• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 29
  • 6
  • 1
  • Tagged with
  • 84
  • 49
  • 32
  • 18
  • 17
  • 16
  • 14
  • 14
  • 14
  • 13
  • 12
  • 11
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Méthodologie de traitement et d'analyse de signaux expérimentaux d'émission acoustique : application au comportement d'un élément combustible en situation accidentelle / Methodology of treatment and analysis of experimental acoustic emission signals : application to the behavior of a fuel element in accident situation

Traore, Oumar Issiaka 15 January 2018 (has links)
L’objectif de cette thèse est de contribuer à l’amélioration du processus de dépouillement d’essais de sûreté visant étudier le comportement d'un combustible nucléaire en contexte d’accident d’injection de réactivité (RIA), via la technique de contrôle par émission acoustique. Il s’agit notamment d’identifier clairement les mécanismes physiques pouvant intervenir au cours des essais à travers leur signature acoustique. Dans un premier temps, au travers de calculs analytiques et des simulation numériques conduites au moyen d’une méthode d’éléments finis spectraux, l’impact du dispositif d’essais sur la propagation des ondes est étudié. Une fréquence de résonance du dispositif est identifiée. On établit également que les mécanismes basses fréquences ne sont pas impactés par le dispositif d'essais. En second lieu, diverses techniques de traitement du signal (soustraction spectrale, analyse spectrale singulière, ondelettes. . . ) sont expérimentées, afin de proposer des outils permettant de traiter différent types de bruit survenant lors des essais RIA. La soustraction spectrale s’avère être la méthode la plus robuste aux changements de nature du bruit, avec un fort potentiel d’amélioration du rapport signal-à-bruit. Enfin, des méthodes d’analyse de données multivariées et d’analyse de données fonctionnelles ont été appliquées, afin de proposer un algorithme de classification statistique permettant de mieux comprendre la phénoménologie des accidents de type RIA et d’identifier les mécanismes physiques. Selon l’approche (multivariée ou fonctionnelle), les algorithmes obtenus permettent de reconnaître le mécanisme associé à une salve dans plus de 80% des cas. / The objective of the thesis is to contribute to the improvement of the monitoring process of nuclear safety experiments dedicated to study the behavior of the nuclear fuel in a reactivity initiated accident (RIA) context, by using the acoustic emission technique. In particular, we want to identify the physical mechanisms occurring during the experiments through their acoustic signatures. Firstly, analytical derivations and numerical simulations using the spectral finite element method have been performed in order to evaluate the impact of the wave travelpath in the test device on the recorded signals. A resonant frequency has been identified and it has been shown that the geometry and the configuration of the test device may not influence the wave propagation in the low frequency range. Secondly, signal processing methods (spectral subtraction, singular spectrum analysis, wavelets,…) have been explored in order to propose different denoising strategies according to the type of noise observed during the experiments. If we consider only the global SNR improvement ratio, the spectral subtraction method is the most robust to changes in the stochastic behavior of noise. Finally, classical multivariate and functional data analysis tools are used in order to create a machine learning algorithm dedicated to contribute to a better understanding of the phenomenology of RIA accidents. According to the method (multivariate or functional), the obtained algorithms allow to identify the mechanisms in more than 80 % of cases.
62

Elastic matching for classification and modelisation of incomplete time series / Appariement élastique pour la classification et la modélisation de séries temporelles incomplètes

