Spelling suggestions: "subject:"neural""
91 |
Obstacle Avoidance for an Autonomous Robot Car using Deep Learning / En autonom robotbil undviker hinder med hjälp av djupinlärningNorén, Karl January 2019 (has links)
The focus of this study was deep learning. A small, autonomous robot car was used for obstacle avoidance experiments. The robot car used a camera for taking images of its surroundings. A convolutional neural network used the images for obstacle detection. The available dataset of 31 022 images was trained with the Xception model. We compared two different implementations for making the robot car avoid obstacles. Mapping image classes to steering commands was used as a reference implementation. The main implementation of this study was to separate obstacle detection and steering logic in different modules. The former reached an obstacle avoidance ratio of 80 %, the latter reached 88 %. Different hyperparameters were looked at during training. We found that frozen layers and number of epochs were important to optimize. Weights were loaded from ImageNet before training. Frozen layers decided how many layers that were trainable after that. Training all layers (no frozen layers) was proven to work best. Number of epochs decided how many epochs a model trained. We found that it was important to train between 10-25 epochs. The best model used no frozen layers and trained for 21 epochs. It reached a test accuracy of 85.2 %.
|
92 |
Generation of Synthetic Data with Generative Adversarial NetworksGarcia Torres, Douglas January 2018 (has links)
The aim of synthetic data generation is to provide data that is not real for cases where the use of real data is somehow limited. For example, when there is a need for larger volumes of data, when the data is sensitive to use, or simply when it is hard to get access to the real data. Traditional methods of synthetic data generation use techniques that do not intend to replicate important statistical properties of the original data. Properties such as the distribution, the patterns or the correlation between variables, are often omitted. Moreover, most of the existing tools and approaches require a great deal of user-defined rules and do not make use of advanced techniques like Machine Learning or Deep Learning. While Machine Learning is an innovative area of Artificial Intelligence and Computer Science that uses statistical techniques to give computers the ability to learn from data, Deep Learning is a closely related field based on learning data representations, which may serve useful for the task of synthetic data generation. This thesis focuses on one of the most interesting and promising innovations of the last years in the Machine Learning community: Generative Adversarial Networks. An approach for generating discrete, continuous or text synthetic data with Generative Adversarial Networks is proposed, tested, evaluated and compared with a baseline approach. The results prove the feasibility and show the advantages and disadvantages of using this framework. Despite its high demand for computational resources, a Generative Adversarial Networks framework is capable of generating quality synthetic data that preserves the statistical properties of a given dataset. / Syftet med syntetisk datagenerering är att tillhandahålla data som inte är verkliga i fall där användningen av reella data på något sätt är begränsad. Till exempel, när det finns behov av större datamängder, när data är känsliga för användning, eller helt enkelt när det är svårt att få tillgång till den verkliga data. Traditionella metoder för syntetiska datagenererande använder tekniker som inte avser att replikera viktiga statistiska egenskaper hos de ursprungliga data. Egenskaper som fördelningen, mönstren eller korrelationen mellan variabler utelämnas ofta. Dessutom kräver de flesta av de befintliga verktygen och metoderna en hel del användardefinierade regler och använder inte avancerade tekniker som Machine Learning eller Deep Learning. Machine Learning är ett innovativt område för artificiell intelligens och datavetenskap som använder statistiska tekniker för att ge datorer möjlighet att lära av data. Deep Learning ett närbesläktat fält baserat på inlärningsdatapresentationer, vilket kan vara användbart för att generera syntetisk data. Denna avhandling fokuserar på en av de mest intressanta och lovande innovationerna från de senaste åren i Machine Learning-samhället: Generative Adversarial Networks. Generative Adversarial Networks är ett tillvägagångssätt för att generera diskret, kontinuerlig eller textsyntetisk data som föreslås, testas, utvärderas och jämförs med en baslinjemetod. Resultaten visar genomförbarheten och visar fördelarna och nackdelarna med att använda denna metod. Trots dess stora efterfrågan på beräkningsresurser kan ett generativt adversarialnätverk skapa generell syntetisk data som bevarar de statistiska egenskaperna hos ett visst dataset.
