• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 2
  • 2
  • Tagged with
  • 32
  • 32
  • 13
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Dewatering Cellulose Nanofibril Suspensions through Centrifugation / Avvattning av cellulosananofibriller genom centrifugering

Astorsdotter, Jennifer January 2017 (has links)
Cellulose nanofibrils (CNF) is a renewable material with unique strength properties. A difficulty in CNF production is that CNF suspensions contain large amounts of water. If CNF suspension volume can be decreased by dewatering facilitated by centrifugation, then transportation costs and storage costs can be reduced. The aim of this thesis is to investigate the impact various parameters have on CNF centrifugation dewatering and identify optimal conditions for maximal water removal. A laboratory study was conducted using four materials; 2.0 w% enzymatically treated CNF (CNF1), 1.9 w% carboxymethylated CNF (CNF2) and two commercial samples (1.9 w% CNFA and 1.8 w% CNFB). The main method was analytical centrifugation up to 2330 g. Parameters tested were initial concentration before centrifugation, temperature, NaCl addition, pH, and applied solid compressive pressure (g-force and surface weight). In addition to centrifugation experiments the four materials were characterized with laser diffraction, UV-vis absorption, Dynamic light scattering, and dry weight measurements. Analysis of the experimental data collected show that increase in initial concentration give a higher final concentration, but less water is removed. Furthermore, temperature changes have no effect on separation of CNF and water. At an applied solid compressive pressure of 3 kPa and initial concentration at 1.5 w% the concentrations 5.5 w%, 1.5 w%, 4.0 w%, and 4.3 w% can be reach for CNF1, CNF2, CNFA, and CNFB respectively. After extrapolation of polynomial functions fitted to experimental data an applied solid compressive pressure of 22 kPa and initial concentration at 1:5 w%, the concentrations 9.1 w%, 1.5 w%, 6.9 w%, and 7.9 w% are predicted for CNF1, CNF2, CNFA, and CNFB respectively. The thickening of CNF suspensions achieved and predicted in this thesis implies possibilities for large amounts of water removal, e.g. the water content in a CNF1 suspension is reduced from 65.7 litres/kg CNF to 10.0 litres/kg CNF at the solid compressive pressure 22 kPa. The concentrations at 22 kPa are determined by extrapolation from experimental data <3 kPa solid compressive pressure. The carboxymethylated CNF2 can not be dewatered unless it is diluted or if salt or pH is adjusted. This is directly correlated to the electrostatic forces in the suspension and the Debye length. Addition of salt or lowered pH also eliminate any concentration gradients in diluted and centrifuged CNF2 suspensions. / Cellulosa nanofibriller (CNF) är ett förnybart material med unika styrkeegenskaper. En svårighet med produktion av CNF är att CNF suspensioner innehåller stora mängder vatten. Om volymerna av CNF suspensioner kan minskas med avvattning genom centrifugering, då kan transport- och lagerkostnader sänkas. Målet med det här examensarbetet är att undersöka vilken inverkan olika parametrar har på CNF-avvattning genom centrifugering och identifiera optimala förhållanden för maximalt avlägsnande av vatten. En laboratoriestudie utfördes på fyra olika material. De fyra materialen är 2 w% enzymatiskt behandlad CNF (CNF1), 1.9 w% karboxymetylerad CNF (CNF2) och två kommersiella prover (1.9 w% CNFA och 1.8 w% CNFB). Den huvudsakliga metoden var analytisk centrifugering upp till maximalt 2330 g. De testade parametrarna var initial koncentration innan centrifugering, temperatur, NaCl tillsats, pH, och applicerat fast kompressionstryck (g-kraft och ytvikt). Förutom centrifugeringsexperimenten så karaktäriserades the fyra mmaterialen med laser diffraktion, UV-vis absorption, dynamisk ljusspridning och vägningar av torrhalt. Analys av den experimentella data som insamlats visar att en ökad initial koncentration ger en högre slutkoncnentration, men mindre vatten kan bortföras. Temperaturförändringar har ingen effekt på separation av CNF och vatten. Vid ett applicerat fast kompressibelt tryck på 3 kPa och en initial koncentration 1.5 w% kan koncentrationerna 5.5 w%, 1.5 w%, 4.0 w%, och 4.3 w% nås för CNF1, CNF2, CNFA, och CNFB. Efter extrapolering av polynoma funktioner passad till experimentell data förutspås att koncentrationerna 9.1 w%, 1.5 w%, 6.9 w%, och 7.9 w% kan nås för CNF1, CNF2, CNFA, and CNFB vid 22 kPa och en initial koncentration på 1.5 w%. Förtjockningen av CNF suspensioner som kan, eller förutspås kunna nås genom centrifugering i det här examensarbetet innebär att det är möjligt att avlägsna stora mängder vatten, till exempel kan vatteninnehållet i CNF1 minskas från 65.7 liter/kg CNF till 10.0 liter/kg CNF vid 22 kPa fast kompressionstryck. Koncentrationerna vid 22 kPa fast kompressionstryck är extrapolerade från exprimentell data <3 kPa fast kompressionstryck. Den karboy- metylerade CNF2 kan inte avvattnas om den inte späds ut eller om salt eller pH justeras. Detta är direkt kopplat till de elektrostatiska krafterna i suspensionen och Debye längden. Tillsats av salt eller sänkt pH eliminerar också de koncentrationsgradienter som kan förekomma i utspädda centrifugerade CNF2 suspensioner.
22

