• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 8
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 35
  • 35
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Elektronen-Holographische Tomographie zur 3D-Abbildung von elektrostatischen Potentialen in Nanostrukturen / Electron Holographic Tomography for the 3D Mapping of Electrostatic Potentials in Nano-Structures

Wolf, Daniel 14 February 2011 (has links) (PDF)
Die Aufklärung der grundlegenden Struktur-Eigenschaft-Beziehung von Materialen auf der (Sub-)Nanometerskala benötigt eine leistungsfähige Transmissionselektronenmikroskopie. Dabei spielen insbesondere die durch die Nanostruktur hervorgerufenen intrinsischen elektrischen und magnetischen Feldverteilungen eine entscheidende Rolle. Die Elektronen-Holographische Tomographie (EHT), d.h. die Kombination von off-axis Elektronenholographie (EH) und Elektronentomographie (ET), bietet einen einzigartigen Zugang zu dieser Information, weil sie die quantitative 3D-Abbildung elektrostatischer Potentiale und magnetostatischer Vektorfelder bei einer Auflösung von wenigen (5-10) Nanometern ermöglicht. Für die Rekonstruktion des 3D-Potentials erfolgt zunächst die Aufzeichnung einer Kippserie von Hologrammen im Elektronenmikroskop. Durch die anschließende Rekonstruktion der Objektwelle aus jedem Hologramm liegt eine Amplituden- und eine Phasenkippserie vor. Die Phasenkippserie wird schließlich zur tomographischen 3D-Rekonstruktion des elektrostatischen Potentials verwendet. Im Rahmen dieser Arbeit wurde die EHT von einer manuell aufwendigen zu einer weitestgehend automatisierten Methode entwickelt. Die Automatisierung beinhaltet die Entwicklung des ersten Softwarepaketes zur computergestützten Aufzeichnung einer holographischen Kippserie (THOMAS). Verglichen mit rein manueller Vorgehensweise verkürzt sich mit THOMAS die Dauer für die Aufnahme einer holographischen Kippserie, bestehend aus Objekt- und Leerhologrammen, auf weniger als ein Drittel. Mittlerweile beträgt die Aufnahmezeit im Mittel etwa 2-3 Stunden. Auch die holographische Rekonstruktion und zugehörige Operationen zur Entfernung von Artefakten in den Phasenbildern ist durch entsprechende Prozeduren, welche für eine gesamte Kippserie in einem Schritt anwendbar sind, automatisiert. Zudem ermöglichen erst spezielle selbstentwickelte Ausrichtungsmethoden die exakte Verschiebungskorrektur von Kippserien der hier untersuchten stabförmigen Objekte (Nanodrähte, FIB-präparierte Nadeln). Für die tomographische Rekonstruktion wurde in dieser Arbeit die Simultane Iterative Rekonstruktionstechnik (SIRT) zur W-SIRT weiterentwickelt. In der W-SIRT wird statt einer Einfachen eine Gewichtete Rückprojektion bei jeder Iteration verwendet, was eine bessere Konvergenz der W-SIRT gegenüber der SIRT zur Folge hat. Wie in anderen ET-Techniken auch, ist in der EHT für die Rekonstruktion des dreidimensionalen Tomogramms meist nur aus Projektionen innerhalb eines begrenzten Winkelbereichs möglich. Dies führt in den Tomogrammen zu einem sogenannten Missing Wedge, welcher neben dem Verlust von Au ösung auch Artefakte verursacht. Daher wird eine Methode vorgestellt, wie sich das Problem des Missing Wedge bei geeigneten Objekten durch Ausnutzung von Symmetrien entschärfen lässt. Das mittels EHT rekonstruierte 3D-Potential gibt Aufschluss über äußere (Morphologie) und innere Objektstruktur, sowie über das Mittlere Innere Potential (MIP) des Nanoobjektes. Dies wird am Beispiel von epitaktisch gewachsenen Nanodrähten (nanowires, NWs) aus GaAs und AlGaAs demonstriert. Anhand entsprechender Isopotentialflächen im 3D-Potential lässt sich die 3D-Morphologie studieren: Die Facetten an der Oberfläche der NWs erlauben Rückschlüsse über die dreidimensionale kristalline Struktur. Des Weiteren zeigt das rekonstruierte 3D-Potential eines AlGaAs/GaAs-Nanodrahtes deutlich dessen Kern/Schale-Struktur, da sich GaAs-Kern und AlGaAs-Schale bezüglich des MIP um 0.61 V unterscheiden. Im Falle dotierter Halbleiterstrukturen mit pn-Übergang (z.B. Transistoren) bietet die mittels EHT rekonstruierte Potentialverteilung auch Zugang zur Diffusionsspannung am pn-Übergang. Diese Größe kann ohne Projektions- und Oberflächeneffekte (dead layer) im Innern der Probe gemessen und in 3D analysiert werden. Für drei nadelförmig mittels FIB präparierte Proben (Nadeln) werden die Diffusionsspannungen bestimmt: Die Messungen ergeben für zwei Silizium-Nadeln jeweils 1.0 V und 0.5 