121 |
Artificial intelligence techniques for flood risk management in urban environmentsSayers, William Keith Paul January 2015 (has links)
Flooding is an important concern for the UK, as evidenced by the many extreme flooding events in the last decade. Improved flood risk intervention strategies are therefore highly desirable. The application of hydroinformatics tools, and optimisation algorithms in particular, which could provide guidance towards improved intervention strategies, is hindered by the necessity of performing flood modelling in the process of evaluating solutions. Flood modelling is a computationally demanding task; reducing its impact upon the optimisation process would therefore be a significant achievement and of considerable benefit to this research area. In this thesis sophisticated multi-objective optimisation algorithms have been utilised in combination with cutting-edge flood-risk assessment models to identify least-cost and most-benefit flood risk interventions that can be made on a drainage network. Software analysis and optimisation has improved the flood risk model performance. Additionally, artificial neural networks used as feature detectors have been employed as part of a novel development of an optimisation algorithm. This has alleviated the computational time-demands caused by using extremely complex models. The results from testing indicate that the developed algorithm with feature detectors outperforms (given limited computational resources available) a base multi-objective genetic algorithm. It does so in terms of both dominated hypervolume and a modified convergence metric, at each iteration. This indicates both that a shorter run of the algorithm produces a more optimal result than a similar length run of a chosen base algorithm, and also that a full run to complete convergence takes fewer iterations (and therefore less time) with the new algorithm.
|
122 |
Um algoritmo de evolução diferencial com penalização adaptativa para otimização estrutural multiobjetivoVargas, Dênis Emanuel da Costa 05 November 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-01-15T14:16:25Z
No. of bitstreams: 1
denisemanueldacostavargas.pdf: 16589539 bytes, checksum: 44a0869db27ffd5f8254f85fb69ab78c (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-01-25T17:40:31Z (GMT) No. of bitstreams: 1
denisemanueldacostavargas.pdf: 16589539 bytes, checksum: 44a0869db27ffd5f8254f85fb69ab78c (MD5) / Made available in DSpace on 2016-01-25T17:40:31Z (GMT). No. of bitstreams: 1
denisemanueldacostavargas.pdf: 16589539 bytes, checksum: 44a0869db27ffd5f8254f85fb69ab78c (MD5)
Previous issue date: 2015-11-05 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Problemas de Otimização Multiobjetivo (POMs) com restrições são frequentes em diversas
áreas das ciências e engenharia, entre elas a Otimização Estrutural (OE). Apesar da
Evolução Diferencial (ED) ser uma metaheurística muito atraente na resolução de problemas
do mundo real, há uma carência na literatura de discussões sobre o desempenho em POMs
de OE. Na sua grande maioria os problemas de OE apresentam restrições. Nesta tese
utiliza-se uma técnica para o tratamento de restrições chamada de APM (Adaptive Penalty
Method) que tem histórico de bons resultados quando aplicada em problemas monobjetivo
de OE. Pelo potencial da ED na resolução de problemas do mundo real e da técnica
APM em OE, juntamente com a escassez de trabalhos envolvendo esses elementos em
POMs de OE, essa tese apresenta um estudo de um algoritmo bem conhecido de ED
acoplado à técnica APM nesses problemas. Experimentos computacionais considerando
cenários sem e com inserção de informações de preferência do usuário foram realizados
em problemas com variáveis continuas e discretas. Os resultados foram comparados aos
encontrados na literatura, além dos obtidos pelo algoritmo que representa o estado da arte.
Comparou-se também os resultados obtidos pelo mesmo algoritmo de ED adotado, porém
sem ser acoplado à técnica APM, objetivando investigar sua influência no desempenho
da combinação proposta. As vantagens e desvantagens do algoritmo proposto em cada
cenário são apresentadas nessa tese, além de sugestões para trabalhos futuros. / Multiobjective Optimization Problems (MOPs) with constraints are common in many areas
of science and engineering, such as Structural Optimization (SO). In spite of Differential
Evolution (DE) being a very attractive metaheuristic in real-world problems, no work
was found assessing its performance in SO MOPs. Most OE problems have constraints.
