• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 14
  • 10
  • Tagged with
  • 76
  • 73
  • 49
  • 41
  • 41
  • 41
  • 34
  • 24
  • 20
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Percolated Si:SiO2 Nanocomposite: Oven- vs. Laser-Induced Crystallization of SiOx Thin Films

Schumann, Erik 24 May 2022 (has links)
Silizium basierende Technologie bestimmt den technologischen Fortschritt in der Welt und ist weiterhin ein Material für die weitere Entwicklung von Schlüsseltechnologien. Die Änderung der Silizium-Materialeigenschaft der optischen und elektronische Bandlücke durch die Reduktion der Materialdimension auf die Nanometerskala ist dabei von besonders großem Interesse. Die meisten Silizium-Nanomaterialien bestehen aus Punkt-, Kugel- oder Drahtformen. Ein relativ neues Materialsystem sind dreidimensionale, durchdringende, Nano-Komposit Netzwerke aus Silizium in einer Siliziumdioxid Matrix. Die vorliegende Arbeit untersucht die Entstehung von dreidimensionalen Silizium-Nanokomposit-Netzwerken durch Abscheidung eines siliziumreichen Siliziumoxids(SiOx, mit x<2) und anschlieÿender thermischen Behandlung. Hierbei wurden die reaktive Ionenstrahl-Sputterabscheidung (IBSD), sowie das reaktive Magnetronsputtern (RMS) verglichen. Auch wurden die Unterschiede zwischen klassischer Ofen und Millisekunden-Linienlaser Behandlung untersucht. Abgeschiedene und thermisch behandelte Dünnschichten wurden hinsichtlich der integralen Zusammensetzung, Homogenität, Morphologie und Struktur mittels Rutherford-Rückstreuspektroskopie, Ramanspektroskopie, Röntgenbeugung, spektroskopische Ellipsometrie, Photospektrometrie und (Energie gefilterter) Transmissionselektronenmikroskopie untersucht. Abhängig von der Abscheidemethode und des thermischen Ausheilprozesses wurden unterschiedliche Strukturgrößen und Kristallisationsgrade erzeugt. Insbesondere wurde gezeigt, dass während der 13 ms langen Laserbearbeitung (Ofen: 90 min) wesentlich größere Strukturen (laser:~50 nm; oven:~10 nm) mit einer deutlich höheren Kristallinität (laser:~92-99%; oven:~35-80%) entstehen. Darüber hinaus erhält sich die abscheidebedingte Morphologie nach der Ofenbehandlung, verschwindet jedoch nach der Laserprozessierung. Erklärt wurde dies mit einem Prozess über die flüssige Phase während der Laserbearbeitung, im Gegensatz zu einem Festphasenprozess bei der Ofenbehandlung. Abschließend wurde gezeigt, dass absichtlich eingebrachte vertikale und horizontale Schwankungen der Zusammensetzung genutzt werden können, um definierte Silizium Nanonetzwerke mit einer dreidimensionalen quadratischen Netzstruktur herzustellen.:1 Introduction 2 Fundamentals 2.1 The silicon - silicon oxide system 2.1.1 The Si-O phase diagram 2.1.2 Chemical reaction consideration 2.2 Phase separation of binary systems 2.2.1 Phase separation regimes 2.2.2 Diffusion in solids 2.3 Different types of silicon nanostructures 2.3.1 0D - Silicon nanoparticles 2.3.2 1D - Silicon nanowires 2.3.3 3D - Silicon nanonetworks 3 Experimental methods 3.1 SiOx thin film deposition 3.1.1 SiOx thin films by ion beam sputter deposition 3.1.2 SiOx thin films by reactive magnetron sputter deposition 3.1.3 Comparison of ion beam and magnetron sputter deposition 3.2 Thermal processing of as-deposited SiOx thin films 3.2.1 Oven treatment 3.2.2 Laser treatment 3.3 Thin-film characterization 3.3.1 Rutherford backscattering 3.3.2 Spectroscopic ellipsometry and photospectrometry 3.3.3 Raman spectroscopy 3.3.4 X-ray diffraction 3.3.5 Transmission electron microscopy 4 Results 4.1 Accessible SiOx compositions as a function of deposition and annealing method 4.2 Structure and properties of ion beam sputter deposited SiOx thin films before and after thermal processing 4.2.1 Phase- and microstructure of SiO0:6 thin films deposited by ion beam sputter deposition at 450°C 4.2.2 Phase- and microstructure of SiO0.6 thin films deposited by ion beam sputter deposition at room temperature 4.3 Structure and properties of reactive magnetron sputter deposited SiOx thin films before and after thermal processing 4.4 Multilayer SiOx films for the generation of defined squared mesh structures 5 Discussion 5.1 Compositional homogeneity of SiO0:6 thin films before and after thermal treatment 5.2 Phase structure of as-deposited SiOx thin films 5.3 Influence of the thermal treatment on the structural properties of percolated Si:SiO2 nanostructures 5.3.1 Observed structural properties 5.3.2 Origin of different structure sizes - liquid vs. solid state crystallization 5.4 Influence of the deposition temperature during ion beam sputtering on the structural properties of percolated Si:SiO2 nanostructures before and after thermal processing 5.5 Influence of the deposition method on the structural