Transparent paper: Evaluation of chemical modification routes to achieve self-fibrillating fibres / Transparent papper: Utvärdering av kemiska metoder för att tillverka självfibrillerande fibrer

Sandberg Birgersson, Paulina January 2020 (has links)
Transparenta papper tillverkade av cellulosa nanofibriller (CNF), visar stor potential att kunna ersätta petroleumbaserade plaster inom många användningsområden, till exempel för mat- och varuförpackningar. CNF, även känt som nanocellulosa, kombinerar viktiga cellulosaegenskaper, med unika egenskaper hos nanomaterial. Denna kombination av egenskaper möjliggör tillverkning av ett pappers-liknande material som uppvisar både utmärkta mekaniska egenskaper och hög transparens. Användningen av nanocellulosa är dock förknippad med diverse utmaningar, för att materialet ska kunna bli kommersiellt slagkraftigt. En av de främsta utmaningarna är nanocellulosas höga affinitet för vatten och dess höga specifika yta som försvårar hanteringen av materialet. Avvattningen av nanocellulosadispersioner, för att tillverka transparenta papper, kan ta upp till flera timmar. För att övervinna detta hinder, har avdelningen för Fiberteknologi vid KTH tillsammans med BillerudKorsnäs AB, nyligen utvecklat en metodik för att skapa så kallade själv-fibrillerande fibrer (SFFer). Dessa fibrer möjliggör en snabbavvattnad papperstillverkningsprocess med makroskopiska vedbaserade fibrer, som efter tillverkning av pappret omvandlas till ett nanocellulosapapper, det vill säga ett nanopapper. För att erhålla SFFer krävs det att höga koncentrationer av karboxyl- och aldehydgrupper introduceras i cellulosafibrerna. Införandet av dessa funktionella grupper, möjliggör självfibrilleringen då SFFerna utsätts för moderata alkali-koncentrationer. I den ursprungliga studien som utfördes av Gorur m.fl., introducerades de funktionella grupperna med hjälp av sekventiell TEMPO- och periodatoxidation. I detta examensarbete, har alternativa kemiska metoder för att introducera samma kemiska funktionalitet som TEMPO-periodatsystemet undersökts. Huvudsyftet med arbetet är att besvara frågan: Hur påverkar olika kemiska behandlingar vid SFF tillverkningen, de kemiska och fysikaliska egenskaperna hos de modifierade fibrerna, samt de slutgiltiga pappersegenskaperna? För att besvara frågan, preparerades fibrer med liknande karboxyl- och aldehydinnehåll med hjälp av följande tre kemiska metoder: 1) TEMPO- följd av periodatoxidation (detta kommer att användas som referenssystem); 2) periodat- följd av kloritoxidation; 3) karboxymetylering följd av periodatoxidation. Egenskaperna hos fibrerna undersöktes med avseende på aldehyd- och karboxylinnehåll, avvattningspotential och förmåga att självfibrillera. Papper tillverkades med hjälp av en vakuumfiltreringsuppställning och följande egenskaper undersöktes hos pappret: mekaniska egenskaper (dragstyrka, brottsyrka och Young’s modul); optiska (transparens och ytreflektion); samt syrgaspermeabilitet. De erhållna fibrerna från samtliga tre kemiska modifieringar visade på självfibrillerande egenskaper i alkaliska lösningar. Detta beteende styrker hypotesen att ett strategiskt införande av ett högt karboxyl- och aldehydinnehåll leder till självfibrillerande fibrer. Transparenta papper tillverkade av fibrer som utsatts för TEMPO-periodatoxidation samt klorit-periodatoxidation, visade på utmärkta mekaniska egenskaper, hög transparens och bra barriäregenskaper - jämförbara med vad som vanligen kan noteras hos papper tillverkat av nanocellulosa. Samtliga egenskaper förbättrades ytterligare efter fibrillering av fibrerna i papperen. De karboxymetylerade-periodatoxiderade materialet, å andra sidan, uppvisade andra egenskaper jämfört med de två, tidigare nämnda, metoderna. TEMPO-periodat- och periodat-klorit-pappersmassan var halvgenomskinlig och geléliknande, medan den karboxymetylerade-periodatoxiderade massan var mer lik det omodifierade materialet. Detsamma gällde det tillverkade pappret som liknade ett konventionellt papper. Det var inte heller möjligt att åstadkomma en fibrillering av det karboxymetylerade-periodatoxiderade-pappret som utsattes för behandling med alkaliska lösningar. Avvattningstiden vid papperstillverkningen varierad mellan 4 och 60 sekunder, och karboxymetylering-periodat oxidation visade på snabbast avvattningstid. Den förlängda avvattningstiden i jämförelse med studien utförd av Gorur m.fl., tros främst bero på att ett filtreringsmembran med mindre porer användes på vakuumfiltreringsuppställningen, istället för en avvattningsvira som tidigare använts. Sammanfattningsvis så har det visat sig möjligt att tillverka självfibrillerande fibrer med hjälp av samtliga tre undersökta kemiska modifieringar. SFFer