This thesis uses the constraint handling technique called Adaptive Penalty Method (APM)
that has a history of good results when applied in monobjective problems of SO. Due
to the potential of DE in solving real world problems and APM in SO problems, and
also with the lack of studies involving these elements in SO MOPs, this work presents a
study of a well-known DE algorithm coupled to the APM technique in these problems.
Computational experiments considering scenarios with and without inclusion of user
preference information were performed in problems with continuous and discrete variables.
The results were compared with those in the literature, in addition to those obtained
by the algorithm that represents the state of the art. They were also compared to the
results obtained by the same DE algorithm adopted, but without the APM technique,
aiming at investigating the influence of the APM technique in their performance. The
advantages and disadvantages of the proposed algorithm in each scenario are presented in
this research, as well as suggestions for future works.
|
123 |
Multiobjective Optimization and Multicriteria Decision Aid Applied to the Evaluation of Road Projects at the Design StageSarrazin, Renaud 16 December 2015 (has links) (PDF)
Constructing a road is a complex process that may be represented as a series of correlated steps, from the planning to the construction and usage of the new road. At the heart of this process, the preliminary and detailed design stages are key elements that will ensure the quality and the adequacy of the final solution regarding the constraints and objectives of the project. In particular, infrastructure layout and design will have a strong impact on the global performances of the road in operational conditions. Among them, road safety, mobility, environment preservation, noise pollution limitation, economic feasibility and viability of the project, or even its socio-economic impact at the local level. Consequently, it is crucial to offer engineers and road planners some tools and methods that may assist them in designing and selecting the most efficient solutions considering the distinctive features of each design problem. In this work, a multicriteria analysis methodology is developed to carry out an integrated and preventive assessment of road projects at the design stage by considering both their safety performances and some economic and environmental aspects. Its purpose is to support design engineers in the analysis of their projects and the identification of innovative, consistent and effective solutions. The proposed methodology is composed of two main research frameworks. On the one hand, the road design problem is addressed by focusing successively on the structuring of the multicriteria problem, the identification of the approximate set of non-dominated solutions using a genetic algorithm (based on NSGA-II), and the application of the methodology to a real road design project. On the other hand, the methodological development of a multicriteria interval clustering model was performed (based on PROMETHEE). Due to the applicability of this model to the studied problem, the interactions between the two frameworks are also analysed. / Doctorat en Sciences de l'ingénieur et technologie / The present PhD thesis is an aggregation of published contributions related to the application of multicriteria analysis to the evaluation of road projects at the design stage. The aim of the two introductory chapters is to offer a synthesised and critical presentation of the scientific contributions that constitute the PhD thesis. The complete version of the journal articles and preprints are found in Chapters 3 to 6. In the appendices, we also provide reprints of conference papers that are usually related to one of the main contributions of the thesis. / info:eu-repo/semantics/nonPublished
|
124 |
Vícekriteriální návrh pokrytí území rádiovým signálem / Radio Network Multiobjective DesignVíteček, Petr January 2014 (has links)
This thesis deals with radio network design for a chosen part of a map. Here map is represented by digital map file, which was created within the project DEM. First step is to calculate distances between points in chosen map. With help of optimization algorithms, appropriate position of transceiver in the map and parameters of radio systems are determined, also final coverage by radio signal, represented by intensity of electric field or received power in whole map. The optimization algorithm is used to find the best solution in terms of input parameters (e.g. power of transmitter, height of mast) and resulting coverage of land by radio signal.
