• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 14
  • 10
  • Tagged with
  • 76
  • 73
  • 49
  • 41
  • 41
  • 41
  • 34
  • 24
  • 20
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Low temperature plasma synthesis of mesoporous Fe₃O₄ nanorods grafted on reduced graphene oxide for high performance lithium storage

Zhou, Quan, Zhao, Zongbin, Wang, Zhiyu, Dong, Yanfeng, Wang, Xuzhen, Gogotsi, Yury, Qiu, Jieshan 02 December 2019 (has links)
Transition metal oxide coupling with carbon is an effective method for improving electrical conductivity of battery electrodes and avoiding the degradation of their lithium storage capability due to large volume expansion/contraction and severe particle aggregation during the lithium insertion and desertion process. In our present work, we develop an effective approach to fabricate the nanocomposites of porous rod-shaped Fe₃O₄ anchored on reduced graphene oxide (Fe₃O₄/rGO) by controlling the in situ nucleation and growth of β-FeOOH onto the graphene oxide (β-FeOOH/GO) and followed by dielectric barrier discharge (DBD) hydrogen plasma treatment. Such well-designed hierarchical nanostructures are beneficial for maximum utilization of electrochemically active matter in lithium ion batteries and display superior Li uptake with high reversible capacity, good rate capability, and excellent stability, maintaining 890 mA h g⁻¹ capacity over 100 cycles at a current density of 500 mA g⁻¹.
32

Electron-beam induced synthesis of nanostructures: a review

Gonzalez-Martinez, I. G., Bachmatiuk, A., Bezugly, V., Kunstmann, J., Gemming, T., Liu, Z., Cuniberti, G., Rümmeli, M. H. 16 December 2019 (has links)
As the success of nanostructures grows in modern society so does the importance of our ability to control their synthesis in precise manners, often with atomic precision as this can directly affect the final properties of the nanostructures. Hence it is crucial to have both deep insight, ideally with real-time temporal resolution, and precise control during the fabrication of nanomaterials. Transmission electron microscopy offers these attributes potentially providing atomic resolution with near real time temporal resolution. In addition, one can fabricate nanostructures in situ in a TEM. This can be achieved with the use of environmental electron microscopes and/or specialized specimen holders. A rather simpler and rapidly growing approach is to take advantage of the imaging electron beam as a tool for in situ reactions. This is possible because there is a wealth of electron specimen interactions, which, when implemented under controlled conditions, enable different approaches to fabricate nanostructures. Moreover, when using the electron beam to drive reactions no specialized specimen holders or peripheral equipment is required. This review is dedicated to explore the body of work available on electron-beam induced synthesis techniques with in situ capabilities. Particular emphasis is placed on the electron beam-induced synthesis of nanostructures conducted inside a TEM, viz. the e-beam is the sole (or primary) agent triggering and driving the synthesis process.
33

Order in Thin Films of Diblock Copolymers by Supramolecular Assembly

Tokarev, Ihor 25 June 2004 (has links)
Thin membranes with dense periodic arrays of nanoscopic voids were fabricated using the principles of supramolecular assembly and self-organization in polymers. Such nanoporous membranes can be used as templates for synthesis and patterning of various organic and inorganic materials. In this thesis 4-vinylpyridine fragments of polystyrene-block-poly(4-vinylpyridine) (PS-PVP) were associated with the molecules of two different low molar mass additives, 2-(4'-hydroxybenzeneazo)benzoic acid (HABA) and 3-n-pentadecyl phenol (PDP), via hydrogen bonds. The choice of an additive and a solvent is a key factor which influences the morphologies of the PS-PVP+HABA associates (supramolecular assemblies) in thin films. The reversible association via hydrogen bonds allows the amphiphilic molecules of PDP to phase segregate on the free air interface. Unlike, the molecules of HABA remain associated within cylindrical and lamellar domains formed by the PVP block. A solvent used for film deposition influences the orientation of PVP+HABA domains with respect to the confining interfaces. The films deposited from 1,4-dioxane – a good solvent for PS and a bad one for PVP+HABA – demonstrated the perpendicular orientation of PVP+HABA domains. Meanwhile, the preparation of films from a chloroform solution – a good solvent for both PS and PVP+HABA – led to the parallel alignment. The orientation was independent on the film thickness (within the studied range of 20–100 nm) and insensitive to the chemical nature of a substrate. The orientation of the domains was shown to switch upon exposure to vapors of the above mentioned solvents from the parallel to perpendicular orientation and vice versa. Moreover, the swelling of the films in solvent vapors resulted in the significant improvement of the domain ordering. Extraction of HABA with selective solvent transformed of PVP+HABA domains into channels with reactive PVP chains on the walls. The resulted membranes with the perpendicular oriented channels (the diameter about 8 nm, the inter-channel distance 24 nm) were used as a template for the creation of ordered arrays of nanodots from nickel, chromium and gold.
34