möjliggör tillverkning av snabbavvattnade transparenta nanocellulosapapper och visar på så vis på hög potential att kunna ersätta olje-baserade plaster till många förpackningsapplikationer. / Transparent papers made from cellulose nanofibrils (CNF), derived from e.g. wood, show great potential to replace petroleum-based plastics in many application areas, such as packaging for foods and goods. CNF, also known as nanocellulose, combine important cellulose properties with the unique features of nanoscale materials, gaining paper-like materials with outstanding mechanical properties and high transparency. However, nanocellulose faces various challenges in order to make the products commercially competitive. One of the main challenges is accompanied with nanocelluloses’ high affinity for water, which makes processing difficult. Dewatering of a nanocellulose dispersion in order to produce transparent paper may take up to several hours. To overcome this obstacle, the Fibre technology division at KTH Royal Institute of technology and BillerudKorsnäs AB have recently developed a new concept of self-fibrillating fibres (SFFs). This material enables fast-dewatering papermaking using fibres of native dimensions and conversion into nanocellulose after the paper has been prepared. In order to obtain SFFs, proper amounts of charged groups and aldehyde groups need to be introduced into the cellulose backbone. When SFFs are exposed to high alkali concentration, i.e. > pH=10, the fibres self-fibrillates into CNFs. In the original study, the functional groups were introduced through sequential TEMPO oxidation and periodate oxidation. In this work, alternative chemical routes have been examined to prepare SFFs with the same functional groups as introduced with the TEMPO-periodate system. The aim of the thesis has been to answer: how does different chemical routes to prepare transparent nanopaper made from SFFs affect the chemical and physical properties of the modified fibres, as well as the final physical properties of the transparent papers? To answer the question, fibres with similar carboxyl and aldehyde contents were prepared using three chemical routes: 1) TEMPO oxidation followed by periodate oxidation (which was used as reference system); 2) periodate oxidation followed by chlorite oxidation; 3) carboxymethylation followed by periodate oxidation. The properties of the fibres were examined regarding aldehyde and carboxyl content, dewatering potential and self-fibrillating ability. Papers were produced using a vacuum filtration set-up and the properties investigated were the mechanical; tensile strength, strain at failure and Young’s modulus, the optical properties; transparency and haze, as well as the oxygen permeability. In order to investigate the impact of the fibrillation of the papers, the properties were measured for both unfibrillated and fibrillated samples. Furthermore, the gravimetric yield after each chemical modification procedure was examined, as well as the dewatering time during sheet making. Fibres obtained from all three chemistries demonstrated self-fibrillating properties in alkaline solutions. This strengthens the hypothesis that the strategical introduction of aldehydes and carboxyl groups is the main feature responsible for the self-fibrillating ability of the fibres. Transparent papers made from fibres treated through TEMPO-periodate oxidation and periodate-chlorite oxidation showed excellent mechanical, optical and barrier properties, comparable to those seen in nanocellulose papers. The properties were further increased after fibrillation. The carboxymethylated-periodate oxidized fibres, on the other hand, behaved differently from the others. While the TEMPO-periodate and periodate-chlorite pulp was semi-translucent and gel-like, the carboxymethylated-periodate oxidized fibres resembled more the unmodified material. Likewise, the properties of those papers resembled conventional paper and no fibrillationwas experienced after immersing the papers in alkaline solution, according to the same protocol developed for the other two chemistries. The dewatering time during sheet making ranged from 4–60 seconds (carboxymethylation-periodate oxidation showing the fastest dewatering rates). The increased dewatering time compared to earlier studies is believed to mainly be due to the use of a filtration membrane on the vacuum filtration set-up, instead of a metallic wire with larger pores. Overall, SFFs was successfully produced using three different chemical routes. SFFs enables production of fast-dewatering transparent nanocellulose papers that shows the potential to replace oil-based plastics in many packaging applications.
23

