241 |
NITSOL: A Newton Iterative Solver for Nonlinear Systems A FORTRAN-to-MATLAB ImplementationPadhy, Bijaya L. 28 April 2006 (has links)
NITSOL: A Newton Iterative Solver for Nonlinear Systems describes an algorithm for solving nonlinear systems. Michael Pernice and Homer F. Walker, the authors of the paper NITSOL [3], implemented this algorithm in FORTRAN. The goal of the project has been to use the modern and robust language MATLAB to implement the NITSOL algorithm. In this paper, the main mathematical and algorithmic background for understanding NITSOL are described, and a user guide is included outlining how to use the MATLAB implementation of NITSOL. A nonlinear system example problem, the 2D Bratu problem, and the solution obtained by MATLAB NITSOL's are also included.
|
242 |
Fred Newton Scott and prose rhythmPatrick, Jean L. S January 2010 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries / Department: English.
|
243 |
Kvazi Njutnovi postupci za probleme stohastičkog programiranja / Quasi Newton Methods for Stochastic Programming ProblemsOvcin Zoran 19 July 2016 (has links)
<p>Posmatra se problem minimizacije bez ograničenja. U determinističkom slučaju ti problemi se uspešno rešavaju iterativnim Kvazi Njutnovim postupcima. Ovde se istražuje stohastički slučaj, kada su poznate vrednosti funkcije cilja i njenog gradijenta na koje je uticao šum. Koristi se novi način određivanja dužina koraka, koji kombinuje metod linijskog pretraživanja i metod stohastičke aproksimacije tako da zadrži dobre osobine oba pristupa i obezbedi veću efikasnost postupka. Metod je testiran u kombinaciji sa više načina izbora pravca u iterativnom postupku. Dokazana je konvergencija novog postupka i testiranjem na velikom broju standardnih test problema pokazana njegova efikasnost. Takođe se za rešavanje problema ekvilibriuma u Neoklasičnoj ekonomiji predlaže i dokazuje konvergencija jednog Fiksnog Njutnovog postupka. U zadatku nalaženja rešenja za niz problema kojima se preciznije modelira slučajni sistem, ovaj Fiksni Njutnov postupak ostvaruje veliku uštedu CPU vremena u odnosu na Njutnov metod. U prvom delu teze je dat opšti teoretski uvod. U drugom delu je dat pregled relevantnih rezultata iz posmatranih oblasti zajedno sa dva originalna rezultata. U trećem delu su dati rezultati numeričkih testova.</p> / <p>The problem under consideration is unconstrained minimization pro-blem. The problem in deterministic case is often solved with Quasi Newton met-hods. In noisy environment, which is considered, new approach for step length along descent direction is used. The new approach combines line search and stoc-hastic approximation method using good characteristics of both enabling better efficiency. The convergence is proved. New step length is tested with three de-scent directions. Many standard test problems show the efficiency of the met-hod. Also, a new, affordable procedure based on application of the fixed Newton method for a sequence of equilibrium problems generated by simulation is intro-duced. The convergence conditions of the method are derived. The numerical results show a clear difference in the quality of information obtained by solving a sequence of problems if compared with the single equilibrium problem. In the first part general theoretical introduction is given. In the second part a survey of results from scientific community is given together with original results. The third part contains many numerical tests of new methods that show its efficiency.</p>
|
244 |
Convergência Q-quadrática do método de Newton com dados em um pontoFragata, Andréa Freitas 30 March 2007 (has links)
Made available in DSpace on 2015-04-22T22:16:14Z (GMT). No. of bitstreams: 1
Andrea Freitas Fragata.pdf: 328937 bytes, checksum: eaf5f22018331e8d3fc583a6174a86b3 (MD5)
Previous issue date: 2007-03-30 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Many problems in Physics, Engineering, Economics and other sciences are modeled by suitable nonlinear systems. In these models, we can use Newton s iterative method for approximating solutions, starting from an initial approximation which is assumed to be sufficiently good. The goal of this work is to give a proof that, under the assumptions of Smale s theorem, the method converges Qquadratically. The proof presented is based on some results proved by João Xavier e Orizon Ferreira, which improve previous results giving only the R-quadratic convergence of the method. / Muitos problemas de física, engenharia, ecomomia e outras ciências são modelados de maneira muito conveniente por sistemas não lineares. Nestes casos, podemos usar o método de Newton, que é um método iterativo, no sentido de garantir a convergência a uma solução, supondo que o ponto inicial usado como aproximação da mesma é suficientemente bom. O objetivo deste trabalho é dar uma demonstração, baseada nos resultados obtidos por João Xavier e Orizon Ferreira, que o Método de Newton sob as hipóteses do Teorema de Smale converge Q-quadraticamente e como conseqüência esses autores deduziram um erro estimado, o que configura um resultado novo, uma vez que, apenas a convergência R-quadrática foi obtida.
|
245 |
Método de Newton: um estudo sobre estimativas exatas do raio de convergência e unicidade de soluçãoPinheiro, Manoel Ricardo Sampaio 03 June 2011 (has links)
Made available in DSpace on 2015-04-22T22:16:16Z (GMT). No. of bitstreams: 1
Manoel Ricardo.pdf: 483383 bytes, checksum: c45cc5ce5a4dca174bc261b7106c37d5 (MD5)
Previous issue date: 2011-06-03 / FAPEAM - Fundação de Amparo à Pesquisa do Estado do Amazonas / In this paper a detailed study is made of accurate estimates for the radius
of the ball of convergence of Newton s method and ball uniqueness of solution
of equations in Banach spaces, we added an estimate for the radius of the
ball of the inverse function theorem. This study follows the ideas discussed
in the work of Wang [30, 31]. / Nesta dissertação é feito um estudo detalhado das estimativas exatas para
o raio da bola de convergência do método de Newton e da bola de unicidade
de solução de equações em espaços de Banach, acrescentamos ainda uma
estimativa para o raio da bola do teorema da função inversa. Este estudo
segue as idéias abordadas nos trabalhos de Wang [30, 31].