|
125 |
[en] ARTIFICIAL INTELLIGENCE METHODS APPLIED TO MECHANICAL ENGINEERING PROBLEMS / [pt] MÉTODOS DE INTELIGÊNCIA ARTIFICIAL APLICADOS A PROBLEMAS DE ENGENHARIA MECÂNICAPEDRO HENRIQUE LEITE DA SILVA PIRES DOMINGUES 05 June 2020 (has links)
[pt] Problemas reais de engenharia mecânica podem compreender tarefas de i) otimização multi-objetivo (MO) ou ii) regressão, classificação e predição. Os métodos baseados em inteligência artificial (AI) são bastante difundidos na resolução desses problemas por i) demandarem menor custo computacional e informações do domínio do problema para a resolução de uma MO, quando comparados com métodos de programação matemática, por exemplo; e ii) apresentarem melhores resultados com estrutura mais simples, adaptabilidade e interpretabilidade, em contraste com outros métodos. Sendo assim, o presente trabalho busca i) otimizar um controle proporcional-integral-derivativo (PID) aplicado a um sistema de frenagem anti-travamento de rodas (ABS) e o projeto de trocadores de calor de placas
aletadas (PFHE) e casco-tubo (STHE) através de métodos de otimização baseados AI, buscando o desenvolvimento de novas versões dos métodos aplicados, e.g. multi-objective salp swarm algorithm (MSSA) e multi-objective heuristic Kalman algorithm (MOHKA), que melhorem a performance da
otimização; ii) desenvolver um sistema de detecção de vazamento em dutos (LDS) sensível ao roubo de combustível a partir do treinamento de árvores de decisão (DTs) com features baseadas no tempo e na análise de componentes principais (PCA), ambas exraídas de dados de transiente de pressão de operação normal do duto e de roubo de combustível; iii) constituir um guia de aplicação para problemas de MO de controle e projeto, processo de extração de features e treinamento de classificadores baseados em aprendizado de máquina (MLCs), através de aprendizado supervisionado; e, por fim iv) demonstrar o potencial das técnicas baseadas em AI. / [en] Real-world mechanical engineering problems may comprise tasks of i) multi-objective optimization (MO) or ii) regression, classification and prediction. The use of artificial intelligence (AI) based methods for solving these problems are widespread for i) demanding less computational cost and problem domain information to solve the MO, when compared with mathematical programming for an example; and ii) presenting better results with simpler structure, adaptability and interpretability, in contrast to other methods. Therefore, the present work seeks to i) optimize a proportional-integral-derivative control (PID) applied to an anti-lock braking system (ABS) and the heat exchanger design of plate-fin (PFHE) and shell-tube (STHE) types through AI based optimization methods, seeking to develop new versions of the applied methods, e.g. multi-objective salp swarm algorithm (MSSA) and multi-objective heuristic Kalman algorithm (MOHKA), which enhance the optimization performance; ii) develop a pipeline leak detection system (LDS) sensitive to fuel theft by training decision trees (DTs) with features based on time and principal component analysis (PCA), both extracted from pressure transient data of regular pipeline operation and fuel theft; iii) constitute an application guide for control and design MO problems, feature extraction process and machine learning classifiers (MLCs) training through supervised learning; and, finally, iv) demonstrate the potential of AI-based techniques.