Development of Microfluidic 3D Cell Culture with a Nanocellulose-Based Scaffold for Spheroid Formation as a Potential Tool for Drug Screening / Utveckling av mikrofluidisk 3D-cellkultur med en nanocellulosabaserad ställning för sfäroidbildning som ett potentiellt verktyg för läkemedelsscreening

Payande, Sara January 2022 (has links)
Abstract  Lack of clinical relevance is assumed to be the main reason behind the high failure rate of medical drugs in the very initial phases of clinical trials. Clinical relevance is difficult to achieve with current tools as they lack the biological and physiological cues found in vivo. Microfluidics, the knowledge of fluid manipulation in small channels, has proven to be a promising science to bridge the gap between the current in vitro and the real in vivo features. In this thesis, a scaffold for the growth of spheroids inside a microfluidic device for potential drug screening was developed. Firstly, the surface of a microfluidic device was coated with the polymers cellulose nanofibrils, polyallylamine hydrochloride, and polyethyleneimine using the Layer-by-Layer technique to achieve an even surface coverage. Here, different chip designs, polymer concentrations, and pressure directions were tested. It was decided that using a negative pressure direction with a polymer concentration of 50 mg/L in a chip design with micropillars was optimal and these conditions were then used for testing the spheroid formation. Secondly, spheroids were grown inside the microfluidic channels using different coatings: the previously mentioned polymer buildup, one non-coated channel, and one coated with attachment factor proteins. These three surface conditions were compared and it was shown that the polymer-based surface cover was indeed superior as a scaffold as it encouraged and promoted cell growth in the spheroid formation of liver cancer cells from the HepG2 cell line. Further development of this cellulose nanofibrils-coated microfluidic device displays a promising future for functioning as an in vitro 3D cell culture model that better mimics the close-to-cell microenvironments by imitating cell proliferation, cell-to-cell, and cell-to-extracellular matrix interactions. / Sammanfattning Den främsta orsaken bakom den höga antal misslyckade kliniska läkemedelsprövningar i de initiala faserna antas bero på brist på klinisk relevans. Klinisk relevans är mycket svår att uppnå med dagens verktyg då de saknar de biologiska och fysiologiska förhållandena som återfinns in vivo. Mikrofluidik, kunskapen om vätskemanipulation i små kanaler har visat sig vara lovande vetenskap för att överbrygga klyftan mellan de nuvarande in vitro och de faktiska in vivo funktionerna. I detta arbete utvecklades en matris för sfäroider att växa på inuti en mikrofluidisk kanal för att potentiellt användas till läkemedelsscreening. Först användes Layer-by-Layer teknologi för att jämnt betäckta ytan inuti en mikrofluidisk kanal med polymererna cellulosananofibriller, polyallylamin hydroklorid samt polyetylenimin. Här testades olika designer på mikrofluidiska chip, polymerkoncentrationer samt tryckriktningar. Utifrån detta gick det att fastställa att negativt tryck med en polymerkoncentration på 50 mg/L i en chippdesign med mikropelare var optimal för en jämn ytbetäckning och dessa förhållanden användes sedan för att pröva sfäroidernas tillväxt. Härnäst testades därmed sfäroidernas tillväxt inuti mikrofluidiska kanaler under tre olika förhållanden: ett med polymerbetäckningen, ett utan betäckning och ett då ytan var täckt med proteiner med fästfaktorer. Dessa tre förhållanden jämfördes sedan med varandra och således gick det att konstatera att den polymerbaseradebetäckningen fungerade överlägset som matris för tillväxt av HepG2 lever cancer cell sfäroider eftersom den tycks främja dess tillväxt och bildning. Det pekar mot att ytterligare utveckling av denna cellulostäckta yta skulle innebära en lovande modell för in vitro 3D cellodling som bättre efterliknar den cellulära mikromiljön genom att imitera cellproliferation, interaktioner celler emellan samt mellan cell och extracellulär matrisen.
24