Transport phenomena in metallic nanostructures: an ab initio approach

Zahn, Peter 26 May 2005 (has links)
Im Rahmen der vorliegenden Arbeit werden ab initio Berechnungen des Restwiderstandes von metallischen Nanostrukturen vorgestellt. Die elektronische Struktur der idealen Systeme wird mit Hilfe einer Screened KKR Greenschen Funktionsmethode im Rahmen der Vielfachstreutheorie auf der Grundlage der Dichtefunktionaltheorie berechnet. Die Potentiale von Punktdefekten werden selbstkonsistent mit Hilfe einer Dyson-Gleichung für die Greensche Funktion des gestörten Systems berechnet. Unter Nutzung der ab initio Ubergangswahrscheinlichkeiten wird der Restwiderstand durch Lösung der quasi-klassischen Boltzmann-Gleichung bestimmt. Ergebnisse für ultradünne Cu-Filme und die Leitfähigkeitsanomalie während des Wachstums von Co/Cu-Vielfachschichten werden vorgestellt. Der Einfluss von Oberflächen, geordneten und ungeordneten Grenzflächenlegierungen und von Defekten an verschiedenen Positionen in der Vielfachschicht auf den Effekt des Giant Magnetoresistance wird untersucht. Die selbstkonsistente Berechnung der Streueigenschaften und die verbesserte Lösung der Boltzmann-Transportgleichung unter Einbeziehung der Vertex-Korrekturen stellen ein leistungsfähiges Werkzeug zur umfassenden theoretischen Beschreibung dar. Sie verhelfen zu nützlichen Einsichten in die mikroskopischen Prozesse, die die Transporteigenschaften von nanostrukturierten Materialen bestimmen. / A powerful formalism for the calculation of the residual resistivity of metallic nanostructured materials without adjustable parameters is presented. The electronic structure of the unperturbed system is calculated using a screended KKR multiple scattering Green's function formalism in the framework of density functional theory. The scattering potential of point defects is calculated self-consistently by solving a Dyson equation for the Green's function of the perturbed system. Using the ab initio scattering probabilities the residual resistivity was calculated solving the quasiclassical Boltzmann equation. Examples are given for the resistivity of ultrathin Cu films and the conductance anomaly during the growth of a Co/Cu multilayer. Furthermore, the influence of surfaces, ordered and disordered interface alloys and defects at different positions in the multilayer on the effect of Giant Magnetoresistance is investigated. The self-consistent calculation of the scattering properties and the improved treatment of the Boltzmann transport equation including vertex corrections provide a powerful tool for a comprehensive theoretical description and a helpful insight into the microscopic processes determining the transport properties of magnetic nanostructured materials.
35

