, total organic carbon (TOC), total nitrogen (TN), C/N, pollen and geochemical composition indicate a steady progression to wetter conditions, with two stepwise changes at about 8000, and between 3200 and 1800 yr BP. The change at 8000 yr BP appears to correspond to a brief (100-150years) dry spell recorded elsewhere in India. The change at 3200-1800 yr BP consisted in a rapid intensification of the SWM, and may correlate with the initiation of the Roman Warm Period'. There is no clear evidence of changes at the times of the Medieval Warm Period' (MWP') and the Little Ice Age' (LIA'). The C/N ratio of the sediments ranges from 14.02 to 8.31, indicating that the organic matter originated from a mixture of lacustrine algae, vascular and terrestrial plants. Chemical weathering indices (Chemical Index of Alteration (CIA), Chemical Index of Weathering (CIW), and Plagioclase Index of Alteration (PIA)) are consistent with extreme silicate weathering. Pollen data show a development from savanna vegetation prior to about 8000 yr BP, followed by grassland with palms, the appearance of ferns just prior to 3200 yr BP and the establishment of the tropical humid forest between 3200 and about 1800 yr BP.
107

Assessing the 20th Century Performance of Global Climate Models and Application to Climate Change Adaptation Planning

Geil, Kerrie L., Geil, Kerrie L. January 2017 (has links)
Rapid environmental changes linked to human-induced increases in atmospheric greenhouse gas concentrations have been observed on a global scale over recent decades. Given the relative certainty of continued change across many earth systems, the information output from climate models is an essential resource for adaptation planning. But in the face of many known modeling deficiencies, how confident can we be in model projections of future climate? It stands to reason that a realistic simulation of the present climate is at least a necessary (but likely not sufficient) requirement for a model’s ability to realistically simulate the climate of the future. Here, I present the results of three studies that evaluate the 20th century performance of global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The first study examines precipitation, geopotential height, and wind fields from 21 CMIP5 models to determine how well the North American monsoon system (NAMS) is simulated. Models that best capture large-scale circulation patterns at low levels usually have realistic representations of the NAMS, but even the best models poorly represent monsoon retreat. Difficulty in reproducing monsoon retreat results from an inaccurate representation of gradients in low-level geopotential height across the larger region, which causes an unrealistic flux of low-level moisture from the tropics into the NAMS region that extends well into the post-monsoon season. The second study examines the presence and severity of spurious Gibbs-type numerical oscillations across the CMIP5 suite of climate models. The oscillations can appear as unrealistic spatial waves near discontinuities or sharp gradients in global model fields (e.g., orography) and have been a known problem for decades. Multiple methods of oscillation reduction exist; consequently, the oscillations are presumed small in modern climate models and hence are rarely addressed in recent literature. Here we quantify the oscillations in 13 variables from 48 global climate models along a Pacific ocean transect near the Andes. Results show that 48% of nonspectral models and 95% of spectral models have at least one variable with oscillation amplitude as large as, or greater than, atmospheric interannual variability. The third study is an in-depth assessment model simulations of 20th century monthly minimum and maximum surface air temperature over eight US regions, using mean state, trend, and variability bias metrics. Transparent model performance information is provided in the form of model rankings for each bias type. A wide range in model skill is at the regional scale, but no strong relationships are seen between any of the three bias types or between 20th century bias and 21st century projected change. Using our model rankings, two smaller ensembles of models with better performance over the southwestern U.S. are selected, but they result in negligible differences from the all-model ensemble in the average 21st century projected temperature change and model spread. In other words, models of varied quality (and complexity) are projecting very similar changes in temperature, implying that the models are simulating warming for different physical reasons. Despite this result, we suggest that models with smaller 20th century biases have a greater likelihood of being more physically realistic and therefore, more confidence can be placed in their 21st century projections as compared to projections from models that have demonstrably poor skill over the observational period. This type of analysis is essential for responsibly informing climate resilience efforts.
108

Latewood Chronology Development For Summer-Moisture Reconstruction In The US Southwest