Strong and Flexible TEMPO-CNF/Boron Nitride Nanocomposite Films / Starka och flexibla nanokompositfilmer av TEMPO-CNF/boronnitrid

Sadatifard, Sara January 2023 (has links)
Nanokompositfilmer med fem olika sammansättningar av hexagonala bornitrid nanosheet och TEMPO-CNF tillverkades med hjälp av vakuumassisterad filtreringsteknik. sond-ultraljudsteknik användes som en grön väg för exfoliering av bornitridpulver i vattenhaltigt medium. TEMPO-CNF spelade nyckelroller som både matris och dispergeringsmedel för stabilisering av bornitrid nanosheets i kompositen. Nanokompositfilmerna var flexibla och formbara och de visade höga mekaniska egenskaper inklusive hög draghållfasthet och god brottöjning. / Nanocomposite films with five different compositions of hexagonal boron nitride nanosheets and TEMPO-CNF were fabricated using vacuum-assisted filtration technique. probe-ultrasonication technique was applied as a green route for exfoliation of boron nitride powder in aqueous medium. TEMPO-CNF played key roles as both matrix and dispersant agent for stabilization of the boron nitride nanosheets in the composite. The nanocomposite films were flexible and ductile, and they showed high mechanical properties including high tensile strength and good elongation at break.
25

Design and fabrication of cellulose nanofibril (CNF) based microcapsules and their applications

Mubarak, Shuaib Ahmed 13 August 2024 (has links) (PDF)
Emulsions, comprising dispersed oil or water droplets stabilized by surfactants, are widely employed across industries. However, conventional surfactants raise environmental concerns, and emulsions may encounter stability challenges during storage. A promising alternative lies in Pickering emulsions, where particles adhere irreversibly at the water-oil interface, providing enhanced stability. Recent research explores the use of natural bio-based particles as interfacial stabilizers for creating Pickering emulsions, offering improved stability and environmental friendliness. This significant change towards particle-stabilized emulsions addresses sustainability and efficacy concerns. This dissertation investigates the application of cellulose nanofibrils (CNFs) in stabilizing Pickering emulsions for the development of functional microcapsules with diverse applications. A novel CNF aerogel with a hierarchical pore structure was developed using n-hexane-CNF oil-in-water (O/W) Pickering emulsions as templates. These hollow microcapsule-based CNF (HM-CNF) aerogels demonstrated high oil absorption capacities of 354 grams per gram for chloroform and 166 grams per gram for n-hexadecane, without requiring hydrophobic modifications, highlighting their potential as environmentally sustainable and high-performance oil absorbents. Further, the research explored the microencapsulation of n-hexadecane, an organic phase change material (PCM), within a hybrid shell of CNFs and chitin nanofibers (ChNFs). This method significantly improved the thermal stability of the encapsulated n-hexadecane, with maximum weight loss temperatures increasing from 184 degrees Celsius to 201 degrees Celsius with ChNF loading. The char yield also increased with ChNF content, indicating enhanced thermal degradation resistance. These emulsions demonstrated stability in various ionic solutions and elevated temperatures, showcasing their potential for applications such as thermal energy storage, cosmetics, food, and pharmaceuticals. Additionally, the dissertation examined stable water-in-oil (W/O) inverse Pickering emulsions using TEMPO-treated cellulose nanofibrils (TCNF). These emulsions, stabilized by TCNF-oleylamine complexes, exhibited droplet sizes ranging from 27 micrometers to 8 micrometers depending on TCNF concentration. They maintained stability under varying pH, ionic strength, and temperature conditions and demonstrated the encapsulation of water-soluble components like phytic acid, highlighting their versatility for diverse encapsulation applications. Overall, the research presents significant advancements in the utilization of CNF-stabilized Pickering emulsions, employing them as templates for fabricating aerogels and microcapsules. This approach enhances oil absorption, thermal stability, and encapsulation capabilities, offering eco-friendly solutions for diverse applications.
26