Herstellung und Charakterisierung von irregulären Kohlenstoff-Nanostrukturen

Hentsche, Melanie 18 December 2006 (has links)
Die vorliegende Promotion beinhaltet die Untersuchung von irregulären Kohlenstoff-Nanostrukturen, die mittels Hochenergie-Kugelmahlen hergestellt wurden. Die wissenschaftliche Herausforderung besteht darin, die strukturelle Vielfalt dieser Nanostrukturen experimentell zu erfassen, zu klassifizieren und bezüglich ausgewählter Eigenschaften zu bewerten, sowie mit den Herstellungsparametern in Zusammenhang zu bringen. Die Pulver konnten nach den Mahlungen hinsichtlich ihrer Struktur in zwei grundsätzliche Typen eingeteilt werden: (I) ein Nanopulver, das aus graphitischen Stapelpaketen besteht, welche in eine amorphe Matrix eingebettet sind, (II) ein vollständig amorphisiertes Pulver. Die Strukturanalyse in Bezug auf die Mahlbedingungen (Mahlatmosphäre, Mahltemperatur) zeigt, dass die Dauer der Nanostrukturierung sowie die Anzahl und Größe von graphitischen Stapelpaketen gezielt beeinflusst werden kann. Außerdem konnten Hinweise gefunden werden, die darauf hindeuten, dass Mahlen bei tiefen Temperaturen oder unter Wasserstoffatmosphäre die Agglomeration der Nanopartikel verringern kann. Das Kugelmahlen ermöglicht es ebenfalls, die spezifische Oberfläche des Graphitpulvers von 5,5 m2/g auf 725 m2/g innerhalb von fünf Mahlstunden zu erhöhen. Der Anteil der Verunreinigungen (Fe) liegt dabei nicht höher als 0,05 wt%. Es ist jedoch zu beachten, dass sämtliche Eigenschaften stark von den verschiedenen Mahlparametern (Mahltemperatur, Mahlmaterial) abhängen. Die für Adsorptionsuntersuchungen optimalen Eigenschaften (große spezifische Oberfläche, erhöhte Reaktivität, geringe Verunreinigungen) werden schon nach kurzer Mahldauer erreicht. Wiederholungsmahlungen und Wiederholungsmessungen verschiedener Eigenschaften (spezifische Oberfläche, Verbrennungstemperatur) machen deutlich, dass die Ergebnisse reproduzierbar sind, und dass keine Alterungserscheinungen während der Lagerung unter Argonatmosphäre im Zeitraum von einem Jahr auftreten. Die Wasserstoffspeicherung an nanostrukturierten Kohlenstoffpulvern konnte nachgewiesen werden. Die maximalen Speicherkapazitäten für Temperaturen nahe 77 K lagen bei 1,5 wt%. Für niedrigere Temperaturen Tist = 35 K zeigten sich höhere Speicherkapazitäten von bis zu 5 wt%. Die Korrelation der ermittelten Speicherkapazitäten mit den theoretisch erreichbaren Werten in Bezug auf die Oberfläche der Proben zeigt, dass im Experiment deutlich höhere Werte erhalten werden. Dies lässt den Schluss zu, dass neben der Speicherung an der Oberfläche der Pulver ein weiterer Speichermechanismus innerhalb der Mikroporen der Proben stattfindet.
36

Molekularer Entwurf neuer Isolationsmaterialien für mikroelektronische Anwendungen