V, sowie für eine Germanium-Nadel 0.4 V. Im Falle der GaAs- und AlGaAs-Nanodrähte reduziert der Missing Wedge die Genauigkeit der mittels EHT gewonnenen 3D-Potentiale merklich, insbesondere bezüglich der MIP-Bestimmung. Dagegen stimmen die Potentiale der Germanium und Silizium-Nadeln exzellent mit theoretischen Werten überein, wenn der Missing Wedge durch Ausnutzung der Objektsymmetrie behoben wird. / Revealing the essential structure-property relation of materials on a (sub-)nanometer scale requires a powerful Transmission Electron Microscopy (TEM). In this context, the intrinsic electrostatic and magnetic fields, which are related to the materials nano structure, play a crucial role. Electron-holographic tomography (EHT), that is, the combination of off-axis electron holography (EH) with electron tomography (ET), provides an unique access to this information, because it allows the quantitative 3D mapping of electrostatic potentials and magnetostatic vector fields with a resolution of a few (5-10) nanometers. The reconstruction of the 3D potential starts with the acquisition of a hologram tilt series in the electron microscope. The subsequent reconstruction of the electron object wave from each hologram yields a tilt series in both amplitude and phase images. Finally, the phase tilt series is used for the tomographic reconstruction of the 3D potential. In this work, EHT has been developed from a manual and time-consuming approach to a widely automated method. The automation includes the development of the first software package for computer-controlled acquisition of holographic tilt series (THOMAS), a prerequisite for efficient data collection. Using THOMAS, the acquisition time for a holographic tilt series, consisting of object and reference holograms, is reduced by more than a factor of three, compared to the previous, completely manual approaches. Meanwhile, the acquisition takes 2-3 hours on average. In addition, the holographic reconstruction and corresponding methods for removal of artefacts in the phase images have been automated, now including one-step procedures for complete tilt series. Furthermore, specific self-developed alignment routines facilitate the precise correction of displacements within the tilt series of the rod-shaped samples, which are investigated here (e.g. nanowires, FIB needles). For tomographic reconstruction, a W-SIRT algorithm based on a standard simultaneous iterative reconstruction technique (SIRT) has been developed. Within the W-SIRT, a weighted back-projection instead of a simple back-projection is used. This yields a better convergence of the W-SIRT compared to the SIRT. In most cases in EHT (likewise in other ET techniques), the reconstruction of the three-dimensional tomogram is only feasible from projections covering a limited tilt range. This leads to a so-called missing wedge in the tomogram, which causes not only a lower resolution but also artefacts. Therefore, a method is presented, how to solve the missing wedge problem for suitable objects by exploiting symmetries. The 3D potential offers the outer (morphology) and inner structure, as well as the mean inner potential (MIP) of the nano object. This is shown by means of EHT on epitaxially grown nanowires (NWs) of GaAs and AlGaAs. The 3D morphology is studied using the corresponding iso-surfaces of the 3D potential: The facets on the nanowires surface allow conclusions about the crystalline structure. Moreover, the reconstructed 3D potential of a AlGaAs/GaAs NW clearly shows its core/shell structure due to the MIP difference between GaAs and AlGaAs of 0.61 V. In case of doped semiconductor structures with pn-junctions (e.g. transistors) the potential distribution, reconstructed by EHT, also provides access to the built-in voltage across the pn-junction. The built-in voltage can be analyzed in 3D and measured without projection and surface effects (e.g. dead layers) within the sample. The measurements in three needle-shaped specimens, prepared by FIB, yield for two silicon needles 1.0 V and 0.5 V, and for a germanium needle 0.4 V. In case of the GaAs and AlGaAs nanowires the missing wedge reduces the accuracy of the reconstructed 3D potentials significantly, in particular in terms of MIP determination. However, the potentials of the silicon and germanium needles are in excellent agreement with theoretical values, when the object symmetry is exploited to fill-up the missing wedge.