Microfibrillated cellulose: Energy-efficient preparation techniques and applications in paper

Ankerfors, Mikael January 2015 (has links)
This work describes three alternative processes for producing microfibrillated cellulose (MFC; also referred to as cellulose nanofibrils, CNF) in which bleached pulp fibres are first pretreated and then homogenized using a high-pressure homogenizer. In one process, fibre cell wall delamination was facilitated by a combined enzymatic and mechanical pretreatment. In the two other processes, cell wall delamination was facilitated by pretreatments that introduced anionically charged groups into the fibre wall, by means of either a carboxymethylation reaction or irreversibly attaching carboxymethylcellulose (CMC) to the fibres. All three processes are industrially feasible and enable energy-efficient production of MFC. Using these processes, MFC can be produced with an energy consumption of 500–2300 kWh/tonne. These materials have been characterized in various ways and it has been demonstrated that the produced MFCs are approximately 5–30 nm wide and up to several microns long. The MFCs were also evaluated in a number of applications in paper. The carboxymethylated MFC was used to prepare strong free-standing barrier films and to coat wood-containing papers to improve the surface strength and reduce the linting propensity of the papers. MFC, produced with an enzymatic pretreatment, was also produced at pilot scale and was studied in a pilot-scale paper making trial as a strength agent added at the wet-end for highly filled papers. / <p>QC 20150126</p>
27

Extraction de nanofibrilles de cellulose à structure et propriétés contrôlées : caractérisation, propriétés rhéologiques et application nanocomposites / Extraction of cellulose nanofibrils with structure and controlled properties : characterization, rheologic properties and nanocomposites application

Ben Hamou, Karima 24 October 2015 (has links)
Les nanofibrilles de cellulose (NFC), obtenus par oxydation TEMPO des microfibrilles de cellulose native sous forme de suspensions colloïdales aqueuses, sont des nanoparticules biosourcées ayant des propriétés rhéologiques et optiques particulièrement séduisantes pour la conception de nanomatériaux à haute performance. Le but principal de cette étude était de contrôler et optimiser les conditions de préparation de ces NFCs extraites du rachis de palmier dattier en examinant le temps d'oxydation et le nombre de passe à travers l'homogéinsateur.La réussite de la réaction a été démontrée par spectroscopies FT-IR. Le taux de groupements carboxyliques a été calculé par dosage conductimétrique et était compris entre 221 et 772 µmol/g d'anhydroglucose. Les études morphologiques montrent que NFCs oxydées sont assez bien individualisés grâce à l'introduction des charges négatives à leur surface qui induisent des forces de répulsion électrostatique entre les fibrilles. Une attention particulière a été accordée à la viscoélasticité des suspensions NFC oxydées TEMPO dont le suivi a été réalisé par un rhéomètre ARES-G2TA. Ces nanocharges ont ensuite été incorporées au sein d'un thermoplastique (PVAc), puis les matériaux nanocomposites obtenus ont été caractérisés par MEB, ATG, DSC, DMA et par des tests mécaniques. / The cellulose nanofibrils (CNF), obtained by TEMPO oxidation of native cellulose microfibrils as colloidal aqueous suspensions, are biosourced nanoparticles having rheological and optical properties well adapted for the conception of new nanomaterials with high performance.The main purpose of this study was to control and optimize the conditions for preparing these NFCs extracted from date palm tree by examining the oxidation time and the number of passes through the homogenizer..The success of the reaction was demonstrated by FT-IR spectroscopy. The rate of the carboxylic groups has been calculated by conductometric titration and ranged between 221 and 772 mol / g of anhydroglucose. Morphological studies show that oxidized CNFs are very individualized by introducing negative charges on their surfaces that induce electrostatic repulsion forces between the fibrils. Particular attention has been given to the viscoelasticity of oxidized-TEMPO CNF suspensions whose monitoring was carried out by a rheometer ARES-G2TA. These nanocharges were incorporated in a thermoplastic (PVAc) and nanocomposite materials obtained were characterized by SEM, TGA, DSC, DMA and mechanical testing.
28

Cellulose nanofibril-based Layer-by-Layer system for immuno-capture of circulating tumor cells in microfluidic devices