Zagorodniy, Kostyantyn 22 October 2009 (has links)
Die ITRS (International Technology Roadmap for Semiconductors) sagt voraus, dass die fortlaufende Miniaturisierung der Transistoren und Verdrahtungen auch neue Isolationsmaterialien mit äußerst niedrigen (ultralow) Dielektrizitätskonstanten k erfordern wird. Die Miniaturisierung der Bauteile der ULSI (Ultra Large Scale Integration) führt zu starken Anforderungen an die Fertigung der kritischen Bereiche (backend-of-line, BEoL). Die ITRS deutet darauf hin, dass die k-Werte bis zu 2.0 für die 45 nm Technologie reduziert werden müssen, und zu noch niedrigeren k-Werten (k  1.5) für die nachfolgenden Jahre. Ergänzend zur äußerst niedrigen dielektrischen Konstante müssen die Isolatoren auch über entsprechende mechanische Eigenschaften verfügen. Die vorliegende Arbeit stellt Forschungen vor, die das Ziel haben, mittels modernen ab-initio und halbempirischen theoretischen Methoden neuartige Isolationsmaterialien für zukünftige mikroelektronische Anwendungen zu entwerfen. Die umfangreichen eingesetzten Rechenmethoden wurden verwendet, um strukturelle und physikalische (mechanische, dielektrische und elektronische) Eigenschaften von entworfenen Zwischenschichtsdielektrika zu bestimmen. Eine neue Art von Materialien wird vorgestellt, die als ein möglicher Kandidat für isolierende ultralow-k dünne Schichte zwischen Metallleiterbahnen in zukünftigen CMOS (Complementary Metal-Oxide-Semiconductor) Technologien fungieren sollen. Die Struktur der neuartigen Materialien wird durch ein Modell beschrieben, das ein geordnetes dreidimensionales Netzwerk (Mosaikstruktur) darstellt. Dies besteht aus drei Hauptkomponenten: Knoten, Kanten und Topologie der Anordnung. Fullerenmoleküle (C60) werden als Knoten des Netzwerkes verwendet. Die Knoten werden durch Verknüpfermoleküle entlang der Kanten der Mosaikzelle angekoppelt. Dies wird durch kovalente Bindungen realisiert. Als Verknüpfermoleküle werden Kohlenwasserstoff- Kettenmoleküle verwendet. Einfache kubische, flächenzentrierte kubische und diamantähnliche Topologien werden für Anordnungen des Netzwerkes betrachtet. Das Innere einer Netzwerkzelle repräsentiert eine Nanopore der Größe in Bereich von 1 nm. Zunächst werden am Beispiel fluorierter Fullerene Probleme der molekularen Polarisierbarkeit untersucht. In Molekülen mit ionischem Beitrag zur Bindung kann der Beitrag der Kernverschiebungen (wegen des äußeren Feldes) zur statischen Polarisierbarkeit entscheidend sein. Mittels der Finite Field Methode wird die Struktur mit und ohne ein endliches äußeres elektrisches Feld optimiert. Dabei wird die Optimierung durch Minimierung der Gesamtenergie durchgeführt und die molekulare Polarisierbarkeit aus dem induzierten Dipolmoment bestimmt. In C60Fn erhöht meistens das Fluorieren die Polarisierbarkeit. Nur für n = 2 und 18, wobei das Molekül ohne ein äußeres Feld ein sehr großes Dipolmoment hat, wird die Polarisierbarkeit verringert. Für große Werte n (n = 20, 36 und 48) wird die Polarisierbarkeit pro zusätzliches Fluoratom wegen Kernverschiebungen deutlich erhöht. Die Modifizierung der Knoten des Netzwerkes wird betrachtet und die Anwendbarkeit des Additivitätsmodells diskutiert. Die Dielektrizitätskonstante des reinen flächenzentrierten kubischen Fullerengitters beträgt etwa 4.4. Die Einführung der Verknüpfermoleküle zwischen benachbarten Fullerenmolekülen und die gleichzeitige Verwendung von auf Kohlenstoffatomen basierten käfigförmigen Molekülen reduziert die Dichte des Materials. Dies ergibt eine beträchtliche Verringerung der makroskopischen Polarisierbarkeit des Materials. Die Struktureinheit, die aus zwei Fullerenmolekülen und einem Kohlenwasserstoff-Verknüpfermolekül besteht, wird mittels quantenchemischer Methoden (DFTB Molekulardynamik) optimiert. Es werden die Dichte der lokalen Dipole und elektronische Effekte betrachtet, um die effektive Dielektrizitätskonstante des Modells abzuschätzen. Die Berechnungen zeigen, dass k-Werte von etwa 1.4 erreicht werden können, wenn C6H12 Kettenmoleküle verwendet werden, um die C60-Moleküle im Netzwerk mit diamantähnlicher Symmetrie zu verknüpfen. Weiterhin werden molekulare Cluster mit angelegten periodischen Randbedingungen für einfache kubische und diamantähnliche Topologien konstruiert. Kombinationen der klassischen und quantentheoretischen Methoden werden eingesetzt, um die Struktur zu optimieren, Kompressionsmodule zu berechnen und die dielektrischen Eigenschaften der fullerenbasierten Materialien zu berechnen. Dies hat das Ziel, ultralow-k Isolatoren mit entsprechenden mechanischen Eigenschaften zu finden. Es wird die kovalente Verknüpfung der C60 Moleküle untersucht und sowohl die Länge und chemische Zusammensetzung des Verknüpfermoleküles als auch die Verknüpfungsgeometrie variiert. Gemäß dem entworfenen Modell werden Strukturen mit einfacher kubischer und diamantähnlicher Topologie des Netzwerkes als vielversprechende Kandidaten betrachtet. Die (statische) Dielektrizitätskonstanten k und Kompressionsmodule B sind für einige vorgeschlagene Materialien im Bereich von k = 1.7 bis 2.2 und beziehungsweise von B = 5 bis 23 GPa. Das Clausius-Mossotti Modell wird zur Bestimmung der Dielektrizitätskonstante der entworfenen Strukturen verwendet. In den nächsten Schritten der Arbeit werden die Wege der Verbesserungen für das vorgeschlagene Modell betrachtet. Es wird analysiert, auf welche Art Verknüpfermoleküle an die Knoten gebunden werden können, um die mechanischen und dielektrischen Eigenschaften der generierten ultralow-k Strukturen zu verbessern. Es gibt zwei mögliche verschiede Arten, die Verknüpfermoleküle > C = C < und > C – CH2 – CH2 – C < an das Käfigmolekül C60 anzukoppeln. Die Berechnungen zeigen, dass es im gegenwärtigen Verbesserungsschritt möglich ist, für die einfache kubische Topologie Eigenschaftskombinationen mit k = 2.2 und B = 33 GPa zu bekommen. In der vorliegenden Arbeit wurde eine theoretische Methode ¬¬– sogenannter molekularer Entwurf – entwickelt und erfolgreich angewandt. Die theoretische Behandlung ist kompliziert, weil Wechselwirkungen im atomaren Skalabereich und auf einem strukturellen Niveau von 1 nm zusammen betrachtet werden müssen. Dies