|
126 |
Study on design exploration and design mode analysis for decision making / イシ ケッテイ ノ タメノ セッケイ クウカン タンサ ト セッケイ モード カイセキ ニカンスル ケンキュウ日和 悟, Satoru Hiwa 22 March 2015 (has links)
工学設計とは,複数の性能要求を満たすべく,膨大な数の設計変数の最適値を求め,自らが望む設計を選択していく,設計探査と意思決定のプロセスである. 本研究では,これら2つの主要課題に対して,多様かつ優れた解を高速に得るための「設計空間探査」と高次元かつ膨大な設計候補群から主要な設計パターンを抽出し,その特徴を定量的に分析するための「設計モード解析」の技術を開発し,その有効性を示した. / In engineering design, we try to find better solutions that satisfy many design requirements. Once the designs have been found, we choose preferable one. Engineering design is the mixed procedure of design exploration and decision making. This study proposes the effective solution for each engineering process: (1) a novel optimization algorithm to rapidly derive better designs, and (2) "design mode analysis" which enables us to extract representative design patterns from the huge number of design examples. Effectiveness of the proposed method were verified in real-world problems. / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University
|
127 |
Fair Partitioning of Procedurally Generated Game Maps for Grand Strategy GamesOttander, Jens January 2022 (has links)
Due to the high cost of manual content creation within the game development industry, methods for procedural generation of content such as game maps and levels have emerged. However, methods for generating game maps have remained relatively unexplored in competitive multiplayer contexts. Presumably, this is due to the opposing goals of generating game maps that are both interesting and fair. This study aims to explore the possibility of satisfying both these goals simultaneously by separating the generative phase from the phase that enforces fairness. In this endeavor, simple game maps for a generic multiplayer grand strategy game are generated using noise-based methods. The task of partitioning the game map fairly between the players is then modeled as a constrained categorical multiobjective minimization problem that is subsequently solved by two genetic algorithms, the reference-point-based algorithm NSGA-III and the decomposition-based algorithm MOEA/D-IEpsilon. In a primary study, the proposed partitioning method is evaluated based on the quality of the solutions produced, its scalability, and its ability to find symmetrical partitions of symmetrical game maps. The results show that the proposed method makes significant improvement from the initial guess but fails to produce completely fair partitions in general. Explanations and possible solutions to this are presented. The timing results indicate that the proposed method is not applicable in real-time contexts. However, the proposed method might still be applicable in online contexts if smaller game maps are considered and in offline contexts if larger game maps are considered. Finally, the partitioning results show that the proposed method successfully finds fair partitions of symmetrical game maps but fails to find the obvious symmetrical partitions. In a secondary study, the two genetic algorithms are compared to determine which algorithm produces dominating solutions and which algorithm produces most diverse solution. The results indicate that, for the partitioning problems considered in this study, the reference-point-based algorithm is both dominant and produces the most diverse solutions.
|
128 |
[en] MULTI-OBJECTIVE OPTIMIZATION OF STEEL FRAMES CONSIDERING THE BRACING SYSTEM AS A DESIGN VARIABLE / [pt] OTIMIZAÇÃO MULTIOBJETIVO DE PÓRTICOS DE AÇO CONSIDERANDO A CONFIGURAÇÃO DO SISTEMA DE CONTRAVENTAMENTO COMO VARIÁVEL DE PROJETOCLAUDIO HORTA BARBOSA DE RESENDE 04 November 2024 (has links)
[pt] Os pórticos espaciais de aço são amplamente utilizados na engenharia civil,
desempenhando um papel essencial em diversas construções, como centros comerciais, residências e estádios. Apesar de suas vantagens em resistência e leveza,
o aumento da altura dessas estruturas apresenta desafios significativos, tais como
deslocamentos devido ao vento e comprometimento do comportamento dinâmico.