Lahchaichi, Ekeram January 2021 (has links)
År 2020 listade Världshälsoorganisationen (WHO) cancer som den globalt ledande dödsorsaken med över 10 miljoner dödsfall årligen. Av dessa 10 miljoner fall förekommer nästan 70% i låg- till medelinkomstländer - en siffra som på grund av den låga prioriteringen av cancerbehandling- och diagnostik förväntas öka till 85% redan år 2030. Att utveckla enkla, specifika och prisvärda verktyg för diagnostik kommer därför att bli avgörande för förebyggandet av cancer på en global nivå. För att komma ett steg närmare denna utveckling optimerades och testades i denna studie ett mikrofluidiskt system, utvecklat genom layer-bylayer- metoden, baserat på cellulosa nanofibriller med förmågan att isolera och fånga cirkulerande tumörceller. För att uppnå en termodynamisk jämvikt optimerades systemets hydrodynamiska parametrar optimerades för att uppnå en homogen fördelning med hög densitet av det cellulosa-baserade systemet i det mikrofluidiska chippet. Då jämvikt är grundläggande för att maximera det efterföljande beläggningen av antikroppar, och därmed hur effektivt celler isoleras, modifierades parametrar såsom koncentration, flödeshastighet, inkubationstid med fler tills att önskad effekt uppnåtts. Således koncepttestades systemet genom att fånga celler spetsade i blod och därmed demonstrera att systemet kan användas i syfte att isolera cancerceller från blodprov. Detta öppnar upp för utveckling av liknande diagnostiska verktyg som kan användas för att isolera lågfrekventa celler direkt från blod. / In 2020, the World Health Organization (WHO) listed cancer as the leading cause of death worldwide, reaching a staggering number of 10 million cancer-related deaths annually. Of these 10 million deaths, nearly 70% occurred in low- and middle-income countries; a number that is expected to increase to 85% by 2030 due to the lack of resources as well as low priority of the development of cancer treatment and diagnosis. Hence, the development of a sophisticated, specific and affordable diagnostic tool will be crucial for global cancer prevention and control. In this study, a cellulose nanofibril-based Layer-by-Layer system for immuno-capture of tumour cells in a microfluidic device was optimized and tested for the development of a simple and cost-effective diagnostic tool for use in resource-limited areas. In the pursuit of a thermodynamic equilibrium, the hydrodynamic parameters of the system were optimized to achieve a homogeneous distribution with a high surface density of the cellulose-based system across the microfluidic channels. Since an equilibrated system is essential to maximize the antibody coating, and thereby cell capture efficiency, parameters including but not limited to concentration, flow rate and incubation time were altered until a desired effect had been achieved. Thus, as proof-of-concept, the system was tested by capturing cancer cells spiked into whole blood, thereby demonstrating that the system can be utilized for the purpose of isolating cancer cells from blood samples. This paves the way for the development of similar clinical diagnostic tools for the isolation of rare cells directly from whole blood.
29

Physics-Informed Neural Networks and Machine Learning Algorithms for Sustainability Advancements in Power Systems Components