Phan, Thi-Thu-Hong 12 October 2018 (has links)
Les données manquantes constituent un challenge commun en reconnaissance de forme et traitement de signal. Une grande partie des techniques actuelles de ces domaines ne gère pas l'absence de données et devient inutilisable face à des jeux incomplets. L'absence de données conduit aussi à une perte d'information, des difficultés à interpréter correctement le reste des données présentes et des résultats biaisés notamment avec de larges sous-séquences absentes. Ainsi, ce travail de thèse se focalise sur la complétion de larges séquences manquantes dans les séries monovariées puis multivariées peu ou faiblement corrélées. Un premier axe de travail a été une recherche d'une requête similaire à la fenêtre englobant (avant/après) le trou. Cette approche est basée sur une comparaison de signaux à partir d'un algorithme d'extraction de caractéristiques géométriques (formes) et d'une mesure d'appariement élastique (DTW - Dynamic Time Warping). Un package R CRAN a été développé, DTWBI pour la complétion de série monovariée et DTWUMI pour des séries multidimensionnelles dont les signaux sont non ou faiblement corrélés. Ces deux approches ont été comparées aux approches classiques et récentes de la littérature et ont montré leur faculté de respecter la forme et la dynamique du signal. Concernant les signaux peu ou pas corrélés, un package DTWUMI a aussi été développé. Le second axe a été de construire une similarité floue capable de prender en compte les incertitudes de formes et d'amplitude du signal. Le système FSMUMI proposé est basé sur une combinaison floue de similarités classiques et un ensemble de règles floues. Ces approches ont été appliquées à des données marines et météorologiques dans plusieurs contextes : classification supervisée de cytogrammes phytoplanctoniques, segmentation non supervisée en états environnementaux d'un jeu de 19 capteurs issus d'une station marine MAREL CARNOT en France et la prédiction météorologique de données collectées au Vietnam. / Missing data are a prevalent problem in many domains of pattern recognition and signal processing. Most of the existing techniques in the literature suffer from one major drawback, which is their inability to process incomplete datasets. Missing data produce a loss of information and thus yield inaccurate data interpretation, biased results or unreliable analysis, especially for large missing sub-sequence(s). So, this thesis focuses on dealing with large consecutive missing values in univariate and low/un-correlated multivariate time series. We begin by investigating an imputation method to overcome these issues in univariate time series. This approach is based on the combination of shape-feature extraction algorithm and Dynamic Time Warping method. A new R-package, namely DTWBI, is then developed. In the following work, the DTWBI approach is extended to complete large successive missing data in low/un-correlated multivariate time series (called DTWUMI) and a DTWUMI R-package is also established. The key of these two proposed methods is that using the elastic matching to retrieving similar values in the series before and/or after the missing values. This optimizes as much as possible the dynamics and shape of knowledge data, and while applying the shape-feature extraction algorithm allows to reduce the computing time. Successively, we introduce a new method for filling large successive missing values in low/un-correlated multivariate time series, namely FSMUMI, which enables to manage a high level of uncertainty. In this way, we propose to use a novel fuzzy grades of basic similarity measures and fuzzy logic rules. Finally, we employ the DTWBI to (i) complete the MAREL Carnot dataset and then we perform a detection of rare/extreme events in this database (ii) forecast various meteorological univariate time series collected in Vietnam
63

From group to patient-specific analysis of brain function in arterial spin labelling and BOLD functional MRI / Des études de groupe aux analyses individuelles dans l'exploration de la fonction cérébrale en imagerie de perfusion par marquage de spins et en IRM fonctionnelle BOLD

Maumet, Camille 29 May 2013 (has links)
Cette thèse aborde l'étude de la fonction cérébrale en Imagerie par Résonance Magnétique (IRM) à l'aide de deux séquences : l'IRM fonctionnelle (IRMf) BOLD et l'imagerie de perfusion par marquage de spins (ASL). Dans ce contexte, les analyses de groupe jouent un rôle important dans l'identification des dysfonctionnements globaux associés à une pathologie. D'autre part, les études individuelles, qui fournissent des conclusions au niveau d'un sujet unique, présentent un intérêt croissant. Dans ce travail, nous abordons à la fois les études de groupe et les analyses individuelles. Dans un premier temps, nous réalisons une analyse de groupe en IRMf BOLD en vue d'étudier la dysphasie chez l'enfant, une pathologie peu explorée en neuroimagerie. Nous mettons ainsi en évidence un fonctionnement et une latéralisation atypiques des aires langagières. Ensuite, nous nous concentrons sur les analyses individuelles. Nous proposons l'utilisation d'estimateurs robustes pour calculer les cartographies de débit sanguin cérébral en ASL. Ensuite, nous étudions la validité des hypothèses qui sous-tendent les analyses statistiques standard dans le contexte de l'ASL. Finalement, nous proposons une nouvelle méthode localement multivariée basée sur une approche a contrario. La validation de cette nouvelle approche est réalisée dans deux contextes applicatifs : la détection d'anomalies de perfusion en ASL et la détection de zones d'activation en IRMf BOLD. / This thesis deals with the analysis of brain function in Magnetic Resonance Imaging (MRI) using two sequences: BOLD functional MRI (fMRI) and Arterial Spin Labelling (ASL). In this context, group statistical analyses are of great importance in order to understand the general mechanisms underlying a pathology, but there is also an increasing interest towards patient-specific analyses that draw conclusions at the patient level. Both group and patient-specific analyses are studied in this thesis. We first introduce a group analysis in BOLD fMRI for the study of specific language impairment, a pathology that was very little investigated in neuroimaging. We outline atypical patterns of functional activity and lateralisation in language regions. Then, we move forward to patient-specific analysis. We propose the use of robust estimators to compute cerebral blood flow maps in ASL. Then, we analyse the validity of the assumptions underlying standard statistical analyses in the context of ASL. Finally, we propose a new locally multivariate statistical method based on an a contrario approach and apply it to the detection of atypical patterns of perfusion in ASL and to activation detection in BOLD functional MRI.
64