|
93 |
Energy-Efficient Private Forecasting on Health Data using SNNs / Energieffektiv privat prognos om hälsodata med hjälp av SNNsDi Matteo, Davide January 2022 (has links)
Health monitoring devices, such as Fitbit, are gaining popularity both as wellness tools and as a source of information for healthcare decisions. Predicting such wellness goals accurately is critical for the users to make informed lifestyle choices. The core objective of this thesis is to design and implement such a system that takes energy consumption and privacy into account. This research is modelled as a time-series forecasting problem that makes use of Spiking Neural Networks (SNNs) due to their proven energy-saving capabilities. Thanks to their design that closely mimics natural neural networks (such as the brain), SNNs have the potential to significantly outperform classic Artificial Neural Networks in terms of energy consumption and robustness. In order to prove our hypotheses, a previous research by Sonia et al. [1] in the same domain and with the same dataset is used as our starting point, where a private forecasting system using Long short-term memory (LSTM) is designed and implemented. Their study also implements and evaluates a clustering federated learning approach, which fits well the highly distributed data. The results obtained in their research act as a baseline to compare our results in terms of accuracy, training time, model size and estimated energy consumed. Our experiments show that Spiking Neural Networks trades off accuracy (2.19x, 1.19x, 4.13x, 1.16x greater Root Mean Square Error (RMSE) for macronutrients, calories burned, resting heart rate, and active minutes respectively), to grant a smaller model (19% less parameters an 77% lighter in memory) and a 43% faster training. Our model is estimated to consume 3.36μJ per inference, which is much lighter than traditional Artificial Neural Networks (ANNs) [2]. The data recorded by health monitoring devices is vastly distributed in the real-world. Moreover, with such sensitive recorded information, there are many possible implications to consider. For these reasons, we apply the clustering federated learning implementation [1] to our use-case. However, it can be challenging to adopt such techniques since it can be difficult to learn from data sequences that are non-regular. We use a two-step streaming clustering approach to classify customers based on their eating and exercise habits. It has been shown that training different models for each group of users is useful, particularly in terms of training time; however this is strongly dependent on the cluster size. Our experiments conclude that there is a decrease in error and training time if the clusters contain enough data to train the models. Finally, this study addresses the issue of data privacy by using state of-the-art differential privacy. We apply e-differential privacy to both our baseline model (trained on the whole dataset) and our federated learning based approach. With a differential privacy of ∈= 0.1 our experiments report an increase in the measured average error (RMSE) of only 25%. Specifically, +23.13%, 25.71%, +29.87%, 21.57% for macronutrients (grams), calories burned (kCal), resting heart rate (beats per minute (bpm), and minutes (minutes) respectively. / Hälsoövervakningsenheter, som Fitbit, blir allt populärare både som friskvårdsverktyg och som informationskälla för vårdbeslut. Att förutsäga sådana välbefinnandemål korrekt är avgörande för att användarna ska kunna göra välgrundade livsstilsval. Kärnmålet med denna avhandling är att designa och implementera ett sådant system som tar hänsyn till energiförbrukning och integritet. Denna forskning är modellerad som ett tidsserieprognosproblem som använder sig av SNNs på grund av deras bevisade energibesparingsförmåga. Tack vare deras design som nära efterliknar naturliga neurala nätverk (som hjärnan) har SNNs potentialen att avsevärt överträffa klassiska artificiella neurala nätverk när det gäller energiförbrukning och robusthet. För att bevisa våra hypoteser har en tidigare forskning av Sonia et al. [1] i samma domän och med samma dataset används som utgångspunkt, där ett privat prognossystem som använder LSTM designas och implementeras. Deras studie implementerar och utvärderar också en klustringsstrategi för federerad inlärning, som passar väl in på den mycket distribuerade data. Resultaten som erhållits i deras forskning fungerar som en baslinje för att jämföra våra resultat vad gäller noggrannhet, träningstid, modellstorlek och uppskattad energiförbrukning. Våra experiment visar att Spiking Neural Networks byter ut precision (2,19x, 1,19x, 4,13x, 1,16x större RMSE för makronäringsämnen, förbrända kalorier, vilopuls respektive aktiva minuter), för att ge en mindre modell ( 19% mindre parametrar, 77% lättare i minnet) och 43% snabbare träning. Vår modell beräknas förbruka 3, 36μJ, vilket är mycket lättare än traditionella ANNs [2]. Data som registreras av hälsoövervakningsenheter är enormt spridda i den verkliga världen. Dessutom, med sådan känslig registrerad information finns det många möjliga konsekvenser att överväga. Av dessa skäl tillämpar vi klustringsimplementeringen för federerad inlärning [1] på vårt användningsfall. Det kan dock vara utmanande att använda sådana tekniker eftersom det kan vara svårt att lära sig av datasekvenser som är oregelbundna. Vi använder en tvåstegs streaming-klustringsmetod för att klassificera kunder baserat på deras mat- och träningsvanor. Det har visat sig att det är användbart att träna olika modeller för varje grupp av användare, särskilt när det gäller utbildningstid; detta är dock starkt beroende av klustrets storlek. Våra experiment drar slutsatsen att det finns en minskning av fel och träningstid om klustren innehåller tillräckligt med data för att träna modellerna. Slutligen tar denna studie upp frågan om datasekretess genom att använda den senaste differentiell integritet. Vi tillämpar e-differentiell integritet på både vår baslinjemodell (utbildad på hela datasetet) och vår federerade inlärningsbaserade metod. Med en differentiell integritet på ∈= 0.1 rapporterar våra experiment en ökning av det uppmätta medelfelet (RMSE) på endast 25%. Specifikt +23,13%, 25,71%, +29,87%, 21,57% för makronäringsämnen (gram), förbrända kalorier (kCal), vilopuls (bpm och minuter (minuter).