Verfahren erfordert die Anwendung komplementärer theoretischen Methoden, um das gesamte Problem beschreiben zu können. Die Methoden schließen klassische, kontinuierliche theoretische und quantenchemische Näherungen ein. Der Vorteil dieser Methode ist, dass verschiedene mögliche Kandidaten für ultralow-k Dielektrika theoretisch getestet werden können, ohne teure und zeitaufwendige Experimente durchzuführen. / The International Technology Roadmap for Semiconductors (ITRS) predicts that continued scaling of devices will require insulating materials with ultralow dielectric constant k. The shrinking of device dimensions of ultra-large-scale integrated (ULSI) chips imposes strong demands on the backend of the line (BEoL) interconnect structures. The ITRS indicates that the k values need to be reduced to 2.0 for the 45 nm technology node or below (k  1.5) in the next few years. Additionally to extremely low dielectric constants, the insulating materials must have also suitable mechanical properties. The work represents research, which is aimed to support molecular design and investigations of modelled novel insulating materials for future application in microelectronics by means of theoretical ab-initio and semiempirical methods. A wide range of computational methods were used to estimate structural and physical (mechanical, dielectrical and electronic) properties of the designed interlayer dielectrics (ILDs). A new class of materials is presented that is supposed to be a potential candidate for isolating ultralow-k thin films between metal on-chip interconnects in future CMOS technology nodes. The structure of the novel materials is described by a model that assumes an ordered three-dimensional network (mosaic structure) consisting of three main components: nodes, edges and topology of arrangement. Fullerene (C60) molecules are used as the nodes of the network. The nodes are connected by linker molecules along the edges of the mosaic cells through a covalent bonding. Hydrocarbon chain molecules are used as the linkers. Simple cubic, face-centred cubic and diamond-like topologies of the network are considered. The interior of a network cell represents a nanopore of a 1-nm scale. At first problems of molecular polarizability are investigated considering the case of fluorinated fullerenes. In molecules with ionic contribution to the binding, the contribution of nuclear displacements (due to the external field) to the static polarizability can be decisive. Using the finite field method, the structure is optimized with and without a finite external electric field by a total energy minimization and the polarizability is calculated from the induced dipole moment. In C60Fn, fluorination mostly increases the molecular polarizability. Only for n = 2 and 18, where the molecule without an external field has a very large dipole moment, fluorination does decrease it. For large n (n = 20, 36, and 48), the polarizability per added F atom due to nuclear displacements is increased by a factor of about 2. The modification of the nodes of the network is considered and the validity of the additivity model is discussed. The dielectric constant of the pure fullerene face-centred cubic lattice is about 4.4. The introduction of bridge molecules between neighbouring fullerene molecules and the simultaneous usage of cage-like molecules based on carbon atoms reduces the density of the material. This results in a considerable decrease of the macroscopic polarizability of the material. The structural units of the models consisting of two fullerenes and a hydrocarbon bridge molecule are optimized by means of quantum chemical methods (DFTB molecular dynamics). The density of local dipoles and electronic effects are considered to estimate the effective dielectric constant of the models. It is shown that k values of about 1.4 can be obtained if C6H12 chain molecules are used to connect C60 molecules on a network with diamond-like symmetry. Further, molecular clusters with applied periodic boundary conditions are constructed for simple cubic and diamond-like topologies. Combinations of classical and quantum-theoretical approaches are used to optimize the structure, to calculate bulk moduli, and for the assessment of the dielectric properties of fullerene-based materials with the goal to find ultralow-k insulators with suitable mechanical properties. The covalent linking of C60 molecules is studied and the length and chemical composition of the linker molecule as well as the linkage geometry is varied. According to the molecular design-based model, structures with simple cubic and diamond-like topology of the network are proposed as promising candidates. The (static) dielectric constants k and elastic bulk moduli B of the proposed materials are in the range of k = 1.7 to 2.2 and B = 5 to 23 GPa, respectively. The Clausius-Mossotti-Model is used to estimate dielectric constants of the designed structures. In the next steps of the work the ways of improvements for the proposed model are considered. The way to connect linker molecules to the node molecules is analyzed, in order to improve the mechanical and dielectric properties of the generated ultralow-k structures. Two different types of bonding linker molecules to the cage C60 molecule with the > C = C < and > C – CH2 – CH2 – C < linker molecules are possible. It is shown that at the present improvement step it is possible to get property combinations with dielectric constant of k = 2.2 and bulk modulus of B = 33 GPa for the simple cubic topology. In this work a theoretical method called molecular design is developed and successfully applied. The theoretical treatment is difficult since interactions both on the atomic scale and on the structural level of 1 nm must be considered. This approach requires the application of complementary theoretical methods to describe the complex problems. The methods include classical, continuum theoretical and quantum-chemical approximations. The advantage of the present approach is that various possible candidates for ultralow-k dielectrics can be tested theoretically without performing expensive and time-consuming experiments.
37