Analyse et modélisation de données probabilistes par décomposition de mélange de copules et application à une base de données climatologiques

Vrac, Mathieu 06 December 2002 (has links) (PDF)
Nous étendons les méthodes de décomposition de mélange de densités de probabilité au cas des données "fonctions de répartition", permettant ainsi de classifier ces fonctions et de modéliser une loi pour ces données fonctionnelles particulières. Cette loi est donnée par la notion de "fonctions de distribution de distributions" (FDD), basée sur la définition d'une fonction de répartition pour des variables aléatoires à valeurs dans un espace probabiliste. Les extensions sont effectuées en associant les FDD aux fonctions "copules" par le théorème de Sklar. Les copules "couplent" les fonctions de répartition à n dimensions (jointes) et à 1-dimension (marginales) d'un n-uplet de variables aléatoires. Nous regardons principalement une classe de copules paramétriques, les copules Archimédiennes, et proposons trois nouvelles méthodes d'estimation des paramètres dans le cas de copules multivariées : par coefficients de corrélation de Kendall, de Spearman, et par maximisation de la vraisemblance. L'association des FDD et des copules caractérise l'évolution des données fonctionnelles (i.e. la forme de ces fonctions) entre différents points à l'intérieur des classes pour chaque variable, et donne une mesure de dépendance entre les variables utilisées. Les méthodes sont tout d'abord développées pour une variable, puis divers généralisations sont proposées pour n dimensions. Certains points théoriques sont ensuite discutés, tels que la convergence de l'algorithme et le fait que la méthode par copules est une généralisation du cas classique. Une application de la méthode "approche classification" par copules est réalisée sur des données climatiques de l'atmosphère terrestre. Le but est la classification de "profils" atmosphériques et l'estimation de la loi sous-jacente des données. Les résultats sont comparés avec ceux de méthodes "classiques", prouvant ainsi les performances nettement supérieures de la méthode par décomposition de mélange de copules (DMC) et l'intérêt de l'utilisation des données probabilistes.
65

Mésoécologie de la Diversité des Forêts Tropicales Humides

Pelissier, Raphaël 14 April 2010 (has links) (PDF)
La Forêt Tropicale Humide (FTH) est l'un des écosystèmes les plus riches et les plus complexes de la planète, que la disparition accélérée sous l'effet des activités humaines met au premier plan des préoccupations environnementales internationales. Dans le même temps, la relative méconnaissance de son fonctionnement en fait un enjeu prioritaire de la recherche fondamentale en écologie. Ce travail s'intéresse aux peuplements d'arbres des FTH et plus particulièrement à leur diversité spécifique et structurale, c'est-à-dire à la fois : à l'hétérogénéité de son mélange d'espèces qui renvoie à l'interaction entre processus évolutifs et écologiques présidant à l'apparition et la coexistence des espèces ; et à la variabilité de l'organisation tridimensionnelle des attributs physiques des arbres résultant des effets conjoints des processus biophysiques et de la dynamique forestière. Ces deux aspects sont étudiés de manière complémentaire par des méthodes d'analyse quantitatives adaptées aux spécificités des FTH. Les résultats obtenus conduisent à définir un cadre d'appréhension des phénomènes à une échelle intermédiaire dans le but d'évaluer la part relative des processus de colonisation-dispersion, de filtrage environnemental et d'interactions locales dans le maintien de la diversité des FTH.
66

Etude et validation de boucles d'asservissement permettant le contrôle avancé des procédés en microélectronique : Application à l'étape d'isolation par tranchées peu profondes en technologie CMOS.