properties of percolated Si:SiO2 nanostructures 5.6 Formation of interface layers and electrical characterization 6 Summary and outlook 6.1 Summary 6.2 Outlook A EFTEM imaging / Silicon-based technology determines the technological progress in the world significantly and is still a material of choice for further development of key technologies. In particular the reduction of silicon structure sizes to a nanometer scale are of great interest. Most silicon nano structures are based on spherical, dot-like or cylindrical, wire-like geometries. A relatively new material system are three dimensional percolated nanocomposite networks of silicon within a silica matrix. To form any of these nano structures fast, room temperature processes are desired which also offer the possibility of structure modification by different process management. The present work studies the formation of three-dimensional silicon nanocomposite networks by the deposition of a silicon rich silicon oxide (SiO x , with x < 2) and subsequent thermal treatment. Thereby, reactive ion beam sputter deposition (IBSD) as well as reactive magnetron sputtering (RMS) was compared. As well, the differences between a conventional oven and a millisecond line-focused diode laser were studied. As-deposited and thermally treated thin films were characterized with regard to the overall mean composition, homogeneity, morphology and structure by Rutherford backscattering, Raman spectroscopy, X-ray diffraction, spectroscopic ellipsometry, photospectrometry as well as cross-sectional and energy-filtered transmission electron microscopy. Depending on the deposition method as well as the thermal treatment process different structure sizes and degrees of crystallization were achieved. Most notably it was found, that during 13 ms laser processing (oven: min. 90 min), much bigger structures (laser: ≈ 50 nm; oven: ≈ 10 nm) with a notably higher degree of crystallization (laser: ≈ 92-99%; oven: ≈ 35-80%) evolve. Moreover, the structure morphology after deposition is preserved during oven treatment but diminishes following laser processing. This was explained by a process via the liquid phase for laser processing in contrast to a solid state process during oven treatment. Finally it was shown, that intentional introduced vertical and horizontal composition fluctuations can be used to form well-defined silicon nano-networks with a three dimensional square mesh structure.:1 Introduction 2 Fundamentals 2.1 The silicon - silicon oxide system 2.1.1 The Si-O phase diagram 2.1.2 Chemical reaction consideration 2.2 Phase separation of binary systems 2.2.1 Phase separation regimes 2.2.2 Diffusion in solids 2.3 Different types of silicon nanostructures 2.3.1 0D - Silicon nanoparticles 2.3.2 1D - Silicon nanowires 2.3.3 3D - Silicon nanonetworks 3 Experimental methods 3.1 SiOx thin film deposition 3.1.1 SiOx thin films by ion beam sputter deposition 3.1.2 SiOx thin films by reactive magnetron sputter deposition 3.1.3 Comparison of ion beam and magnetron sputter deposition 3.2 Thermal processing of as-deposited SiOx thin films 3.2.1 Oven treatment 3.2.2 Laser treatment 3.3 Thin-film characterization 3.3.1 Rutherford backscattering 3.3.2 Spectroscopic ellipsometry and photospectrometry 3.3.3 Raman spectroscopy 3.3.4 X-ray diffraction 3.3.5 Transmission electron microscopy 4 Results 4.1 Accessible SiOx compositions as a function of deposition and annealing method 4.2 Structure and properties of ion beam sputter deposited SiOx thin films before and after thermal processing 4.2.1 Phase- and microstructure of SiO0:6 thin films deposited by ion beam sputter deposition at 450°C 4.2.2 Phase- and microstructure of SiO0.6 thin films deposited by ion beam sputter deposition at room temperature 4.3 Structure and properties of reactive magnetron sputter deposited SiOx thin films before and after thermal processing 4.4 Multilayer SiOx films for the generation of defined squared mesh structures 5 Discussion 5.1 Compositional homogeneity of SiO0:6 thin films before and after thermal treatment 5.2 Phase structure of as-deposited SiOx thin films 5.3 Influence of the thermal treatment on the structural properties of percolated Si:SiO2 nanostructures 5.3.1 Observed structural properties 5.3.2 Origin of different structure sizes - liquid vs. solid state crystallization 5.4 Influence of the deposition temperature during ion beam sputtering on the structural properties of percolated Si:SiO2 nanostructures before and after thermal processing 5.5 Influence of the deposition method on the structural properties of percolated Si:SiO2 nanostructures 5.6 Formation of interface layers and electrical characterization 6 Summary and outlook 6.1 Summary 6.2 Outlook A EFTEM imaging
52