32

A comprehensive study of 3D nano structures characteristics and novel devices

Zaman, Rownak Jyoti 10 April 2012 (has links)
Silicon based 3D fin structure is believed to be the potential future of current semiconductor technology. However, there are significant challenges still exist in realizing a manufacturable fin based process. In this work, we have studied the effects of hydrogen anneal on the structural and electrical characteristics of silicon fin based devices: tri-gate, finFET to name a few. H₂ anneal is shown to play a major role in structural integrity and manufacturability of 3D fin structure which is the most critical feature for these types of devices. Both the temperature and the pressure of H₂ anneal can result in significant alteration of fin height and shape as well as electrical characteristics. Optimum H₂ anneal is required in order to improve carrier mobility and device reliability as shown in this work. A new hard-mask based process was developed to retain H₂ anneal related benefit while eliminating detrimental effects such as reduction of device drive current due to fin height reduction. We have also demonstrated a novel 1T-1C pseudo Static Random Access Memory (1T-1C pseudo SRAM) memory cell using low cost conventional tri-gate process by utilizing selective H₂ anneal and other clever process techniques. TCAD-based simulation was also provided to show its competitive advantage over other types of static and dynamic memories in 45nm and beyond technologies. A high gain bipolar based on silicon fin process flow was proposed for the first time that can be used in BiCMOS technology suitable for low cost mixed signal and RF products. TCAD-based simulation results proved the concept with gain as high 100 for a NPN device using single additional mask. Overall, this work has shown that several novel process techniques and selective use of optimum H₂ anneal can lead to various high performance and low cost devices and memory cells those are much better than the devices using current conventional 3D fin based process techniques. / text
33

A study into the interaction of gold nanoparticles released into drinking water and wastewater system

Raedani, Shumani Alfred January 2016 (has links)
MESHWR / Department of Hydrology and Water Resources / This research involves the investigation of the interaction of different sized Nano Gold particles released into municipal drinking water and municipal waste water. Waste water was collected from Malamulele waste water treatment plant and the municipal water was collected at Mintek in Johannesburg, Randburg, South Africa. The waste water was analysed using ICP-MS to detect the metals and anions in it. The results showed the abundance of Sulphur (464 ppm), Calcium (28 ppm), Chloride (27.8 ppm), Iron (20 ppm), Magnesium (8.2 ppm), silicon (6.192 ppm) in descending order and other trace elements, including gold, that were immeasurable (<0.1). The simulated situation was created by adding 20nm gold and 40nm gold nanoparticles into municipal drinking water and waste water and kept at different environmental conditions (light, light and agitation, dark, dark and agitation) under aerobic and anaerobic conditions over a period of two months. Physico-chemical properties (pH and chemical oxygen demand) of the solutions were checked once in a month. The pH fluctuated between the acceptable ranges (5.5 – 9.5) for the two month period. Both municipal water and waste water, with and without gold nanoparticles, under aerobic condition showed an increase in chemical oxygen demand. The gold content in waste water under anaerobic condition showed an increase while under aerobic condition the decline in gold content was evident. The zeta potential of gold nanoparticles in waste water in light and agitation showed (-30 mV) while waste water on other environmental condition (light, dark and dark with agitation) presenting unstable (-18 mV) charge, but the charge shifted positively on the second month rendering them also unstable. Dynamic light scattering and TEM were used to check any possible aggregation or agglomeration of nanoparticles in the waste water. There were some few discrepancies where TEM and DLS contradict, but overall there was no significant probability of any aggregation of gold nanoparticles. The EDX was used to confirm the presence of Au0 in the waste water (with added gold nanoparticles). The research did show that the gold nanoparticles would exist as Au0 in the waste water and thus the discharge of Au-NPs to the sewer system is not recommended, but rather recycle them.