Belharet, Djaffar 26 February 2009 (has links) (PDF)
Ces travaux de cette thèse s'inscrivent dans la thématique du développement de techniques de contrôle avancé des procédés dans l'industrie de la microélectronique. Leur but est la mise en place de boucles d'asservissement permettant d'ajuster les paramètres d'un procédé de fabrication en temps réel. Ces techniques ont été appliquées sur le bloc isolation des circuits de la technologie CMOS. L'utilisation de tranchées d'isolation peu profondes est la solution pour les technologies <0,25µm. L'influence de la morphologie du STI sur la génération des contraintes mécaniques est montrée. Des études statistiques ont permis de démontrer que la dispersion de la hauteur de marche (paramètre critique du module isolation) influence directement une dispersion de la tension de seuil des transistors parasites. Trois boucles de régulation sont proposées afin de réduire la dispersion de la hauteur de marche. L'indicateur électrique choisi pour le suivi des boucles de régulation R2R est la tension de seuil des transistors parasites. Les procédés concernés par ces régulations sont le dépôt CVD à haute densité plasma, le polissage mécano-chimique et la gravure humide. Les modèles physiques des procédés représentent le cœur d'une boucle de régulation et ont été déduis à partir de plans d'expériences.
67

Détection de ruptures multiples dans des séries temporelles multivariées : application à l'inférence de réseaux de dépendance / Multiple change-point detection in multivariate time series : application to the inference of dependency networks

Harlé, Flore 21 June 2016 (has links)
Cette thèse présente une méthode pour la détection hors-ligne de multiples ruptures dans des séries temporelles multivariées, et propose d'en exploiter les résultats pour estimer les relations de dépendance entre les variables du système. L'originalité du modèle, dit du Bernoulli Detector, réside dans la combinaison de statistiques locales issues d'un test robuste, comparant les rangs des observations, avec une approche bayésienne. Ce modèle non paramétrique ne requiert pas d'hypothèse forte sur les distributions des données. Il est applicable sans ajustement à la loi gaussienne comme sur des données corrompues par des valeurs aberrantes. Le contrôle de la détection d'une rupture est prouvé y compris pour de petits échantillons. Pour traiter des séries temporelles multivariées, un terme est introduit afin de modéliser les dépendances entre les ruptures, en supposant que si deux entités du système étudié sont connectées, les événements affectant l'une s'observent instantanément sur l'autre avec une forte probabilité. Ainsi, le modèle s'adapte aux données et la segmentation tient compte des événements communs à plusieurs signaux comme des événements isolés. La méthode est comparée avec d'autres solutions de l'état de l'art, notamment sur des données réelles de consommation électrique et génomiques. Ces expériences mettent en valeur l'intérêt du modèle pour la détection de ruptures entre des signaux indépendants, conditionnellement indépendants ou complètement connectés. Enfin, l'idée d'exploiter les synchronisations entre les ruptures pour l'estimation des relations régissant les entités du système est développée, grâce au formalisme des réseaux bayésiens. En adaptant la fonction de score d'une méthode d'apprentissage de la structure, il est vérifié que le modèle d'indépendance du système peut être en partie retrouvé grâce à l'information apportée par les ruptures, estimées par le modèle du Bernoulli Detector. / This thesis presents a method for the multiple change-points detection in multivariate time series, and exploits the results to estimate the relationships between the components of the system. The originality of the model, called the Bernoulli Detector, relies on the combination of a local statistics from a robust test, based on the computation of ranks, with a global Bayesian framework. This non parametric model does not require strong hypothesis on the distribution of the observations. It is applicable without modification on gaussian data as well as data corrupted by outliers. The detection of a single change-point is controlled even for small samples. In a multivariate context, a term is introduced to model the dependencies between the changes, assuming that if two components are connected, the events occurring in the first one tend to affect the second one instantaneously. Thanks to this flexible model, the segmentation is sensitive to common changes shared by several signals but also to isolated changes occurring in a single signal. The method is compared with other solutions of the literature, especially on real datasets of electrical household consumption and genomic measurements. These experiments enhance the interest of the model for the detection of change-points in independent, conditionally independent or fully connected signals. The synchronization of the change-points within the time series is finally exploited in order to estimate the relationships between the variables, with the Bayesian network formalism. By adapting the score function of a structure learning method, it is checked that the independency model that describes the system can be partly retrieved through the information given by the change-points, estimated by the Bernoulli Detector.
68