Self-organized nanostructures by heavy ion irradiation: defect kinetics and melt pool dynamics

Böttger, Roman 16 January 2014 (has links)
Self-organization is a hot topic as it has the potential to create surface patterns on the nanoscale avoiding cost-intensive top-down approaches. Although chemists have promising results in this area, ion irradiation can create self-organized surface patterns in a more controlled manner. Different regimes of pattern formation under ion irradiation were described so far by 2D models. Here, two new regimes have been studied experimentally, which require modeling in 3D: subsurface point defect kinetics as well as ion impact-induced melt pool formation. This thesis deals with self-organized pattern formation on Ge and Si surfaces under normal incidence irradiation with heavy monatomic and polyatomic ions of energies up to several tens of keV. Irradiation has been performed using liquid metal ion sources in a focused ion beam facility with mass-separation as well as by conventional broad beam ion implantation. Irradiated samples have been analyzed mainly by scanning electron microscopy. Related to the specific irradiation conditions, investigation and discussion of pattern formation has been divided into two parts: (i) formation of Ge morphologies due to point defect kinetics and (ii) formation of Ge and Si morphologies due to melt pool dynamics. Point defect kinetics dominates pattern formation on Ge under irradiation with monatomic ions at room temperature. Irradiation of Ge with Bi and Ge ions at fluences up to 10^17 cm^(-2) has been performed. Comprehensive studies show for the first time that morphologies change from flat surfaces over hole to nanoporous, sponge-like patterns with increasing ion energy. This study is consistent with former irradiations of Ge with a few ion energies. Based on my studies, a consistent, qualitative 3D model of morphology evolution has been developed, which attributes the ion energy dependency of the surface morphology to the depth dependency of point defect creation and relaxation. This model has been proven by atomistic computer experiments, which reproduce the patterns found in real irradiation experiments. At extremely high energy densities deposited by very heavy ions another mechanism dominates pattern formation. The formation of Ge and Si dot patterns by very heavy, monatomic and polyatomic Bi ion irradiation has been studied in detail for the first time. So far, this formation of pronounced dot pattern cannot be explained by any model. Comprehensive, experimental studies have shown that pattern formation on Ge is related to extremely high energy densities deposited by each polyatomic ion locally. The simultaneous impact of several atoms leads to local energy densities sufficient to cause local melting. Heating of Ge substrates under ion irradiation increases the achievable energy density in the collision cascade substantially. This prediction has been confirmed experimentally: it has been found that the threshold for nanomelting can be lowered by substrate heating, which allows pattern formation also under heavy, monatomic ion irradiation. Extensive studies of monatomic Bi irradiation of heated Ge have shown that morphologies change from sponge-like over highly regular dot patterns to smooth surfaces with increasing substrate temperature. The change from sponge-like to dot pattern is correlated to the melting of the ion collision cascade volume, with energy densities sufficient for melt pool formation at the surface. The model of pattern formation on Ge due to extremely high deposited energy densities is not specific to a single element. Therefore, Si has been studied too. Dot patterns have been found for polyatomic Bi ion irradiation of hot Si, which creates sufficiently high energy densities to allow ion impact-induced melt pool formation. This proves that pattern formation by melt pool formation is a novel, general pattern formation mechanism. Using molecular dynamics simulations of project partners, the correlation between dot patterning and ion impact-induced melt pool formation has been proven. The driving force for dot pattern formation due to high deposited energy densities has been identified and approximated in a first continuum description.
53

A non-aqueous procedure to synthesize amino group bearing nanostructured organic–inorganic hybrid materials

Göring, M., Seifert, A., Schreiter, K., Müller, P., Spange, S. 15 September 2014 (has links)
Amino-functionalized organic–inorganic hybrid materials with a narrow distributed nanostructure of 2–4 nm in size were obtained by means of a template-free and non-aqueous procedure. Simultaneous twin polymerization of novel amino group containing twin monomers with 2,2′-spirobi[4H-1,3,2-benzodioxasiline] has been applied for this purpose. The amino groups of the organic–inorganic hybrid material are useful for post derivatization. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
54

Structural and optical properties of short period superlattices for rational (In,Ga)N