|
94 |
Analys av ljudspektroskopisignaler med artificiella neurala eller bayesiska nätverk / Analysis of Acoustic Spectroscopy Signals using Artificial Neural or Bayesian NetworksHagqvist, Petter January 2010 (has links)
<p>Vid analys av fluider med akustisk spektroskopi finns ett behov av att finna multivariata metoder för att utifrån akustiska spektra prediktera storheter såsom viskositet och densitet. Användning av artificiella neurala nätverk och bayesiska nätverk för detta syfte utreds genom teoretiska och praktiska undersökningar. Förbehandling och uppdelning av data samt en handfull linjära och olinjära multivariata analysmetoder beskrivs och implementeras. Prediktionsfelen för de olika metoderna jämförs och PLS (Partial Least Squares) framstår som den starkaste kandidaten för att prediktera de sökta storheterna.</p> / <p>When analyzing fluids using acoustic spectrometry there is a need of finding multivariate methods for predicting properties such as viscosity and density from acoustic spectra. The utilization of artificial neural networks and Bayesian networks for this purpose is analyzed through theoretical and practical investigations. Preprocessing and division of data along with a handful of linear and non-linear multivariate methods of analysis are described and implemented. The errors of prediction for the different methods are compared and PLS (Partial Least Squares) appear to be the strongest candidate for predicting the sought-after properties.</p>
|
95 |
Analys av ljudspektroskopisignaler med artificiella neurala eller bayesiska nätverk / Analysis of Acoustic Spectroscopy Signals using Artificial Neural or Bayesian NetworksHagqvist, Petter January 2010 (has links)
Vid analys av fluider med akustisk spektroskopi finns ett behov av att finna multivariata metoder för att utifrån akustiska spektra prediktera storheter såsom viskositet och densitet. Användning av artificiella neurala nätverk och bayesiska nätverk för detta syfte utreds genom teoretiska och praktiska undersökningar. Förbehandling och uppdelning av data samt en handfull linjära och olinjära multivariata analysmetoder beskrivs och implementeras. Prediktionsfelen för de olika metoderna jämförs och PLS (Partial Least Squares) framstår som den starkaste kandidaten för att prediktera de sökta storheterna. / When analyzing fluids using acoustic spectrometry there is a need of finding multivariate methods for predicting properties such as viscosity and density from acoustic spectra. The utilization of artificial neural networks and Bayesian networks for this purpose is analyzed through theoretical and practical investigations. Preprocessing and division of data along with a handful of linear and non-linear multivariate methods of analysis are described and implemented. The errors of prediction for the different methods are compared and PLS (Partial Least Squares) appear to be the strongest candidate for predicting the sought-after properties.