Para lidar com tais questões, sistemas de contraventamento são empregados, sendo
essenciais para garantir também a estabilidade estrutural. A presente tese propõe
uma abordagem abrangente para otimizar pórticos espaciais de aço, com o objetivo
de equilibrar custo e desempenho. Além da minimização de custos, os objetivos
incluem maximizar a frequência natural de vibração, o fator de carga crítica relacionado à flambagem global, bem como reduzir o máximo deslocamento no topo,
o número de perfis distintos e o peso total da estrutura. A metodologia adotada envolve a aplicação de quatro algoritmos evolutivos baseados em evolução diferencial
e uma análise multicritério de tomada de decisões para a extração das soluções das
frentes de Pareto, considerando diferentes cenários de estudo. Destaca-se como aspecto inovador a consideração conjunta de variáveis de projeto, como o sistema de
contraventamento, o conjunto de orientações dos eixos principais de inércia dos pilares e perfis comerciais, permitindo a avaliação simultânea de até quatro funções
objetivo, além da inclusão de restrições adicionais. Os experimentos numéricos realizados demonstram a eficácia das metodologias propostas, fornecendo soluções
viáveis para diferentes cenários com objetivos diversos. Também é explorada a automatização do agrupamento de pilares nos experimentos numéricos, através da
formulação multiobjetivo, bem como a consideração de efeitos de segunda ordem
na análise estrutural. Os resultados obtidos oferecem informações valiosas aos projetistas, permitindo a extração de soluções da frente de Pareto que balanceiam os
objetivos conflitantes, resultando em estruturas mais eficientes, econômicas e sustentáveis. / [en] Steel space frames are widely used in various civil engineering projects such
as shopping centers, residences, and stadiums. Despite their strength and lightness,
increasing their height poses challenges like wind-induced displacements and compromised dynamic behavior. To address these issues, bracing systems are employed
to also ensure the structural stability. This thesis presents a comprehensive approach
to optimizing steel space frames, aiming to balance cost and performance. Alongside cost reduction, objectives include maximizing natural frequency of vibration,
the critical load factor for global buckling, and minimizing maximum displacement
at the top, the number of distinct profiles, and total weight of the structure. The
methodology involves using four evolutionary algorithms based on differential evolution and a multi-criteria decision-making analysis to extract solutions from the
Pareto front for different study scenarios. An innovative aspect is the integrated
assessment of design variables, including the bracing system configuration, orientations of the principal inertia axes of the columns, and commercial profiles. This
allows simultaneous evaluation of up to four objective functions, along with additional design constraints. Numerical experiments demonstrate the effectiveness
of the proposed methodologies, offering feasible solutions for various scenarios
with different objectives. The automation of column grouping and consideration
of second-order effects in structural analysis are also explored. The results provide
valuable insights to designers, enabling them to extract solutions from the Pareto
front that balance conflicting objectives, resulting in more efficient, economical,
and sustainable structures.
|
129 |
Identification de facteurs opératoires influents en vue d'une production microbienne optimale de torularhodine et de sa fonctionnalisation enzymatique, à partir d'études cinétiques / Identification of major operating factors for an optimal torularhodin production by yeast and its enzymatic modifying based on kinetic studiesAlves Da Costa Cardoso, Ligia 14 November 2008 (has links)
Ce travail a eu pour objectif de déterminer les conditions optimales de production d’un caroténoïde original, la torularhodine, par Sporobolomyces ruberrimus, cultivée en réacteur discontinu. Cette souche est capable d’utiliser le glycérol technique comme source de carbone et d’énergie pour sa croissance et pour la production de caroténoïdes. D’abord, il s’est agi d’identifier les facteurs opératoires majeurs qui sont susceptibles d’avoir une influence sur la production de la torularhodine, au travers d’une étude préliminaire. L’identification expérimentale de ces facteurs d’action - la température, le taux d’oxygène dissous et la supplémentation en acide oléique - a été validée statistiquement, à des degrés divers, avant d’engager une étape d’optimisation par la construction d’un plan d’expériences multicritère. Celui-ci a conduit à l’établissement de modèles polynômiaux du second degré pour représenter l’effet conjugué des facteurs retenus et permettre la prédiction des valeurs de µmax et de concentration de torularhodine rapportée à la biomasse. Cette étude a alors été consacrée à un essai de fonctionnalisation de la torularhodine, à partir de sa fonction carboxylique, en