Anikeeva, Mariia 10 February 2020 (has links)
In dieser Arbeit untersuchen wir ultradünne (In,Ga)N Quantentöpfe (QW) in Form von kurzperiodischen Übergittern auf (0001) GaN. Wir charakterisieren dieser Strukturen mit verschiedenen Methoden, d.h.: die hochauflösende Transmissionselektronenmikroskopie, die Rastertransmissionselektronenmikroskopie, Röntgenbeugung und die hochenergetischer Refeflexionselektronenbeugung an Oberflächen, sowie die Photolumineszenz (PL) und die Kathodolumineszenz. Wir fokussieren uns dabei auf die Quantifizierung des Indiumgehaltes solche ultradünnen Schichten und diskutieren über grundlegende optische Eigenschaften dieser Übergitter. Wir finden, dass: 1. Der Indiumeinbau in GaN unter Exposition von In und N-Fluss ist selbst-begrenzend auf eine Zusammensetzung von 25% und eine Schichtdicke von einer Monolage. Die Variation der Wachstumsbedingungen führen weder nicht zu einer Höhung des Indiumgehalts noch der Schichtdicke. Diese Selbstbegrenzung ist im Ergebnis auf die Unterschiede in der Bildungsenthalpie von InN und GaN und auf die hohe Gitterfehlanpassung des Systems. Die niedrigste Energiekonfiguration ist einer (2»3×2»3)R30° Oberflächenrekonstruktion. 2. In diesen polaren In0.25Ga0.75N Übergitter Polarisationsfelder, Dickenfluktuationen oder Kompositionsschwankungen keine wesentliche Rolle spielen. Unsere optischen Studien in Kombination mit DFT-Berechnungen zeigen, dass der Rekombinationsprozess durch den Einschluss der Lochwellenfunktion in den Monoschichten gesteuert wird, dass mit abnehmender Barrieredicke verändert werden können. Im Gegenteil, ist die Elektronenwellenfunktion immer delokalisiert. Unsere Übergitter Phänomene sind als in konventionellen QWs, z.B. den nichtexponentiellen Abfall der PL-Intensität, die spektrale Abhängigkeit der PL Lebensdauer und eine S-förmige Temperaturabhängigkeit des Emissionspeaks. Die letzte lassen sich durch das Zusammenspiel von Ladunsgträgerlokalisation und nicht-strahliger Rekombination erklären. / In this work we investigate ultra-thin (In,Ga)N quantum wells (QWs) grown on (0001) GaN in the form of short-period superlattices (SLs). We perform a comprehensive study of these structures via various methods, i.e.: high resolution transmission electron microscopy, scanning transmission electron microscopy, x-ray diffraction and reflection high-energy electron diffraction, as well as photoluminescence (PL) and cathodoluminescence. We focus on the quantification of In incorporation and study basic optical properties of these SLs. The main results of our investigations are: 1. The In incorporation into GaN under exposure of In and N flux is self-limited to a composition of 25% and a layer thickness of one monolayer. Varying growth conditions do not increase the In content or the layer thickness. This self-limitation is a result of the differences in formation enthalpy of InN and GaN and the high lattice mismatch of the system. The lowest energy configuration that sets maximum In concentration to a fundamental limit of 25%, stable under various growth regimes, is the one with (2»3×2»3)R30° surface reconstruction. 2. Our polar In0.25Ga0.75N SLs serve as model system for recombination process in (In,Ga)N since their recombination is not suffering from polarization fields, well-width or high compositional fluctuations. The optical studies combined with DFT calculations show that the recombination process is governed by the confinement of the hole wavefunction in the QWs, that can be substantially weakened by decreasing barrier thickness. This leads to an increase of non-radiative recombination in the barriers. In the opposite, the electron wave function is always delocalized. Our SLs show common phenomena observed in conventional QWs or bulk alloys like a non-exponential decay of the PL intensity, spectral dependence of the decay time and S-shape temperature dependence. The latter can be explained by the interplay of carrier localization and non-radiative recombination.
55