|
96 |
The Feeling of Anxiety : Phenomenology and neural correlates / Känslan av ångest : Fenomenologi och neurala korrelatLabbé, Daniel January 2008 (has links)
<p>The feeling of anxiety, a conscious experience, is associated with uneasiness, painfulness, or disturbing suspense. The current paper presents the phenomenology of anxiety disorders based on diagnostic criteria and reviews neuroimaging studies on anxiety including dissociation studies. Activity in the anterior cingulate cortex, medial prefrontal cortex, insula, temporal poles and amygdala suggest neural correlates of anxiety. The relevance of the neural correlates, how the feeling of anxiety differs from fear and worry, and the construct validity of anxiety are addressed. Anxiety and pain correlate with activity in the anterior cingulate cortex, which warrants further studies on the painfulness–anxiety relationship.</p>
|
97 |
Analys av nutidens tågindelning : Ett uppdrag framtaget av Trafikverket / Analysis of today's train divisionGrek, Viktoria, Gabrielsson, Molinia January 2018 (has links)
The information used in this paper comes from Trafikverket's delivery monitoring system. It consists of information about planned train missions on the Swedish railways for the years 2014 to 2017 during week four (except planned train missions on Roslagsbanan and Saltsjöbanan). Trafikanalys with help from Trafikverket presents public statistics for short-distance trains, middle-distance trains and long-distance trains on Trafikanalys website. The three classes of trains have no scientific basis. The purpose of this study is therefore to analyze if today's classes of trains can be used and which variables that have importance for the classification. The purpose of this study is also to analyze if there is a better way to categorize the classes of trains when Trafikanalys publishes public statistics. The statistical methods that are used in this study are decision tree, neural network and hierarchical clustering. The result obtained from the decision tree was a 92.51 percent accuracy for the classification of Train type. The most important variables for Train type were Train length, Planned train kilometers and Planned km/h.Neural networks were used to investigate whether this method could also provide a similar result as the decision tree too strengthening the reliability. Neural networks got an 88 percent accuracy when classifying Train type. Based on these two results, it indicates that the larger proportion of train assignments could be classified to the correct Train Type. This means that the current classification of Train type works when Trafikanalys presents official statistics. For the new train classification, three groups were analyzed when hierarchical clustering was used. These three groups were not the same as the group's short-distance trains, middle-distance trains and long-distance trains. Because the new divisions have blended the various passenger trains, this result does not help to find a better subdivision that can be used for when Trafikanalys presents official statistics. / Datamaterialet som används i uppsatsen kommer ifrån Trafikverkets leveransuppföljningssystem. I datamaterialet finns information om planerade tåguppdrag för de svenska järnvägarna för år 2014 till 2017 under vecka fyra (bortsett från planerade tåguppdrag för Roslagsbanan och Saltsjöbanan). Trafikanalys med hjälp av Trafikverket redovisar officiell statistik för kortdistanståg, medeldistanståg och långdistanståg på Trafikanalys hemsida. De tre tågkategorierna har inte någon vetenskaplig grund. Syftet med denna studie är därför att undersöka ifall dagens tågindelning fungerar och vilka variabler som hänger ihop med denna indelning. Syftet är även att undersöka om det finns någon bättre tågindelning som kan användas när Trafikanalys redovisar officiell statistik. De statistiska metoder studien utgått ifrån är beslutsträd, neurala nätverk och hierarkisk klustring. Resultatet som erhölls från beslutsträdet var en ackuratess på 92.51 procent för klassificeringen av Tågsort. De variabler som hade störst betydelse för Tågsort var Tåglängd, Planerade tågkilometrar och Planerad km/h. Neurala nätverk användes för att undersöka om även denna metod kunde ge ett liknande resultat som beslutsträdet och därmed stärka tillförlitligheten. Neurala nätverket fick en ackuratess på 88 procent vid klassificeringen av Tågsort. Utifrån dessa två resultat tyder det på att den större andelen tåguppdrag kunde klassificeras till rätt Tågsort. Det innebär att nuvarande klassificering av Tågsort fungerar när Trafikanalys presenterar officiell statistik. För den nya tågklassificeringen analyserades tre grupper när hierarkisk klustring användes. Dessa tre grupper liknande inte dagens indelning för kortdistanståg, medeldistanståg och långdistanståg. Eftersom att de nya indelningarna blandade de olika persontågen går det inte med detta resultat att hitta en bättre indelning som kan användas när Trafikanalys presenterar officiell statistik.