34

Elektronen-Holographische Tomographie zur 3D-Abbildung von elektrostatischen Potentialen in Nanostrukturen: Electron Holographic Tomography for the 3D Mapping of Electrostatic Potentials in Nano-Structures

Wolf, Daniel 04 February 2011 (has links)
Die Aufklärung der grundlegenden Struktur-Eigenschaft-Beziehung von Materialen auf der (Sub-)Nanometerskala benötigt eine leistungsfähige Transmissionselektronenmikroskopie. Dabei spielen insbesondere die durch die Nanostruktur hervorgerufenen intrinsischen elektrischen und magnetischen Feldverteilungen eine entscheidende Rolle. Die Elektronen-Holographische Tomographie (EHT), d.h. die Kombination von off-axis Elektronenholographie (EH) und Elektronentomographie (ET), bietet einen einzigartigen Zugang zu dieser Information, weil sie die quantitative 3D-Abbildung elektrostatischer Potentiale und magnetostatischer Vektorfelder bei einer Auflösung von wenigen (5-10) Nanometern ermöglicht. Für die Rekonstruktion des 3D-Potentials erfolgt zunächst die Aufzeichnung einer Kippserie von Hologrammen im Elektronenmikroskop. Durch die anschließende Rekonstruktion der Objektwelle aus jedem Hologramm liegt eine Amplituden- und eine Phasenkippserie vor. Die Phasenkippserie wird schließlich zur tomographischen 3D-Rekonstruktion des elektrostatischen Potentials verwendet. Im Rahmen dieser Arbeit wurde die EHT von einer manuell aufwendigen zu einer weitestgehend automatisierten Methode entwickelt. Die Automatisierung beinhaltet die Entwicklung des ersten Softwarepaketes zur computergestützten Aufzeichnung einer holographischen Kippserie (THOMAS). Verglichen mit rein manueller Vorgehensweise verkürzt sich mit THOMAS die Dauer für die Aufnahme einer holographischen Kippserie, bestehend aus Objekt- und Leerhologrammen, auf weniger als ein Drittel. Mittlerweile beträgt die Aufnahmezeit im Mittel etwa 2-3 Stunden. Auch die holographische Rekonstruktion und zugehörige Operationen zur Entfernung von Artefakten in den Phasenbildern ist durch entsprechende Prozeduren, welche für eine gesamte Kippserie in einem Schritt anwendbar sind, automatisiert. Zudem ermöglichen erst spezielle selbstentwickelte Ausrichtungsmethoden die exakte Verschiebungskorrektur von Kippserien der hier untersuchten stabförmigen Objekte (Nanodrähte, FIB-präparierte Nadeln). Für die tomographische Rekonstruktion wurde in dieser Arbeit die Simultane Iterative Rekonstruktionstechnik (SIRT) zur W-SIRT weiterentwickelt. In der W-SIRT wird statt einer Einfachen eine Gewichtete Rückprojektion bei jeder Iteration verwendet, was eine bessere Konvergenz der W-SIRT gegenüber der SIRT zur Folge hat. Wie in anderen ET-Techniken auch, ist in der EHT für die Rekonstruktion des dreidimensionalen Tomogramms meist nur aus Projektionen innerhalb eines begrenzten Winkelbereichs möglich. Dies führt in den Tomogrammen zu einem sogenannten Missing Wedge, welcher neben dem Verlust von Au ösung auch Artefakte verursacht. Daher wird eine Methode vorgestellt, wie sich das Problem des Missing Wedge bei geeigneten Objekten durch Ausnutzung von Symmetrien entschärfen lässt. Das mittels EHT rekonstruierte 3D-Potential gibt Aufschluss über äußere (Morphologie) und innere Objektstruktur, sowie über das Mittlere Innere Potential (MIP) des Nanoobjektes. Dies wird am Beispiel von epitaktisch gewachsenen Nanodrähten (nanowires, NWs) aus GaAs und AlGaAs demonstriert. Anhand entsprechender Isopotentialflächen im 3D-Potential lässt sich die 3D-Morphologie studieren: Die Facetten an der Oberfläche der NWs erlauben Rückschlüsse über die dreidimensionale kristalline Struktur. Des Weiteren zeigt das rekonstruierte 3D-Potential eines AlGaAs/GaAs-Nanodrahtes deutlich dessen Kern/Schale-Struktur, da sich GaAs-Kern und AlGaAs-Schale