Hollow MoSx nanomaterials for aqueous energy storage applications

Quan, Ting 31 May 2021 (has links)
Die vorliegende Arbeit konzentriert sich auf die Synthese von neuartigen hohlen MoSx-Nanomaterialien mit kontrollierbarer Größe und Form durch die kolloidale Template Methode. Ihre möglichen Anwendungen in wässrigen Energiespeichersystemen, einschließlich Superkondensatoren und Li-Ionen-Batterien (LIBs), wurden untersucht. Im ersten Teil wurde eine neue Nanostruktur aus hohlen Kohlenstoff-MoS2-Kohlenstoff-nanoplättchen erfolgreich durch eine L-Cystein unterstützte hydrothermale Methode unter Verwendung von Gibbsit als Templat und Polydopamin (PDA) als Kohlenstoffvorläufer synthetisiert. Nach dem Kalzinieren und Ätzen des Gibbsit Templates wurden gleichförmige Hohlplättchen erhalten, die aus einer sandwichartigen Anordnung von teilweise graphitischem Kohlenstoff und zweidimensional geschichteten MoS2 Flocken bestehen. Die Plättchen haben eine ausgezeichnete Dispergierbarkeit und Stabilität in Wasser sowie eine gute elektrische Leitfähigkeit aufgrund des durch die Kalzinierung von Polydopaminbeschichtungen erzeugten Kohlenstoffs gezeigt. Das Material wird dann in einem symmetrischen Superkondensator mit 1 M Li2SO4 als Elektrolyt aufgebracht, der eine spezifische Kapazität von 248 F/g (0.12 F/cm2) bei einer konstanten Stromdichte von 0.1 A/g und eine ausgezeichnete elektrochemische Stabilität über 3000 Zyklen aufweist, was darauf hindeutet, dass hohle Kohlenstoff-MoS2-Kohlenstoffnanoplättchen vielversprechende Materialien als Kandidaten für Superkondensatoren sind. Im zweiten Teil wurde 21 molare LiTFSI, das sogenannte "Wasser-in-Salz" (WIS) Elektrolyt, in Superkondensatoren mit hohlen Kohlenstoffnanoplättchen als Elektrodenmaterial untersucht. Im Vergleich zu dem im ersten Teil verwendeten 1 molaren Li2SO4-Elektrolyten wurden bei dem vorliegenden WIS Elektrolyt signifikante Verbesserungen in einem breiteren und stabilen Potentialfenster festgestellt, das durch die geringere Leitfähigkeit mit dem Gegenstück leicht beeinflusst wird. Die elektrochemische Impedanzspektroskopie (EIS) wurde ausgiebig eingesetzt, um einen Einblick in die Reaktionsmechanismen der WIS-Superkondensatoren zu erhalten. Zusätzlich wurde auch der Einfluss der Temperatur auf die elektrochemische Leistung im Temperaturbereich zwischen 15 und 55 °C untersucht, was eine hervorragende spezifische Kapazität von 128 F/g bei dem optimierten Zustand von 55 °C ergab. Die EIS-Messungen deckten die Abnahme der angepassten Widerstände mit der Temperaturerhöhung und umgekehrt auf und beleuchteten direkt die Beziehung zwischen elektrochemischer Leistung und Arbeitstemperatur von Superkondensatoren für zuverlässige praktische Anwendungen. Im dritten Teil wurde MoS3, ein amorphes, kettenförmig strukturiertes Übergangsmetall Trichalcogenid, als vielversprechende Anode in "Wasser-in-Salz" Li-Ionen-Batterien (WIS-LIBs) nachgewiesen. Die in diesem Teil verwendeten hohlen MoS3-Nanosphären wurden mittels einer skalierbaren Säurefällungsmethode bei Raumtemperatur synthetisiert, wobei sphärische Polyelektrolytbürsten (SPB) als Schablonen verwendet wurden. Beim Einsatz in WIS-LIBs mit LiMn2O4 als Kathodenmaterial erreicht das präparierte MoS3 eine hohe spezifische Kapazität von 127 mAh/g bei einer Stromdichte von 0.1 A/g und eine gute Stabilität über 1000 Zyklen sowohl in Knopf- als auch in Pouch-Zellen. Der Arbeitsmechanismus von MoS3 in WIS-LIBs wurde auch durch Ex-situ-Röntgenbeugungsmessungen (XRD) untersucht. Während des Betriebs wird MoS3 während der anfänglichen Li-Ionen-Aufnahme irreversibel in Li2MoO4 umgewandelt und dann allmählich in eine stabilere und reversible LixMoOy-Phase (2≤y≤4)) entlang der Zyklen umgewandelt. Amorphes Li-defizientes Lix-mMoOy/MoOz wird bei der Delithiierung gebildet. Die Ergebnisse der vorliegenden Studie zeigen einfache Ansätze zur Synthese hohler MoSx-Nanomaterialien mit kontrollierbarer Morphologie unter Verwendung einer Template-basierten Methode, die auf die vielversprechende Leistung von MoSx für wässrige Energiespeicheranwendungen zurückzuführen sind. Die elektrochemischen Untersuchungen von hohlen MoSx-Nanomaterialien in wässrigen Elektrolyten geben Einblick in die Reaktionsmechanismen von wässrigen Energiespeichersystemen und treiben die Entwicklung von Metallsulfiden für wässrige Energiespeicheranwendungen voran. / The present thesis focuses on the synthesis of novel hollow MoSx nanomaterials with controllable size and shape through the colloidal template method. Their possible applications in aqueous energy storage systems, including supercapacitors and Li-ion batteries (LIBs), have been studied. In the first part, hollow carbon-MoS2-carbon nanoplates have been successfully synthesized through an L-cysteine-assisted hydrothermal method by using gibbsite as the template and polydopamine (PDA) as the carbon precursor. After calcination and etching of the gibbsite template, uniform hollow platelets, which are made of a sandwich-like assembly of partial graphitic carbon and two-dimensional layered MoS2 flakes, have been obtained. The platelets have shown excellent dispersibility and stability in water, and good electrical conductivity due to carbon coating generated by the calcination of polydopamine. The material is then applied in a symmetric supercapacitor using 1 M Li2SO4 as the electrolyte, which exhibits a specific capacitance of 248 F/g (0.12 F/cm2) at a constant current density of 0.1 A/g and an excellent electrochemical stability over 3000 cycles, suggesting that hollow carbon-MoS2-carbon nanoplates are promising candidate materials for supercapacitors. In the second part, 21 m LiTFSI, so-called “water-in-salt” (WIS) electrolyte, has been studied in supercapacitors with hollow carbon nanoplates as electrode materials. In comparison with 1 M Li2SO4 electrolyte used in the first part, significant improvements on a broader and stable potential window have been revealed in the present WISE, which is slightly influenced by the lower conductivity with the counterpart. The electrochemical impedance spectroscopy (EIS) has been extensively employed to provide an insight look on the formation of solid electrolyte interphase in the WIS-supercapacitors. Additionally, the effect of temperature on the electrochemical performance has also been investigated in the temperature range between 15 and 55 °C, yielding eminent specific capacitance of 128 F/g at the optimized condition of 55 °C. The EIS measurements disclosed the decrease of fitted resistances with the increase of temperature and vise versa, directly illuminating the relationship between electrochemical output and working temperature of supercapacitors for reliable practical applications. In the third part, MoS3, an amorphous chain-like structured transitional metal trichalcogenide, has been demonstrated as a promising anode in the “water-in-salt” Li-ion batteries (WIS-LIBs). Hollow MoS3 nanospheres used in this part have been synthesized via a scalable room-temperature acid precipitation method using spherical polyelectrolyte brushes (SPB) as the template. When applied in WIS-LIBs with LiMn2O4 as the cathode material, the prepared MoS3 achieves a high specific capacity of 127 mAh/g at the current density of 0.1 A/g and good stability over 1000 cycles in both coin cells and pouch cells. The working mechanism of MoS3 in WIS-LIBs has also been studied by ex-situ X-ray diffraction (XRD) measurements. During operation, MoS3 undergoes irreversible conversion to Li2MoO4 during the initial Li ion uptake, and is then gradually converted to a more stable and reversible LixMoOy (2≤y≤4)) phase along cycling. Amorphous Li-deficient Lix-mMoOy/MoOz is formed upon delithiation. The results in the present thesis demonstrate facile approaches for synthesizing hollow MoSx nanomaterials with controllable morphologies using a template-based method, which attribute to the promising performance of MoSx for aqueous energy storage applications. The electrochemical studies of hollow MoSx nanomaterials in aqueous electrolytes provide insight into the reaction mechanisms of aqueous energy storage systems and push forward the development of metal sulfides for aqueous energy storage applications.
56