Health Impact Assessment : Quantifying and Modeling to Better Decide / Évaluation d'impact sur la santé : quantifier et modéliser pour mieux décider / Avaliação de Impacte na Saúde : Quantificar e Modelizar para Melhor Decidir

Bacelar-Nicolau, Leonor 19 December 2017 (has links)
L’Évaluation d’Impact sur la Santé (EIS) est un instrument de support à la décision, pour juger une politique quant aux effets potentiels sur la santé et leur distribution (équité). C’est encore souvent une approche qualitative.L’objectif principal est de montrer l’utilité de méthodologies statistiques quantitatives multivariées pour enrichir la pratique d’EIS, améliorant la compréhension des résultats par des professionnels non-statisticiens.Les futures réformes des systèmes de santé déplacent le centre d’évaluation des services de santé des fournisseurs aux citoyens (besoins, préférences, équité d’accès aux gains de santé), exploitant big data associant information de soins aux données sociales, économiques et de déterminants de santé. Des méthodologies statistiques et d’évaluation innovantes sont nécessaires à cette transformation.Les méthodes de data mining et data science, souvent complexes, peuvent gérer des résultats graphiques compréhensibles pour amplifier l’usage d’EIS, qui deviendrait ainsi un outil précieux d’évaluation de politiques publiques pour amener les citoyens au centre de la prise de décision. / Health Impact Assessment (HIA) is a decision-making support tool to judge a policy as to its potential effects and its distribution on a population’s health (equity). It’s still very often a qualitative approach.The main aim here is to show the usefulness of applying quantified multivariate statistical methodologies to enrich HIA practice, while making the decision-making process easier, by issuing understandable outputs even for non-statisticians.The future of healthcare reforms shifts the center of evaluation of health systems from providers to people’s individual needs and preferences, reducing health inequities in access and health outcomes, using big data linking information from providers to social and economic health determinants. Innovative statistical and assessment methodologies are needed to make this transformation.Data mining and data science methods, however complex, may lead to graphical outputs simple to understand by decision makers. HIA is thus a valuable tool to assure public policies are indeed evaluated while considering health determinants and equity and bringing citizens to the center of the decision-making process. / A Avaliação de Impacte na Saúde (AIS) é um instrumento de suporte à decisão para julgar política quanto aos seus efeitos potenciais e à sua distribuição na saúde de uma população (equidade). É geralmente ainda uma abordagem qualitativa.O principal objetivo é mostrar a utilidade das metodologias estatísticas quantitativas e multivariadas para enriquecer a prática de AIS, melhorando a compreensão dos resultados por profissionais não-estatísticos.As futuras reformas dos sistemas de saúde deslocam o centro da avaliação dos serviços de saúde dos prestadores para as necessidades e preferências dos cidadãos, reduzindo iniquidades no acesso à saúde e ganhos em saúde, usando big data que associam informação de prestadores a dados sociais e económicos de determinantes de saúde. São necessárias metodologias estatísticas e de avaliação inovadoras para esta transformação.Métodos de data mining e data science, mesmo complexos, podem gerar resultados gráficos compreensíveis para os decisores. A AIS é assim uma ferramenta valiosa para avaliar políticas públicas considerando determinantes de saúde, equidade e trazendo os cidadãos para o centro da tomada de decisão.
69

Trial design and analysis of endpoints in HIV vaccine trials / Schéma d’étude et analyses des données des essais vaccinaux du VIH