bezüglich des MIP um 0.61 V unterscheiden. Im Falle dotierter Halbleiterstrukturen mit pn-Übergang (z.B. Transistoren) bietet die mittels EHT rekonstruierte Potentialverteilung auch Zugang zur Diffusionsspannung am pn-Übergang. Diese Größe kann ohne Projektions- und Oberflächeneffekte (dead layer) im Innern der Probe gemessen und in 3D analysiert werden. Für drei nadelförmig mittels FIB präparierte Proben (Nadeln) werden die Diffusionsspannungen bestimmt: Die Messungen ergeben für zwei Silizium-Nadeln jeweils 1.0 V und 0.5 V, sowie für eine Germanium-Nadel 0.4 V. Im Falle der GaAs- und AlGaAs-Nanodrähte reduziert der Missing Wedge die Genauigkeit der mittels EHT gewonnenen 3D-Potentiale merklich, insbesondere bezüglich der MIP-Bestimmung. Dagegen stimmen die Potentiale der Germanium und Silizium-Nadeln exzellent mit theoretischen Werten überein, wenn der Missing Wedge durch Ausnutzung der Objektsymmetrie behoben wird.:Inhaltsverzeichnis 1. Einleitung 2. Grundlagen der TEM 2.1. Elastische Elektron-Objekt-Wechselwirkung 2.1.1. 3D-Potentialverteilung im Festkörper und Mittleres Inneres Potential (MIP) 2.1.2. Elektrische Phasenschiebung 2.1.3. Magnetische Phasenschiebung 2.1.4. Amplitudenkontrast 2.2. Abbildungstheorie 2.2.1. Abbildung durch ideale Linse 2.2.2. Abbildung durch fehlerbehaftete Linse 2.2.3. Partiell kohärente Abbildung durch fehlerbehaftete Linse 2.2.4. Abbildung schwacher Objekte 2.3. Zusammenfassung 3. Off-axis Elektronenholographie 3.1. Holographisches Prinzip 3.2. Aufzeichnung des Elektronenhologramms 3.3. Rekonstruktion der Bildwelle 3.4. Ein uss der Aberrationen 3.5. Stochastische Phasenschwankung 3.6. Stochastische Potentialschwankung und optimale Dicke für 2D-Abbildungen von Potentialen 3.7. Phase Unwrapping 3.7.1. Eindimensionales Phase Unwrapping 3.7.2. Goldsteins Branch-Cut Algorithmus 3.7.3. Flynns (Weighted) Minimum Discontinuity Approach (W)MDA 3.7.4. Anwendungsbeispiel 3.8. Zusammenfassung 4. Elektronentomographie 4.1. Ein-Achsen-Tomographie 4.2. Projektion 4.2.1. Die Radontransformation 4.2.2. Das Projektions-Schnitt-Theorem 4.2.3. TEM Abbildungsmodi und Projektionsbedingung für Tomographie 4.3. Rekonstruktion des Tomogramms 4.3.1. Gewichtete Rückprojektion 4.3.2. Simultane Iterative Rekonstruktions-Technik (SIRT) 4.3.3. Tomographische Auflösung 4.3.4. Missing Wedge 4.4. Automatisierte Elektronentomographie 4.5. Ausrichtung der Kippserie 4.5.1. Ausrichtung mittels Kreuzkorrelation 4.5.2. Ausrichtung anhand von Bezugspunkten 4.5.3. Ausrichtung ohne Bezugspunkte 4.6. 3D-Visualisierung 4.7. Rauschfilterung 4.8. Zusammenfassung 5. Holographische Tomographie 5.1. Vorarbeiten 5.2. Computergestützte Aufzeichnung einer holographischen Kippserie 5.2.1. Charakteristik des TEM Goniometers 5.2.2. Kalibrierung 5.2.3. Bestimmung des Euzentrischen Punktes und z-Korrektur in die Euzentrische Höhe 5.2.4. Optimale Position des Leerhologramms 5.2.5. Computergestützte Aufzeichnung 5.2.6. THOMAS 5.2.7. Zusammenfassung 5.3. Holographische Rekonstruktion 5.3.1. Beseitigung von Artefakten in Elektronenhologrammen 5.3.2. Rekonstruktion mit Sinc-Filter 5.3.3. Stabilität des Phasen-Offsets 5.3.4. Interaktives Unwrapping einer Phasenkippserie 5.4. Ausrichtung der Phasen-Kippserie 5.4.1. Manuelle Ausrichtung mithilfe von Bezugslinien 5.4.2. Manuelle Ausrichtung mithilfe der Schnittebenen 5.4.3. Bestimmung der Kippachse 5.4.4. Identifizierung dynamischer Phasenschiebungen 5.5. Tomographische Rekonstruktion mittels W-SIRT 5.5.1. W-SIRT - Implementierung 5.5.2. Gewichtungsfilter 5.5.3. Konvergenz 5.5.4. z-Auflösung bei Missing Wedge 5.5.5. Artefakte bei Missing Wedge 5.5.6. Konvergenz bei Missing Wedge 5.5.7. Lineare Korrektur bei Missing Wedge 5.5.8. Ausnutzung der Objektsymmetrie bei Missing Wedge 5.5.9. Einfluss von Rauschen 5.5.10. Einfluss dynamischer Effekte 5.5.11. Zusammenfassung 6. 