Mehrlingspolymerisation in Substanz und an Oberflächen zur Synthese nanostrukturierter und poröser Materialien

Ebert, Thomas 12 December 2016 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung von unterschiedlichen nanostrukturierten Hybridmaterialien ausgehend von nur einem Monomer. Dabei wird ein neuartiges Monomer vorgestellt, welches in einem Prozessschritt ein Hybridmaterial bestehend aus drei Polymeren bilden kann. Dies erweitert das Konzept der Zwillingspolymerisation, bei der zwei Polymere aus einem Monomer erhalten werden. Aus diesem Grund wurde der Überbegriff „Mehrlingspolymerisation“ für die Synthese von zwei oder mehr Polymeren aus nur einem Monomer eingeführt. Ein weiterer Schwerpunkt lag auf der gezielten Beschichtung verschiedener Partikeloberflächen mit nanostrukturierten Hybridmaterialien mittels Zwillingspolymerisation. Dabei wird der Einfluss der Oberfläche auf die Polymerisation verschiedener Zwillingsmonomere untersucht. Durch Nachbehandlung sind daraus poröse Kompositmaterialien zugänglich. Je nach Beständigkeit der Substrate sind diese in den Nachbehandlungsschritten stabil oder werden entfernt und dienen nur als Template zur Strukturierung der porösen Materialien. Es wurden unterschiedliche poröse Kohlenstoffe und Kohlenstoffkompositmaterialien hergestellt und charakterisiert. Ausgewählte Materialien wurden mit Schwefel verschmolzen und in Lithium-Schwefel-Zellen untersucht (Kooperation Dr. S. Choudhury, Leibniz-Institut für neue Materialien Saarbrücken). Die Charakterisierung der Proben erfolgte unter anderem mithilfe der Festkörper-NMR-Spektroskopie, Elektronenmikroskopie, dynamischen Differenzkalorimetrie, Röntgenpulver-diffraktometrie, Infrarotspektroskopie, Raman-Spektroskopie, Thermogravimetrie und Stickstoffsorption.
57

Synthese nanostrukturierter, organisch-anorganischer Hybridmaterialien über Zwillingspolymerisation

Löschner, Tina 06 August 2013 (has links) (PDF)
Im Fokus dieser Arbeit stand die Methode Zwillingspolymerisation zur Synthese organisch-anorganischer Hybridmaterialien. Die simultane Zwillingspolymerisation wird als neues Konzept zur gezielten Herstellung homogener, nanostrukturierter Hybridmaterialien unterschiedlicher Zusammensetzung vorgestellt. Hierfür wurden die Zwillingsmonomere 2,2’-Spirobi[4H-1,3,2-benzodioxasilin] und 2,2 Dimethyl-4H-1,3,2-benzodioxasilin in einem Arbeitsschritt gemeinsam polymerisiert. Die erhaltenen Phenolharz-Siliciumdioxid/Dimethylsiloxan-Hybridmaterialien weisen aufgrund einstellbarer Syntheseparameter unterschiedliche Eigenschaftsprofile auf, die systematisch analysiert wurden. Die Charakterisierung der Produkte erfolgte mit Hilfe der Festkörper-NMR-Spektroskopie, Elektronenmikroskopie, DSC, TGA-MS, sowie durch Extraktionsversuche und die Erzeugung und Analyse poröser Materialien. Neben der simultanen Zwillingspolymerisation wird die Synthese, Charakterisierung und thermisch induzierte Polymerisation literaturunbekannter Silicium-Spiroverbindungen mit einfach- oder zweifach substituierter Salicylalkohol-Einheit beschrieben. Hierbei wurden nanostrukturierte Hybridmaterialien mit teils hohem löslichen Anteil erhalten. Die Produktbildung wird in Abhängigkeit von der Entstehung und Weiterreaktion gefundener Chinonmethid-Strukturen diskutiert.
58