Electrochemistry and magnetism of lithium doped transition metal oxides

Popa, Andreia Ioana 16 December 2009 (has links)
The physics of transition metal oxides is controlled by the combination and competition of several degrees of freedom, in particular the charge, the spin and the orbital state of the electrons. One important parameter responsible for the physical properties is the density of charge carriers which determines the oxidization state of the transition metal ions. The central objective in this work is the study of transition metal oxides in which the charge carrier density is adjusted and controlled via lithium intercalation/deintercalation using electrochemical methods. Lithium exchange can be achieved with a high degree of accuracy by electrochemical methods. The magnetic properties of various intermediate compounds are studied. Among the materials under study the mixed valent vanadium-oxide multiwall nanotubes represent a potentially technologically relevant material for lithium-ion batteries. Upon electron doping of VOx-NTs, the data confirm a higher number of magnetic V4+ sites. Interestingly, room temperature ferromagnetism evolves after electrochemical intercalation of Li, making VOx-NTs a novel type of self-assembled nanoscaled ferromagnets. The high temperature ferromagnetism was attributed to formation of nanosize interacting ferromagnetic spin clusters around the intercalated Li ions. This behavior was established by a complex experimental study with three different local spin probe techniques, namely, electron spin resonance (ESR), nuclear magnetic resonance (NMR) and muon spin relaxation spectroscopies. Sr2CuO2Br2 was another compound studied in this work. The material exhibits CuO4 layers isostructural to the hole-doped high-Tc superconductor La2-xSr2CuO4. Electron doping is realized by Li-intercalation and superconductivity was found below 9K. Electrochemical treatment hence allows the possibility of studying the electronic phase diagram of LixSr2CuO2Br2, a new electron doped superconductor. The effect of electrochemical lithium doping on the magnetic properties was also studied in tunnel-like alpha-MnO2 nanostructures. Upon lithium intercalation, Mn4+ present in alpha-MnO2 will be reduced to Mn3+, resulting in a Mn mixed valency in this compound. The mixed valency and different possible interactions arising between magnetic spins give a complexity to the magnetic properties of doped alpha-MnO2.
38

Magnetic properties of Mn, Ni and Fe based metal-organic complexes

Parameswaran, Anupama 03 March 2011 (has links)
This dissertation presents the investigation of magnetic exchange and anisotropy in novel metal-organic complexes containing minimum number of magnetic ions. Such complexes can serve as a model system to understand the exciting magnetic phenomena in such class of materials and also can put forward as candidates for the so called molecular nanomagnets. A direct assessment of the effective magnetic moment and the effective interaction between the metal ions in the complex can be done using magnetization measurements. Here the magnetization studies are performed as a function of temperature and field using a SQUID magnetometer. Yet another powerful tool to characterize and determine the spin levels, the ESR spectroscopic methods, has also been exploited. The study of the dynamical properties of this class of materials was relevant to understand the relaxation mechanism in the low temperatures. For this a new ac susceptometer has been built in house which was another main objective of this dissertation work. The design, fabrication, calibration and automation done on this device is presented in this thesis. The device has been tested using the known molecular magnet Mn12 acetate, and the antiferromagnet Dy2PdSi3. The present work is mainly focused on the magnetic properties of Mn, Ni and Fe based organometallic complexes. The studied Mn dimer with different acceptor and donor ligands exhibit the fine tuning of the electron density at the core of molecular complex by variation in ligands. This in turn shows that the change in peripheral ligands can control the magnetism of the molecule. The influence of the change in Ni-S-Ni bond angle in the magnetic exchange interaction is studied in a Ni(2) dimer and a Ni(2) trimer complex. The Ni dimer complex shows a ferromagnetic interaction (J = -42K) whereas trimer shows an antiferromagnetic interaction (J = 140K). Another Ni based complex bridged via phosphorous has been studied which shows the existence of glassy nature at low temperature. Also a polymeric chain compound based on Fe is studied and presented. All these phosphorous or sulphur bridged complexes are novel materials and these are the first data on these complexes.
39

Microfabrication and development of multi-scaled metallic surfaces using direct laser interference patterning