Griffin, Daniel, Meko, David M., Touchan, Ramzi, Leavitt, Steven W., Woodhouse, Connie A. 07 1900 (has links)
Tree-ring studies have demonstrated that conifer latewood measurements contain information on long-term North American monsoon (NAM) variability, a hydroclimatic feature of great importance to plants, animals, and human society in the US Southwest. This paper explores data-treatment options for developing latewood chronologies aimed at NAM reconstruction. Archived wood samples for five Douglas-fir (Pseudotsuga menziesii, Mirb. Franco) sites in southeastern Arizona are augmented with new collections. The combined dataset is analyzed along with time series of regionally averaged observed precipitation to quantify the strength of regional precipitation signal in latewood time series and to identify ways of increasing the signal strength. Analysis addresses the signal strength influences of including or excluding ‘‘false’’ latewood bands in the nominal ‘‘latewood’’ portion of the ring, the necessary adjustment of latewood width for statistical dependence on antecedent earlywood width, and tree age. Results suggest that adjusted latewood width chronologies from individual sites can explain around 30% of the variance of regional summer (July–August) precipitation—increasing to more than 50% with use of multiple chronologies. This assessment is fairly insensitive to the treatment of false latewood bands (in intra-annual width and 𝛿¹³C variables), and to whether latewood-width is adjusted for dependence on earlywood-width at the core or site level. Considerations for operational chronology development in future studies are (1) large tree-to-tree differences in moisture signal, (2) occasional nonlinearity in EW-LW dependence, and (3) extremely narrow and invariant latewood width in outer portions of some cores. A protocol for chronology development addressing these considerations is suggested.
109

Reconstitution des variations multidécennales et saisonnières de la mousson ouest-africaine au cours des deux derniers millénaires à partir de l’étude sclérochronologique des amas coquilliers fossiles dans le delta du Saloum, Sénégal. / reconstructing multidecadal and seasonal variations of the West African Monsoon system in the last two millenia, based on sclerochronological study of fossil shell middens in the Saloum Delta, Senegal.