Binding and characterization of fluorescent nano-aggregates on structured surfaces

Baumgärtel, Thomas 27 July 2012 (has links) (PDF)
Im Mittelpunkt dieser Arbeit steht die selektive Funktionalisierung von Siliziumoxidnanostrukturen auf alkyl-passivierten Siliziumoberflächen welche durch rasterkraftmikroskopisch induzierte lokale anodische Oxidation (LAO) erzeugt werden. Bei der gezielten Immobilisierung von funktionalen Molekülen auf den Strukturen werden zwei verschiedene Routen verfolgt – Anbindung von ionischen Farbstoffen über elektrostatische Wechselwirkungen sowie stufenweise kovalente chemische Anbindung von bi-funktionalen Verbindermolekülen und Farbstoffen. Eine Untersuchung der hergestellten funktionalen Strukturen erfolgt mittels Rasterkraftmikroskopie, Raster-Kelvin-Mikroskopie sowie zeitaufgelöster Fluoreszenzmikroskopie und-spektroskopie. Durch zwei unabhängige Methoden kann gezeigt werden dass die Ladungen im lokalen Oxide vergleichsweise stabil sind und die elektrostatische Anbindung somit auch noch nach Tagen möglich sein sollte. Das Verhalten der elektrostatisch angebundenen Farbstoffe hängt stark von deren Art ab. Während es bei Rhodamin 6G nur zu einer minimalen spektralen Änderung im Vergleich zur Lösung kommt so zeigen spermin-funktionalisierte Perylenbisimidfarbstoffe eine deutliche H-Aggregation und Ausbildung von Excimerzuständen. Diese Zustände sind eindeutig thermisch aktiviert und zeigen eine wesentlich höhere Aktivierungsenergie als bei allen anderen bisher untersuchten Perylenaggregaten sowie eine Hysterese bei Temperaturveränderung. Die physikalische Ursache für dieses Phänomen liegt allem Anschein nach in der elektrostatischen Anbindung selbst welche ein instabiles Gleichgewicht mit der Wechselwirkung der Moleküle untereinander bildet. Eine geordnete kovalente Anbindung von funktionalen Silanmolekülen an die mittels LAO erzeugten Strukturen erfordert sehr definierte Prozessparameter. Die spektroskopische Untersuchung von an die funktionalen Silane chemisch angebundenen Fluoresceinfarbstoffen lässt indirekte Schlüsse auf deren Belegungsdichte und damit die Qualität der Silanmonolage zu.
59

Electrically Conductive Low Dimensional Nanostructures: Synthesis, Characterisation and Application

Bocharova, Vera 05 January 2009 (has links) (PDF)
Miniaturization has become a driving force in different areas of technology including microelectronics, sensoric- and bio-technologies and in fundamental science. Because of the well-known limitations of conventional lithographic methods, newly emerging bottom-up approach, utilizing self-assembly of various nanoobjects including single polymer molecules and carbon nanotubes constitutes a very promising alternative for fabrication of ultimately small devices. Carbon nanotubes are attractive materials for nanotechnology and hold much promise to revolutionize fundamental science in a investigation of phenomena, associated with the nanometer–sized objects.It was found in this work that grafted chains of poly(2-vinylpyridine) form a shell covering the carbon nanotubes that makes them dispersible in organic solvents and in acidic water (CNTs-g-P2VP).The positively charged poly(2-vinylpyridine) shell is responsible for the selective deposition of carbon nanotubes onto oppositely charged surfaces. It was established that the deposition CNTs-g-P2VP from aqueous dispersions at low pH is an effective method to prepare ultra-thin films with a tunable density of carbon nanotubes.It was shown that poly(2-vinylpyridine) grafted to carbon nanotubes is a universal support for the immobilization of various nanoclusters at the carbon nanotube's surface. Prussian Blue nanoparticles were selectively attached to the surface of CNTs-g-P2VP.Conducting polymer nanowires are another very promising kind of nanomaterials that could be also suitable for applications in nanodevices and nanosensors. In this work was developed a simple method to control the conformation and orientation of single adsorbed polyelectrolyte molecules by co-deposition with octylamine. A simple chemical route to conductive polypyrrole nanowires by the grafting of polypyrrole from molecules of polystyrensulfonic acid was developed. The dc conductivity of individual polypyrrole nanowires approaches the conductivity of polypyrole in bulk.The conductivity can be described using variable-range hopping model.
60