3D-Abbildung elektrostatischer Potentiale 127 6.1. Experimentelle Details 6.2. Latexkugel 6.3. Dotierte Halbleiter 6.3.1. Nadel-Präparation mittels FIB 6.3.2. Dotierte Silizium-Nadeln 6.3.3. n-Dotierte Germanium-Nadel 6.3.4. Untersuchung der Diffusionsspannung 6.4. Halbleiter-Nanodrähte 6.4.1. GaAs-Nanodraht 6.4.2. GaAs/AlGaAs-Nanodraht 6.4.3. Bestimmung der Mittleren Inneren Potentiale 7. Zusammenfassung und Ausblick A. Anhang A.1. Näherung der Klein-Gordon Gleichung A.2. Herleitung der Phase-Grating Approximation A.3. Elongationsfaktor / Revealing the essential structure-property relation of materials on a (sub-)nanometer scale requires a powerful Transmission Electron Microscopy (TEM). In this context, the intrinsic electrostatic and magnetic fields, which are related to the materials nano structure, play a crucial role. Electron-holographic tomography (EHT), that is, the combination of off-axis electron holography (EH) with electron tomography (ET), provides an unique access to this information, because it allows the quantitative 3D mapping of electrostatic potentials and magnetostatic vector fields with a resolution of a few (5-10) nanometers. The reconstruction of the 3D potential starts with the acquisition of a hologram tilt series in the electron microscope. The subsequent reconstruction of the electron object wave from each hologram yields a tilt series in both amplitude and phase images. Finally, the phase tilt series is used for the tomographic reconstruction of the 3D potential. In this work, EHT has been developed from a manual and time-consuming approach to a widely automated method. The automation includes the development of the first software package for computer-controlled acquisition of holographic tilt series (THOMAS), a prerequisite for efficient data collection. Using THOMAS, the acquisition time for a holographic tilt series, consisting of object and reference holograms, is reduced by more than a factor of three, compared to the previous, completely manual approaches. Meanwhile, the acquisition takes 2-3 hours on average. In addition, the holographic reconstruction and corresponding methods for removal of artefacts in the phase images have been automated, now including one-step procedures for complete tilt series. Furthermore, specific self-developed alignment routines facilitate the precise correction of displacements within the tilt series of the rod-shaped samples, which are investigated here (e.g. nanowires, FIB needles). For tomographic reconstruction, a W-SIRT algorithm based on a standard simultaneous iterative reconstruction technique (SIRT) has been developed. Within the W-SIRT, a weighted back-projection instead of a simple back-projection is used. This yields a better convergence of the W-SIRT compared to the SIRT. In most cases in EHT (likewise in other ET techniques), the reconstruction of the three-dimensional tomogram is only feasible from projections covering a limited tilt range. This leads to a so-called missing wedge in the tomogram, which causes not only a lower resolution but also artefacts. Therefore, a method is presented, how to solve the missing wedge problem for suitable objects by exploiting symmetries. The 3D potential offers the outer (morphology) and inner structure, as well as the mean inner potential (MIP) of the nano object. This is shown by means of EHT on epitaxially grown nanowires (NWs) of GaAs and AlGaAs. The 3D morphology is studied using the corresponding iso-surfaces of the 3D potential: The facets on the nanowires surface allow conclusions about the crystalline structure. Moreover, the reconstructed 