Richert, Laura 28 October 2013 (has links)
Des données complexes sont fréquentes dans les essais cliniques récents et nécessitent des méthodes statistiques adaptées. La recherche vaccinale du VIH est un exemple d’un domaine avec des données complexes et une absence de critères de jugement validés dans les essais précoces. Cette thèse d’Université concerne des recherches méthodologiques sur la conception et les aspects statistiques des essais cliniques vaccinaux du VIH, en particulier sur les critères de jugement d’immunogénicité et les schémas d’essai de phase I-II. A l’aide des données cytokiniques multiplex, nous illustrons les aspects méthodologiques spécifiques à une technique de mesure. Nous proposons ensuite des définitions de critères de jugement et des méthodes statistiques adéquates pour l'analyse des données d'immunogénicité multidimensionnelles. En particulier, nous montrons l’intérêt des scores multivariés non-paramétriques, permettant de résumer l’information à travers différents marqueurs d’immunogénicité et de faire des comparaisons inter- et intra-groupe. Dans l’objectif de contribuer à la conception méthodologique des nouveaux essais vaccinaux, nous présentons la construction d’un schéma d’essai optimisé pour le développement clinique précoce. En imbriquant les phases I et II d’évaluation clinique, ce schéma permet d’accélerer le développement de plusieurs stratégies vaccinales en parallèle. L’intégration d’une règle d’arrêt est proposée dans des perspectives fréquentistes et Bayesiennes. Les méthodes mises en avant dans cette thèse sont transposables à d’autres domaines d’application avec des données complexes, telle que les données d’imagerie ou les essais d’autres immunothérapies. / Complex data are frequently recored in recent clinical trials and require the use of appropriate statistical methods. HIV vaccine research is an example of a domaine with complex data and a lack of validated endpoints for early-stage clinical trials. This thesis concerns methodological research with regards to the design and analysis aspects of HIV vaccine trials, in particular the definition of immunogenicity endpoints and phase I-II trial designs. Using cytokine multiplex data, we illustrate the methodological aspects specific to a given assay technique. We then propose endpoint definitions and statistical methods appropriate for the analysis of multidimensional immunogenicity data. We show in particular the value of non-parametric multivariate scores, which allow for summarizing information across different immunogenicity markers and for making statistical comparisons between and within groups. In the aim of contributing to the design of new vaccine trials, we present the construction of an optimized early-stage HIV vaccine design. Combining phase I and II assessments, the proposed design allows for accelerating the clinical development of several vaccine strategies in parallel. The integration of a stopping rule is proposed from both a frequentist and a Bayesian perspective. The methods advocated in this thesis are transposable to other research domains with complex data, such as imaging data or trials of other immune therapies.
70

La visualisation d’information pour les données massives : une approche par l’abstraction de données / Information visualization for big data : a data abstraction approach

Sansen, Joris 04 July 2017 (has links)
L’évolution et la démocratisation des technologies ont engendré une véritable explosion de l’information et notre capacité à générer des données et le besoin de les analyser n’a jamais été aussi important. Pourtant, les problématiques soulevées par l’accumulation de données (stockage, temps de traitement, hétérogénéité, vitesse de captation/génération, etc. ) sont d’autant plus fortes que les données sont massives, complexes et variées. La représentation de l’information, de part sa capacité à synthétiser et à condenser des données, se constitue naturellement comme une approche pour les analyser mais ne résout pas pour autant ces problèmes. En effet, les techniques classiques de visualisation sont rarement adaptées pour gérer et traiter cette masse d’informations. De plus,les problèmes que soulèvent le stockage et le temps de traitement se répercutent sur le système d’analyse avec par exemple, la distanciation de plus en plus forte entre la donnée et l’utilisateur : le lieu où elle sera stockée et traitée et l’interface utilisateur servant à l’analyse. Dans cette thèse nous nous intéressons à ces problématiques et plus particulièrement à l’adaptation des techniques de visualisation d’informations pour les données massives. Pour cela, nous nous intéressons tout d’abord à l’information de relation entre éléments, comment est-elle véhiculée et comment améliorer cette transmission dans le contexte de données hiérarchisées. Ensuite, nous nous intéressons à des données multivariées,dont la complexité à un impact sur les calculs possibles. Enfin, nous présentons les approches mises en oeuvre pour rendre nos méthodes compatibles avec les données massives. / The evolution and spread of technologies have led to a real explosion of information and our capacity to generate data and our need to analyze them have never been this strong. Still, the problems raised by such accumulation (storage, computation delays, diversity, speed of gathering/generation, etc. ) is as strong as the data are big, complex and varied. Information visualization,by its ability to summarize and abridge data was naturally established as appropriate approach. However, it does not solve the problem raised by Big Data. Actually, classical visualization techniques are rarely designed to handle such mass of information. Moreover, the problems raised by data storage and computation time have repercussions on the analysis system. For example,the increasing distance between the data and the analyst : the place where the data is stored and the place where the user will perform the analyses arerarely close. In this thesis, we focused on these issues and more particularly on adapting the information visualization techniques for Big Data. First of all focus on relational data : how does the existence of a relation between entity istransmitted and how to improve this transmission for hierarchical data. Then,we focus on multi-variate data and how to handle their complexity for the required computations. Finally, we present the methods we designed to make our techniques compatible with Big Data.

Page generated in 0.0466 seconds