vue de la stabilisation de la molécule dont l’activité antioxydante est élevée. L’acylation enzymatique de la lysine par la torularhodine a été envisagée. Les conditions d’acylation par la lipase B de C. antarctica ont été déterminées avec un caroténoïde modèle, la bixine. Le produit dérivé obtenu après transacylation a été purifié et a montré une activité antiradicalaire supérieure à celle de la bixine. Ces résultats permettent d’envisager la synthèse de peptides acylés avec ce type de caroténoïdes / The aim of this work was to determine the optimum of an original carotenoid, the torularhodin, produced by Sporobolomyces ruberrimus, in batch culture. A very interesting characteristic of this strain is its ability to consume raw glycerol as a carbon and energy source for microbial growth and carotenoid production. In the fist part of this study, the identification of operating parameters that have an influence on the optimum torularhodin production, was achieved. Experimental assays reinforced by a statistical study allowed to identify temperature, dissolved oxygen pressure and oleic acid supplementation, as the major parameters of influence, and then the integration of these data was performed for the construction of a multiobjective optimization based on a multicriteria experimental design. The establishment of a mathematical model of a second degree polynomial type was developed for the prediction of the values of µmax and of the torularhodin concentration reported to biomass. In the last part, considering that torularhodin has an important antioxidant property and it exhibits a free carboxyl acid function which can be used as acyl agent, a study of its structure modifying by an enzymatic way as a stabilization pattern was started. The experimental conditions of lysine acylation by the lipase B of Candida antarctica were determined using a model carotenoid, the bixin. The resulting product of the synthesis of bixin derivative was purified and showed an antiradical activity of 2.5 times higher than that of bixin. This result showed the ability of the acylation reaction of peptides with this kind of carotenoids
|
130 |
Optimisation robuste multiobjectifs par modèles de substitution / Multiobjective robust optimization via surrogate modelsBaudoui, Vincent 07 March 2012 (has links)
Cette thèse traite de l'optimisation sous incertitude de fonctions coûteuses dans le cadre de la conception de systèmes aéronautiques.Nous développons dans un premier temps une stratégie d'optimisation robuste multiobjectifs par modèles de substitution. Au-delà de fournir une représentation plus rapide des fonctions initiales, ces modèles facilitent le calcul de la robustesse des solutions par rapport aux incertitudes du problème. L'erreur de modélisation est maîtrisée grâce à une approche originale d'enrichissement de plan d'expériences qui permet d'améliorer conjointement plusieurs modèles au niveau des régions de l'espace possiblement optimales.Elle est appliquée à la minimisation des émissions polluantes d'une chambre de combustion de turbomachine dont les injecteurs peuvent s'obstruer de façon imprévisible.Nous présentons ensuite une méthode heuristique dédiée à l'optimisation robuste multidisciplinaire. Elle repose sur une gestion locale de la robustesse au sein des disciplines exposées à des paramètres incertains, afin d'éviter la mise en place d'une propagation d'incertitudes complète à travers le système. Un critère d'applicabilité est proposé pour vérifier a posteriori le bien-fondé de cette approche à partir de données récoltées lors de l'optimisation. La méthode est mise en œuvre sur un cas de conception avion où la surface de l'empennage vertical n'est pas connue avec précision. / This PhD thesis deals with the optimization under uncertainty of expensive functions in the context of aeronautical systems design.First, we develop a multiobjective robust optimization strategy based on surrogate models.Beyond providing a faster representation of the initial functions, these models facilitate the computation of the solutions' robustness with respect to the problem uncertainties. The modeling error is controlled through a new design of experiments enrichment approach that allows improving several models concurrently in the possibly optimal regions of the search space. This strategy is applied to the pollutant emission minimization of a turbomachine combustion chamber whose injectors can clog unpredictably. We subsequently present a heuristic method dedicated to multidisciplinary robust optimization. It relies on local robustness management within disciplines exposed to uncertain parameters, in order to avoid the implementation of a full uncertainty propagation through the system. An applicability criterion is proposed to check the validity of this approach a posteriori using data collected during the optimization. This methodology is applied to an aircraft design case where the surface of the vertical tail is not known accurately.
|
Page generated in 0.1025 seconds