3D potential of a AlGaAs/GaAs NW clearly shows its core/shell structure due to the MIP difference between GaAs and AlGaAs of 0.61 V. In case of doped semiconductor structures with pn-junctions (e.g. transistors) the potential distribution, reconstructed by EHT, also provides access to the built-in voltage across the pn-junction. The built-in voltage can be analyzed in 3D and measured without projection and surface effects (e.g. dead layers) within the sample. The measurements in three needle-shaped specimens, prepared by FIB, yield for two silicon needles 1.0 V and 0.5 V, and for a germanium needle 0.4 V. In case of the GaAs and AlGaAs nanowires the missing wedge reduces the accuracy of the reconstructed 3D potentials significantly, in particular in terms of MIP determination. However, the potentials of the silicon and germanium needles are in excellent agreement with theoretical values, when the object symmetry is exploited to fill-up the missing wedge.:Inhaltsverzeichnis 1. Einleitung 2. Grundlagen der TEM 2.1. Elastische Elektron-Objekt-Wechselwirkung 2.1.1. 3D-Potentialverteilung im Festkörper und Mittleres Inneres Potential (MIP) 2.1.2. Elektrische Phasenschiebung 2.1.3. Magnetische Phasenschiebung 2.1.4. Amplitudenkontrast 2.2. Abbildungstheorie 2.2.1. Abbildung durch ideale Linse 2.2.2. Abbildung durch fehlerbehaftete Linse 2.2.3. Partiell kohärente Abbildung durch fehlerbehaftete Linse 2.2.4. Abbildung schwacher Objekte 2.3. Zusammenfassung 3. Off-axis Elektronenholographie 3.1. Holographisches Prinzip 3.2. Aufzeichnung des Elektronenhologramms 3.3. Rekonstruktion der Bildwelle 3.4. Ein uss der Aberrationen 3.5. Stochastische Phasenschwankung 3.6. Stochastische Potentialschwankung und optimale Dicke für 2D-Abbildungen von Potentialen 3.7. Phase Unwrapping 3.7.1. Eindimensionales Phase Unwrapping 3.7.2. Goldsteins Branch-Cut Algorithmus 3.7.3. Flynns (Weighted) Minimum Discontinuity Approach (W)MDA 3.7.4. Anwendungsbeispiel 3.8. Zusammenfassung 4. Elektronentomographie 4.1. Ein-Achsen-Tomographie 4.2. Projektion 4.2.1. Die Radontransformation 4.2.2. Das Projektions-Schnitt-Theorem 4.2.3. TEM Abbildungsmodi und Projektionsbedingung für Tomographie 4.3. Rekonstruktion des Tomogramms 4.3.1. Gewichtete Rückprojektion 4.3.2. Simultane Iterative Rekonstruktions-Technik (SIRT) 4.3.3. Tomographische Auflösung 4.3.4. Missing Wedge 4.4. Automatisierte Elektronentomographie 4.5. Ausrichtung der Kippserie 4.5.1. Ausrichtung mittels Kreuzkorrelation 4.5.2. Ausrichtung anhand von Bezugspunkten 4.5.3. Ausrichtung ohne Bezugspunkte 4.6. 3D-Visualisierung 4.7. Rauschfilterung 4.8. Zusammenfassung 5. Holographische Tomographie 5.1. Vorarbeiten 5.2. Computergestützte Aufzeichnung einer holographischen Kippserie 5.2.1. Charakteristik des TEM Goniometers 5.2.2. Kalibrierung 5.2.3. Bestimmung des Euzentrischen Punktes und z-Korrektur in die Euzentrische Höhe 5.2.4. Optimale Position des Leerhologramms 5.2.5. Computergestützte Aufzeichnung 5.2.6. THOMAS 5.2.7. Zusammenfassung 5.3. Holographische Rekonstruktion 5.3.1. Beseitigung von Artefakten in Elektronenhologrammen 5.3.2. Rekonstruktion mit Sinc-Filter 5.3.3. Stabilität des Phasen-Offsets 5.3.4. Interaktives Unwrapping einer Phasenkippserie 5.4. Ausrichtung der Phasen-Kippserie 5.4.1. Manuelle Ausrichtung mithilfe von Bezugslinien 5.4.2. Manuelle Ausrichtung mithilfe der Schnittebenen 5.4.3. Bestimmung der Kippachse 5.4.4. Identifizierung dynamischer Phasenschiebungen 5.5. Tomographische Rekonstruktion mittels W-SIRT 5.5.1. W-SIRT - Implementierung 5.5.2. Gewichtungsfilter 5.5.3. Konvergenz 5.5.4. z-Auflösung bei Missing Wedge 5.5.5. Artefakte bei Missing Wedge 5.5.6. Konvergenz bei Missing Wedge 5.5.7. Lineare Korrektur bei Missing Wedge 5.5.8. Ausnutzung der Objektsymmetrie bei Missing Wedge 5.5.9. Einfluss von Rauschen 5.5.10. Einfluss dynamischer Effekte 5.5.11. Zusammenfassung 6. 