Aguilar Morales, Alfredo Ismael 04 May 2021 (has links)
Die Kontrolle physikalischer Phänomene auf Oberflächen durch bestimmte Topographien ist eines der Ziele oberflächentechnischer Verfahren. Die Oberflächentopographie kann durch oberflächenmodifizierende Verfahren wie Direkte Laserinterferenzstrukturieren (DLIP) und das Direkte Laserschreiben (DLW) verändert werden. Dadurch können definierte und kontrollierte Mikro- und Nanostrukturen auf verschiedenen Materialien erzeugt werden. Darüber hinaus können spezifische Topographien entworfen und großflächig nachgebildet werden, welche die gleichen Oberflächeneigenschaft gewährleisten können. Diese Arbeit schlägt neue Ansätze zur Verbesserung der Mikro- und Nano-Oberflächenstrukturen vor, die durch DLIP auf Metalloberflächen erzeugt werden. DLIP Experimente werden in der Zweistrahlkonfiguration entweder mit infraroten Nano- oder Pikosekundenlasern durchgeführt. Damit werden die Möglichkeiten zur Verbesserung und Kontrolle von Oberflächeneigenschaften durch die Mikrofertigung mit Strukturperioden von 0,2 µm bis 7,2 µm erweitert. Anschließend wird die Homogenität der Oberflächentextur auf Basis der Pulsverteilung und der Laserparameter optimiert. Ein quantitatives Messschema der Homogenität, das auf etablierten Parametern wie mittlere Strukturhöhe, seiner Standardabweichung und Kurtosis basiert, wird vorgestellt. Darüber hinaus wird die Herstellung hierarchischer linien- und säulenartiger Mikrostrukturen mittels DLIP in Abhängigkeit von der Anzahl der Pulse und der Fluenz untersucht. Zusätzlich zu den Mikrostrukturen, die der Interferenzverteilung entsprechen, wurden gleichzeitig laserinduzierte periodische Oberflächenstrukturen (LIPSS) erzeugt, die zu hierarchischen Mikro- und Nanostrukturen führen. Überdies wird als weitere Technologie das DLW eingesetzt, um Mikrozellen im Bereich von 17 µm bis 50 µm zu generieren. Anschließen werden Mikro- und Nanostrukturen mittels DLIP auf den Mikrozellen hergestellt. Die finale Topographie besteht aus multiskaligen hierarchischen Mikro- und Nanostrukturen. Um den Durchsatz des DLIP-Verfahrens zu verbessern, wird ein Ablationsmodell entwickelt und mit experimentellen Daten verifiziert. Das Modell ermöglicht die Berechnung von Strukturtiefe in Abhängigkeit von optimalen Laserprozessparametern. Darüber hinaus wird die Benetzbarkeit auf den Mikrosäulen im Rahmen des Füllfaktors und der Kombination von hierarschischen und einskalen Strukturen ausgewertet. Dazu wird ein hydrophobes Lösungsmittel auf die hierarchischen Strukturen aufgetragen, um den Wasserkontaktwinkel auf bis zu 152 ° ± 2 ° und die Kontaktwinkelhysterese von 4 ° ± 2 ° zu erreichen. Mikrosäulen mit einer Periode von 5,20 µm werden auf einer Flugzeugtragfläche hergestellt. Auf diese Weise wird der mögliche Einfluss von Mikrostrukturen auf die Ermüdungseigenschaften untersucht. Schließlich werden Mikrosäulen mit ca. 40 % geringeren Reibungskoeffizienten als die Referenz in einem grenzflächengeschmierten Bereich getestet. Zusammenfassend kann ausgesagt werden, dass die durch DLIP erzeugten Mikrosäulen eine vielversprechende und gut realisierbare Struktur für die Oberflächenfunktionalisierung von Metallen darstellen.:Selbstständigkeitserklärung Abstract Kurzfassung Acknowledgments Symbols and abbreviations 1 Motivation 2 Theoretical background 2.1 Laser-matter interactions 2.2 Principle of interference 2.3 Wetting on solid surfaces 2.4 Introduction to friction 2.5 Introduction to fatigue 3 State of the art 3.1 Properties of natural surfaces 3.2 Texturing techniques for creating micro/nanoroughness 3.3 Surface microstructuring of metals using pulsed laser sources 3.3.1 Direct Laser Writing 3.3.2 Direct Laser Interference Patterning 3.3.3 Laser-Induce Periodic Surface Structures 3.3.4 Challenges for laser surface texturing methods 3.4 Surface properties affected by laser micro/nano texturing on metals 3.4.1 Impact of laser surface textures and chemistry on wettability 3.4.2 Control of the friction coefficient 3.4.3 Impact on fatigue performance 4 Materials and methods 4.1 Materials 4.2 Direct Laser Writing 4.3 Direct Laser Interference Patterning 4.4 Surface chemical treatment 4.5 Characterisation methods 4.5.1 Water Contact Angle 4.5.2 White Light Interferometry and Confocal Microscopy 4.5.3 Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy 4.5.4 Raman Spectroscopy 4.5.5 X-ray Photoelectron Spectroscopy 4.5.6 Tribological test 4.5.7 Fatigue test 5 Results and discussion 5.1 Interference structuring of Ti6Al4V using nanosecond laser pulses 5.1.1 Strategy to fabricate homogeneous DLIP line-like structures 5.1.2 Development of topographical parameters for homogeneity quantification 5.1.3 Impact of process parameters on surface structure homogeneity 5.2 Interference structuring of stainless steel using picosecond laser pulses 5.2.1 Fabrication of hierarchical periodic micro/nanostructures 5.2.2 Control of nanostructure orientation 5.2.3 Fabrication of hierarchical pillar-like microstructures 5.2.4 Control of nanostructures on hierarchical periodic microstructures 5.3 Fabrication of multi-scale periodic structures by DLW and DLIP 5.3.1 Laser surface texturing of Ti6Al4V 5.3.2 Laser surface texturing of Al2024 5.4 Structuring of a large aircraft surface for a flight test 6. Development of an analytical ablation model for ps-DLIP 7. Surface properties of textured materials 7.1 Determination of wetting behaviour 7.1.1 Wetting transition on single and hierarchical microstructures 7.1.2 Surface chemistry influence on wetting 7.1.3 Wetting response after the chemical surface modification 7.2 Wetting on multi-scale periodic structures fabricated by DLW and DLIP 7.3 Tribological properties of laser treated surfaces 7.4 Influence of laser treated surfaces on fatigue 8. Conclusions and outlook References Curriculum Vitae List of publications
40