Aufbau nanoskopischer Netzwerke aus DNA und Bindeproteinen

Benke, Annegret 12 November 2007 (has links) (PDF)
Zusammenfassung Die vorliegende Arbeit beschäftigt sich mit Grundlagenuntersuchungen zum Aufbau von nanoskopischen Netzwerken aus DNA. Dabei werden zwei Wege verfolgt: Das Stempeln von DNA-Molekülen auf ein Substrat und die Herstellung von Verknüpfungen aus DNA mit Hilfe von Bindeproteinen. Stempeln von DNA-Molekülen In dieser Arbeit wurde ein Beitrag zu den materialwissenschaftlichen Grundlagen des Übertragens von DNA mit der Stempel-Technik erbracht. Hierbei wurden sowohl das Beladen des Stempels durch Molecular Combing als auch die Übertragung der Moleküle durch Transfer Printing unter den speziellen Bedingungen der Verwendung von DNA-Molekülen vertieft untersucht. Es konnte gezeigt werden, dass es möglich ist, gestreckte DNA-Moleküle zielgerichtet in eine mikroelektronische Struktur mit Goldkontakten zu übertragen. Dazu wurde ein Verfahren erarbeitet, bei dem die Kontaktstruktur und ein dazu passender, strukturierter PDMS (Polydimethylsiloxan)-Stempel exakt positioniert werden können. Das Adsorptionsverhalten von DNA auf PDMS wurde in Abhängigkeit vom pH-Wert des Puffers untersucht. Im gesamten pH-Bereich von 4 bis 10 wurde Adsorption mit hoher Belegungsdichte und vollständiger Streckung der Moleküle beobachtet. Diese Beobachtung kann im Rahmen eines phänomenologischen Modells erklärt werden, das auf einer Bilanz der Adsorptionskraft und der für die Streckung der DNA notwendigen Kraft beruht. In der Literatur wird hingegen berichtet, dass bisher nur in einem kleinen pH-Bereich um 5,5 diese hohe Adsorptionsrate gestreckter Moleküle auf einer hydrophoben Oberfläche erreicht werden konnte. Das Adsorptionsverhalten von DNA auf PDMS wurde in Abhängigkeit von der NaCl-Molarität des Puffers untersucht. Es wurde festgestellt, dass mit steigender Salzkonzentration die Belegungsdichte an Molekülen zunimmt und bei ca. 100 mM ein Maximum aufweist. Aus dem Gang der Anzahl der adsorbierten Moleküle mit der Salzkonzentration ist erkennbar, dass dieser Prozess zumindest durch zwei konkurrierende Mechanismen bestimmt ist: der Zunahme der Bindungen zwischen DNA und Substrat aufgrund steigender Adsorption von Na+- Ionen auf der DNA bzw. dem Substrat und von Cl-- Ionen auf dem Substrat (dies führt zu einer Zunahme der Adsorptionsrate) und der Stabilisierung des Doppelstranges (dies führt zu einer Abnahme der Adsorptionsrate). Die hohe Adsorptionsrate geschlossener Plasmide zeigte, dass die Adsorption auf PDMS auch bei DNA-Molekülen möglich ist, die keinen bevorzugten Ort für das Aufschmelzen des Doppelstranges haben. Experimentell konnten die Ergebnisse einer Modellrechnung bestätigt werden, wonach bei doppelsträngiger DNA bereits zwei aufgeschmolzene Basenpaare ausreichen, damit die Adsorption über hydrophobe Wechselwirkungen beginnen kann. Der Nachweis der vollständigen Übertragung der DNA-Moleküle während des Transfers vom Stempel auf das Substrat wurde rasterkraftmikroskopisch geführt. Der Transferprozess wurde experimentell untersucht und daraus resultierend seine Darstellung als zweistufiger Mechanismus vorgeschlagen. Es wurde gezeigt, dass Wassermolekülen beim Übertragungsprozess die entscheidende Rolle zukommt: Wassermoleküle, die sich entlang der DNA befinden, müssen den Kontakt zum Wasserlayer auf dem Glas vermitteln, so dass die DNA nach dem Prinzip des kapillaren Greifens übertragen werden kann. DNA-Verknüpfungen mittels Tet-Repressor-Protein Die aus der bakteriellen Genregulation bekannte sequenzspezifische Bindung zwischen der tetO-Sequenz auf der DNA und dem TetR-Protein wurde genutzt, um definierte Konstrukte aus DNA und Bindeproteinen herzustellen. Mit dem modifizierten Protein scTetRtDL, das zwei Bindedomänen für tetO besitzt, konnten jeweils zwei DNA-Moleküle verknüpft werden. Aus 568 bp-Fragmenten, die leicht außermittig die tetO-Sequenz tragen, wurden durch die Bindung mit scTetRtDL kreuzförmige DNA-Strukturen hergestellt. Das ca. 1 µm lange, linearisierte und tetO-tragende Plasmid pUC19/AV16 wurde verwendet, um größere Strukturen herzustellen. Durch Schneiden des Plasmides mit verschiedenen Restriktionsenzymen und der daraus resultierenden Variation der Position von tetO ist die Konstruktion von unterschiedlichen Strukturen möglich. Mittels Proteinbindung wurden Kreuzungen und aneinander gekettete Moleküle (so genannte Verlängerungen) erzeugt. Die konstruierten DNA-Protein-Komplexe wurden mit dem Rasterkraftmikroskop abgebildet. Mittels Gelelektrophorese wurde der Einfluss der sequenzinduzierten Biegungen im Plasmid pUC19/AV16 auf das Laufverhalten im Gel untersucht.

Page generated in 0.0622 seconds