3D-Abbildung elektrostatischer Potentiale 127 6.1. Experimentelle Details 6.2. Latexkugel 6.3. Dotierte Halbleiter 6.3.1. Nadel-Präparation mittels FIB 6.3.2. Dotierte Silizium-Nadeln 6.3.3. n-Dotierte Germanium-Nadel 6.3.4. Untersuchung der Diffusionsspannung 6.4. Halbleiter-Nanodrähte 6.4.1. GaAs-Nanodraht 6.4.2. GaAs/AlGaAs-Nanodraht 6.4.3. Bestimmung der Mittleren Inneren Potentiale 7. Zusammenfassung und Ausblick A. Anhang A.1. Näherung der Klein-Gordon Gleichung A.2. Herleitung der Phase-Grating Approximation A.3. Elongationsfaktor
35

Optische Strukturierung ultradünner funktioneller Polymerfilme

Trogisch, Sven 22 April 2003 (has links)
Im Rahmen dieser Arbeit wurde die Strukturierbarkeit ultradünner, funktioneller Polymerfilme anhand von Diazosulfonat-Terpolymer- und Aminoterpolymer-Schichten untersucht. Beide Polymersysteme enthalten eine photoaktive Gruppe in der Seitenkette, die sich durch gezielte UV-Bestrahlung verändern läßt. In den Diazosulfonat-Terpolymeren wird durch die Belichtung die Funktionalität zerstört, während bei den Aminoterpolymeren die Funktionalität durch die Belichtung erst freigelegt wird. Dafür wurden Strukturierungsmethoden für verschiedene Längenskalen erarbeitet und auf ihre Eignung geprüft. Der Nachweis der erfolgreichen Strukturierung wurde durch an die Längenskala angepaßte Methoden geführt und damit die erzeugten Strukturen sichtbar gemacht. Die Veränderungen im optischen Absorptionsverhalten konnten an makroskopischen Probenbereichen nachgewiesen werden. Sowohl der verwendete Aufbau für die Strukturierung (Belichtung) als auch die Detektion mit dem 2-Stahl-Spektrometer erwies sich als geeignet. Es konnte deutlich der Abbau der UV-Absorptionsbande der Diazosulfonat-Terpolymerfilme gezeigt und quantitativ untersucht werden. Dafür wurden Lichtdosen von etwa 0,35 ... 39 nJ/µm² eingebracht und deren Auswirkungen auf die Absorptionsänderung des Polymers direkt festgestellt. Diese Messungen zeigen, daß die eingebrachte Energie und nicht die Leistung (sofern diese unterhalb 2,5 mW liegt) entscheidend für die Modifikation der optischen Eigenschaften dieser Polymere ist. Anhand der Meßergebnisse konnte eine Abschätzung der Quantenausbeute durchgeführt werden, die für die Diazosulfonat-Terpolymerfilme einen Wert von (12 ± 6) % ergab. Auf der Mikrometer-Skala wurden unterschiedliche Ansätze verfolgt, um die optische Strukturierung nachzuweisen. Der Nachweis optischer Modifikationen der Diazosulfonat-Terpolymerfilme wurde nach Belichtung mit hohen Lichtdosen geführt, da er sich nur in diesem Energiebereich mit der erforderlichen Empfindlichkeit realisieren ließ. Für die Aminoterpolymerfilme wurden Strukturen durch Fluoreszenzmarkierung nachgewiesen, welche sich als sehr sensitiv herausstellte. Im Anschluß an die Belichtung konnten topographische Modifikationen mit dem AFM gemessen werden. Mit dem SNOM konnten diese Modifikationen bereits während der Belichtung direkt analysiert werden. Die getesteten Methoden der Raman-Spektroskopie und der Metallisierung mit anschließender Röntgen-Photoelektronenspektroskopie zeigten weder die benötigte Sensitivität noch Selektivität. Die untersuchten Polymersysteme können in Form ultradünner Filme auf unterschiedliche Substrate aufgebracht werden. In diesen Polymerfilmen wurden Strukturen von der Millimeter-Skala bis Nanometer-Skala erzeugt. Anhand von an die Größenskala angepaßten direkten und indirekten Nachweismethoden konnten Veränderungen der optischen, mechanischen und chemischen Eigenschaften der Polymere analysiert werden.

Page generated in 0.12 seconds