Azzoug, Moufok 06 December 2012 (has links)
Les variations multidécennales et saisonnières de la Mousson Ouest-Africaine (MOA) au cours des deux derniers millénaires dans la région sahélienne sont peu documentées en raison du manque d'archives paléoclimatiques. Pour cela, on se propose dans ce travail de thèse d'explorer une nouvelle archive paléoclimatique basée sur l'étude sclérochronologique des coquilles du mollusque bivalve Anadara senilis dans des amas coquilliers fossiles afin de reconstituer les variations hydrologiques multidécennales et saisonnières dans le Delta du Saloum au Sénégal de 460 à 1090 A.D. L'hydrologie de cet estuaire hypersalin est très sensible aux variations de la MOA. Les variations hydrologiques passées sont reconstituées à travers des analyses isotopiques (δ18O, δ13C) des coquilles modernes et des coquilles fossiles dans le delta. Le signal isotopique saisonnier de ces coquilles retrace fidèlement les variations hydrologiques liées au régime de la mousson. Nos résultats montrent que ces variations isotopiques, associées aux stries de croissance dont la périodicité est connue, permettent de reconstituer les durées des saisons avec une précision de 25 jours, une précision jamais atteinte dans les études paléoclimatiques antérieures dans la région sahélienne. Les variations hydrologiques multidécennales sont reconstituées à travers la composition isotopique des coquilles fossiles prélevées dans un amas coquillier massif (Dioron Boumak) dont le taux d'accumulation est très important. Les coquilles fossiles prélevées dans cet amas présentent des valeurs isotopiques moyennes en δ18O plus négatives de 1.4 ‰ par rapport à leurs analogues modernes. Ceci est une indication que les conditions hydrologiques étaient plus douces qu'aujourd'hui dans le Saloum qui n'était pas hypersalin à cette époque. Le bilan Précipitation-Evaporation était par conséquent plus positif en réponse à des pluies plus intenses et/ou plus étalées dans le temps de 460 à 1090 A.D. Il semblerait que les pluies hivernales et printanières, caractéristiques de la frange littorale sénégalo-mauritanienne, plutôt rares et insignifiantes de nos jours se produisaient plus fréquemment pendant cette période. La jonction entre ces pluies et les pluies de mousson aurait favorisé l'établissement de saisons des pluies beaucoup plus longues (~5 mois environ au lieu de 3 aujourd'hui) et une augmentation du bilan Précipitation-Evaporation. Cette étude met en lumière le potentiel considérable d'A. senilis comme archive paléoclimatique à haute résolution de la variabilité des précipitation dans la région sénégalaise. Elle montre également l'importance de la saisonnalité des précipitations dans les cycles hydrologiques passés dans cette région qui doit être prise en compte dans les études paléoclimatiques futures. / The multidecadal and seasonal variations of the West African Monsoon (WAM) in the last two millennia remain poorly documented in the Sahel region because paleoclimate archives are lacking. For this, we propose in this PhD thesis a sclerochronological study of the mollusk bivalve Anadara senilis from massive shell middens to reconstruct multidecadal and seasonal variations of hydrological conditions in the Saloum Delta (Senegal) between AD 460 and 1090. Hydrological conditions in this hypersaline estuary are highly sensitive to the WAM variations.Past hydrological variations are reconstructed by using isotopic composition (δ18O, δ13C) of modern and fossil shells in this Delta. The shells' seasonal isotopic signals reflect faithfully hydrological variations, linked to monsoonal regime. Our results show that the variations of these seasonal isotopic signals, associated to shell growth patterns with known periodicities allow the reconstruction of season durations with a precision of 25 days, a precision that has never been achieved in paleoclimate studies in the Sahel region.Multidecadal variations of hydrological conditions are reconstructed by using isotopic composition of fossil shells collected in the massive shell middens (Dioron Boumak), characterized by high accumulation rate. The averaged δ18O value of fossil shells was more negative by 1.4‰ compared to modern shells' isotopic signature. This result indicates fresher mean conditions in the Saloum Delta that was likely not hypersaline as it is today. The precipitation-evaporation budget was thus more positive in response to a more intense and/or longer rainfall season during from AD 460 to 1090. We propose that winter and early spring rainfall events, which are observed very occasionally today, were occurring frequently during this period. These rains restricted to the western Sahelian coast and followed by the monsoon would have increased the total duration of the rainy season (~ 5 months instead of 3 months today) and substantially increased the annual precipitation-evaporation budget.This study shed light on the high potential of A. senilis as a high resolution paleoclimate archive of rainfall variability in the Sahel region. It shows also the importance of rainfall seasonality in past hydrological cycles that should be taken into account in the future paleoclimate studies.
110

Fire Severity and Regeneration Strategy Influence Shrub Patch Size and Structure Following Disturbance

Minor, Jesse, Falk, Donald, Barron-Gafford, Greg 22 June 2017 (has links)
Climate change is increasing the frequency and extent of high-severity disturbance, with potential to alter vegetation community composition and structure in environments sensitive to tipping points between alternative states. Shrub species display a range of characteristics that promote resistance and resilience to disturbance, and which yield differential post-disturbance outcomes. We investigated differences in shrub patch size and stem density in response to variations in fire severity, vegetation community, and post-disturbance reproductive strategies in Sky Island forested ecosystems in the southwestern United States. Patterns in shrub structure reflect the effects of fire severity as well as differences among species with alternate post-fire reproductive strategies. Increased fire severity correlates with larger patch sizes and greater stem densities; these patterns are observed across multiple fire events, indicating that disturbance legacies can persist for decades. High severity fire produces the largest shrub patches, and variance in shrub patch size increases with severity. High severity fire is likely to promote expansion of shrub species on the landscape, with implications for future community structure. Resprouting species have the greatest variability in patch structure, while seeding species show a strong response to disturbance: resprouting species dominateatlowdisturbanceseverities,andobligateseedersdominatehighseverityareas. Differential post-fire reproductive strategies are likely to generate distinct patterns of vegetation distribution following disturbance, with implications for community composition at various scales. Shrub species demonstrate flexible responses to wildfire disturbance severity that are reflected in shrub patch dynamics at small and intermediate scales.

Page generated in 0.0176 seconds