Bragone, Federica January 2023 (has links)
A power system consists of several critical components necessary for providing electricity from the producers to the consumers. Monitoring the lifetime of power system components becomes vital since they are subjected to electrical currents and high temperatures, which affect their ageing. Estimating the component's ageing rate close to the end of its lifetime is the motivation behind our project. Knowing the ageing rate and life expectancy, we can possibly better utilize and re-utilize existing power components and their parts. In return, we could achieve better material utilization, reduce costs, and improve sustainability designs, contributing to the circular industry development of power system components. Monitoring the thermal distribution and the degradation of the insulation materials informs the estimation of the components' health state. Moreover, further study of the employed paper material of their insulation system can lead to a deeper understanding of its thermal characterization and a possible consequent improvement. Our study aims to create a model that couples the physical equations that govern the deterioration of the insulation systems of power components with modern machine learning algorithms.  As the data is limited and complex in the field of components' ageing, Physics-Informed Neural Networks (PINNs) can help to overcome the problem. PINNs exploit the prior knowledge stored in partial differential equations (PDEs) or ordinary differential equations (ODEs) modelling the involved systems. This prior knowledge becomes a regularization agent, constraining the space of available solutions and consequently reducing the training data needed.  This thesis is divided into two parts: the first focuses on the insulation system of power transformers, and the second is an exploration of the paper material concentrating on cellulose nanofibrils (CNFs) classification. The first part includes modelling the thermal distribution and the degradation of the cellulose inside the power transformer. The deterioration of one of the two systems can lead to severe consequences for the other. Both abilities of PINNs to approximate the solution of the equations and to find the parameters that best describe the data are explored. The second part could be conceived as a standalone; however, it leads to a further understanding of the paper material. Several CNFs materials and concentrations are presented, and this thesis proposes a basic unsupervised learning using clustering algorithms like k-means and Gaussian Mixture Models (GMMs) for their classification. / Ett kraftsystem består av många kritiska komponenter som är nödvändiga för att leverera el från producenter till konsumenter. Att övervaka livslängden på kraftsystemets komponenter är avgörande eftersom de utsätts för elektriska strömmar och höga temperaturer som påverkar deras åldrande. Att uppskatta komponentens åldringshastighet nära slutet av dess livslängd är motivationen bakom vårt projekt. Genom att känna till åldringshastigheten och den förväntade livslängden kan vi eventuellt utnyttja och återanvända befintliga kraftkomponenter och deras delar   bättre. I gengäld kan vi uppnå bättre materialutnyttjande, minska kostnaderna och förbättra hållbarhetsdesignen vilket bidrar till den cirkulära industriutvecklingen av kraftsystemskomponenter. Övervakning av värmefördelningen och nedbrytningen av isoleringsmaterialen indikerar komponenternas hälsotillstånd. Dessutom kan ytterligare studier av pappersmaterial i kraftkomponenternas isoleringssystem leda till en djupare förståelse av dess termiska karaktärisering och en möjlig förbättring.  Vår studie syftar till att skapa en modell som kombinerar de fysiska ekvationer som styr försämringen av isoleringssystemen i kraftkomponenter med moderna algoritmer för maskininlärning. Eftersom datan är begränsad och komplex när det gäller komponenters åldrande kan  fysikinformerade neurala nätverk (PINNs) hjälpa till att lösa problemet. PINNs utnyttjar den förkunskap som finns lagrad i partiella differentialekvationer (PDE) eller ordinära differentialekvationer (ODE) för att modellera system och använder dessa ekvationer för att begränsa antalet tillgängliga lösningar och därmed minska den mängd träningsdata som behövs.  Denna avhandling är uppdelad i två delar: den första fokuserar på krafttransformatorers isoleringssystem, och den andra är en undersökning av pappersmaterialet som används med fokus på klassificering av cellulosananofibriller (CNF). Den första delen omfattar modellering av värmefördelningen och nedbrytningen av cellulosan inuti krafttransformatorn. En försämring av ett av de två systemen kan leda till allvarliga konsekvenser för det andra. Både PINNs förmåga att approximera lösningen av ekvationerna och att hitta de parametrar som bäst beskriver datan undersöks. Den andra delen skulle kunna ses som en fristående del, men den leder till en utökad förståelse av själva pappersmaterialet. Flera CNF-material och koncentrationer presenteras och denna avhandling föreslår en simpel oövervakad inlärning med klusteralgoritmer som k-means och Gaussian Mixture Models (GMMs) för deras klassificering. / <p>QC 20231010</p>
30

Complex photonic structures in nature : from order to disorder

Onelli, Olimpia Domitilla January 2018 (has links)
Structural colours arise from the interaction of visible light with nano-structured materials. The occurrence of such structures in nature has been known for over a century, but it is only in the last few decades that the study of natural photonic structures has fully matured due to the advances in imagining techniques and computational modelling. Even though a plethora of different colour-producing architectures in a variety of species has been investigated, a few significant questions are still open: how do these structures develop in living organisms? Does disorder play a functional role in biological photonics? If so, is it possible to say that the optical response of natural disordered photonics has been optimised under evolutionary pressure? And, finally, can we exploit the well-adapted photonic design principles that we observe in Nature to fabricate functional materials with optimised scattering response? In my thesis I try to answer the questions above: I microscopically investigate $\textit{in vivo}$ the growth of a cuticular multilayer, one of the most common colour-producing strategies in nature, in the green beetles $\textit{Gastrophysa viridula}$ showing how the interplay between different materials varies during the various life stages of the beetles; I further investigate two types of disordered photonic structures and their biological role, the random array of spherical air inclusions in the eggshells of the honeyguide $\textit{Prodotiscus regulus}$, a species under unique evolutionary pressure to produce blue eggs, and the anisotropic chitinous network of fibres in the white beetle $\textit{Cyphochilus}$, the whitest low-refractive index material; finally, inspired by these natural designs, I fabricate and study light transport in biocompatible highly-scattering materials.

Page generated in 0.0437 seconds