Growth of Platinum Clusters in Solution and on Biopolymers: The Microscopic Mechanisms

Colombi Ciacchi, Lucio 05 July 2002 (has links)
Thema der vorgelegten Dissertation ist der Mechanismus der Keimbildung und des Wachstums von Platinclustern in Lösung und auf Biopolymeren nach der Reduktion von Platin-Salzen. Die Untersuchung wird auf atomarer Skala durch ab-initio Molekulardynamik mit der Methode von Car und Parrinello durchgeführt. In einem klassischen, generell akzeptierten Mechanismus erfolgt die Aggregation von Pt-Atomen nur nach kompletter Reduktion der Pt(II)-Komplexen zum metallischen Pt(0)-Zustand. Im Gegensatz dazu, in der hier beobachteten Reaktionsablauf entstehen stabile Pt-Pt-Bindungen schon nach einem einzigen Reduktionsschritt. Darüber hinaus wird es gefunden, dass kleine Pt-Cluster durch Addition von unreduzierten PtCl2(H2O)2-Komplexen wachsen können. Das stimmt mit einem experimentell beocbachteten autokatalytischen Clusterwachstumsmechanismus überein. Es wird weiterhin gefunden, dass Pt(II)-Komplexe, die kovalent an DNA oder an Proteine gebunden sind, als sehr effiziente Nukleationszentren für das weitere Metallclusterwachstum wirken können. Das ist eine Konsequenz des starken Donor-Charakters der organischen Liganden, in derer Anwesenheit stärkere Metall-Metall-Bindungen als frei in der Lösung gebildet werden können. In der Tat, in Metallisierungsexperimenten können 5 Nanometer dünne, mehrere Mikrometer lange, regelmässige Clusterkette erzeugt werden, die rein heterogen auf das Biomolekulare Templat gewachsen sind. / In this thesis we investigate the molecular mechanisms of platinum cluster nucleation and growth in solution and on biopolymers by means of first-principles molecular dynamics. In contrast with a classical picture where clusters nucleate by aggregation of metallic Pt(0) atoms, we find that Pt--Pt bonds can form between dissolved Pt(II) complexes already after a single reduction step. Furthermore, we observe that small clusters grow by addition of unreduced PtCl2(H2O)2 complexes, consistently with an autocatalytic growth mechanism. Moreover Pt(II) ions covalently bound to biopolymers are found to act as preferred nucleation sites for the formation of clusters. This is a consequence of the strong donor character of the organic ligands which induce the formation of stronger metal-metal bonds than those obtained in solution. In fact, in metallization experiments we obtain a clean and purely heterogeneous metallization of single DNA molecules leading to thin and uniform Pt cluster chains extended over several microns.

Page generated in 0.3151 seconds