|
98 |
Image Classification, Deep Learning and Convolutional Neural Networks : A Comparative Study of Machine Learning FrameworksAirola, Rasmus, Hager, Kristoffer January 2017 (has links)
The use of machine learning and specifically neural networks is a growing trend in software development, and has grown immensely in the last couple of years in the light of an increasing need to handle big data and large information flows. Machine learning has a broad area of application, such as human-computer interaction, predicting stock prices, real-time translation, and self driving vehicles. Large companies such as Microsoft and Google have already implemented machine learning in some of their commercial products such as their search engines, and their intelligent personal assistants Cortana and Google Assistant. The main goal of this project was to evaluate the two deep learning frameworks Google TensorFlow and Microsoft CNTK, primarily based on their performance in the training time of neural networks. We chose to use the third-party API Keras instead of TensorFlow's own API when working with TensorFlow. CNTK was found to perform better in regards of training time compared to TensorFlow with Keras as frontend. Even though CNTK performed better on the benchmarking tests, we found Keras with TensorFlow as backend to be much easier and more intuitive to work with. In addition, CNTKs underlying implementation of the machine learning algorithms and functions differ from that of the literature and of other frameworks. Therefore, if we had to choose a framework to continue working in, we would choose Keras with TensorFlow as backend, even though the performance is less compared to CNTK.
|
99 |
Elmannätverk för generellt Atari-spelande / Elman network for general Atari game playingGranfelt, Elias January 2017 (has links)
Generellt spelande är ett forskningsområde fokuserat på att skapa AI som kan spela spel utan någon domänspecifik information. Detta arbete har undersökt elman-nätverks potential för generellt Atari-spelande genom att testa ett elman-nätverk och ett feedforward-nätverk via the Arcade Learning Environment. Nätverken använder en pixelrepresentation för att representera spelmiljön och baserar sina handlingar endast på den informationen. Agenterna testades på fyra spel varav två anses kräva en mer avancerad struktur än feedforward. Agenterna evalueras via deras toppoäng i spelen som testas och tränas via en genetisk algoritm. Resultaten visade att elman-strukturen inte presterar bättre än feedforward, dessutom erhölls ingen poäng i de avancerade spelen vilket tyder på att ett korttidsminne inte är tillräckligt för att spela dessa spel. Jämfört med tidigare forskning sågs en liten förbättring över liknande struktur vilket tyder på en förbättrad representation. För att förbättra resultaten i detta arbete borde ett större antal spel testas.
|
100 |
Replacing Setpoint Control with Machine Learning : Model Predictive Control Using Artificial Neural NetworksDahlberg, Emil, Mineur, Mattias, Shoravi, Linus, Swartling, Holger January 2020 (has links)
Indoor climate control is responsible for a substantial amount of the world's total energy expenditure. In a time of climate crisis where a reduction of energy consumption is crucial to avoid climate disaster, indoor climate control is a ripe target for eliminating energy waste. The conventional method of adjusting the indoor climate with the use of setpoint curves, based solely on outdoor temperature, may lead to notable inefficiencies. This project evaluates the possibility to replace this method of regulation with a system based on model predictive control (MPC) in one of Uppsala University Hospitals office buildings. A prototype of an MPC controller using Artificial Neural Networks (ANN) as its system model was developed. The system takes several data sources into account, including indoor and outdoor temperatures, radiator flowline and return temperatures, current solar radiation as well as forecast for both solar radiation and outdoor temperature. The system was not set in production but the controller's predicted values correspond well to the buildings current thermal behaviour and weather data. These theoretical results attest to the viability of using the method to regulate the indoor climate in buildings in place of setpoint curves. / Bibehållande av inomhusklimat står för en avsevärd del av världens totala energikonsumtion. Med dagens klimatförändringar där minskad energikonsumtion är viktigt för den hållbara utvecklingen så är inomhusklimat ett lämpligt mål för att förhindra slösad energi. Konventionell styrning av inomhusklimat använder sig av börvärdeskurvor, baserade enbart på utomhustemperatur, vilket kan leda till anmärkningsvärt energispill. Detta projekt utvärderar möjligheten att ersätta denna styrmetod med ett system baserat på model predictive control (MPC) och använda detta i en av Akademiska sjukhusets lokaler i Uppsala. En MPC styrenhet som använder Artificiella Neurala Nätverk (ANN) som sin modell utvecklades. Systemet använder sig av flera datakällor däribland inomhus- och utomhustemperatur, radiatorslingornas framlednings- och returtemperatur, rådande solinstrålning såväl som prognoser för solinstrålning och utomhustemperatur. Systemet sattes inte i produktion men dess prognos stämmer väl överens med tillgänglig väderdata och husets termiska beteende. De presenterade resultaten påvisar metoden vara ett lämpligt substitut för styrning med börvärdeskurvor.
|
Page generated in 0.0515 seconds