|
246 |
Modélisation probabiliste d’impression à l’échelle micrométrique / Probabilistic modeling of prints at the microscopic scaleNguyen, Quoc Thong 18 May 2015 (has links)
Nous développons des modèles probabilistes pour l’impression à l’échelle micrométrique. Tenant compte de l’aléa de la forme des points qui composent les impressions, les modèles proposés pourront être ultérieurement exploités dans différentes applications dont l’authentification de documents imprimés. Une analyse de l’impression sur différents supports papier et par différentes imprimantes a été effectuée. Cette étude montre que la grande variété de forme dépend de la technologie et du papier. Le modèle proposé tient compte à la fois de la distribution du niveau de gris et de la répartition spatiale de l’encre sur le papier. Concernant le niveau de gris, les modèles des surfaces encrées/vierges sont obtenues en sélectionnant les distributions dans un ensemble de lois de forme similaire aux histogrammes et à l’aide de K-S critère. Le modèle de répartition spatiale de l’encre est binaire. Le premier modèle consiste en un champ de variables indépendantes de Bernoulli non-stationnaire dont les paramètres forment un noyau gaussien généralisé. Un second modèle de répartition spatiale des particules d’encre est proposé, il tient compte de la dépendance des pixels à l’aide d’un modèle de Markov non stationnaire. Deux méthodes d’estimation ont été développées, l’une approchant le maximum de vraisemblance par un algorithme de Quasi Newton, la seconde approchant le critère de l’erreur quadratique moyenne minimale par l’algorithme de Metropolis within Gibbs. Les performances des estimateurs sont évaluées et comparées sur des images simulées. La précision des modélisations est analysée sur des jeux d’images d’impression à l’échelle micrométrique obtenues par différentes imprimantes. / We develop the probabilistic models of the print at the microscopic scale. We study the shape randomness of the dots that originates the prints, and the new models could improve many applications such as the authentication. An analysis was conducted on various papers, printers. The study shows a large variety of shape that depends on the printing technology and paper. The digital scan of the microscopic print is modeled in: the gray scale distribution, and the spatial binary process modeling the printed/blank spatial distribution. We seek the best parametric distribution that takes account of the distributions of the blank and printed areas. Parametric distributions are selected from a set of distributions with shapes close to the histograms and with the Kolmogorov-Smirnov divergence. The spatial binary model handles the wide diversity of dot shape and the range of variation of spatial density of inked particles. At first, we propose a field of independent and non-stationary Bernoulli variables whose parameters form a Gaussian power. The second spatial binary model encompasses, in addition to the first model, the spatial dependence of the inked area through an inhomogeneous Markov model. Two iterative estimation methods are developed; a quasi-Newton algorithm which approaches the maximum likelihood and the Metropolis-Hasting within Gibbs algorithm that approximates the minimum mean square error estimator. The performances of the algorithms are evaluated and compared on simulated images. The accuracy of the models is analyzed on the microscopic scale printings coming from various printers. Results show the good behavior of the estimators and the consistency of the models.
|
247 |
Determinação do calor específico de ligas AlCu produzidas em um dispositivo de solidificação unidirecional vertical ascendenteMARTINS, Marcelo Gonçalves 24 November 2008 (has links)
Submitted by Cleide Dantas (cleidedantas@ufpa.br) on 2014-04-08T16:56:06Z
No. of bitstreams: 2
license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5)
Dissertacao_DeterminacaoCalorEspecifico.pdf: 1676095 bytes, checksum: ec0d6ff4052bfabee150a0dec5d6cf00 (MD5) / Approved for entry into archive by Ana Rosa Silva (arosa@ufpa.br) on 2014-06-18T16:34:14Z (GMT) No. of bitstreams: 2
license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5)
Dissertacao_DeterminacaoCalorEspecifico.pdf: 1676095 bytes, checksum: ec0d6ff4052bfabee150a0dec5d6cf00 (MD5) / Made available in DSpace on 2014-06-18T16:34:14Z (GMT). No. of bitstreams: 2
license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5)
Dissertacao_DeterminacaoCalorEspecifico.pdf: 1676095 bytes, checksum: ec0d6ff4052bfabee150a0dec5d6cf00 (MD5)
Previous issue date: 2008 / O conhecimento das propriedades termofísicas é de fundamental importância para o estudo de ligas metálicas obtidas por solidificação,uma vez que esta se relaciona de forma direta com o coeficiente de transferência de calor na interface metal/molde. Assim, o Grupo de Pesquisa em Metalurgia e de Meio Ambiente – GAPEMM da Universidade Federal do Pará desenvolve uma linha de pesquisa que propõe um conjunto de técnicas e procedimentos que visa determiná-las. Por outro lado, sabe-se que existe uma correlação significativa entre processo, estrutura e propriedades de um material obtido por solidificação, visto que a distribuição de soluto em uma liga metálica ocorre de maneira não uniforme. A maneira como ocorre solidificação e a quantificação das variáveis envolvidas no processo têm influência fundamental nas propriedades do material. O presente trabalho utilizou ligas Al-Cu (Al-2%Cu, Al-5%Cu e Al-8%Cu) obtidas por solidificação unidirecional vertical ascendente, realizado através de um dispositivo projetado, construído e aferido pelo GAPEMM. Através destas, pretende-se fazer um estudo do calor específico à medida que a frente de solidificação se afasta da chapa molde bem como com o aumento do teor de soluto. Para isso, foi utilizada uma técnica conhecida na literatura como Lei de Resfriamento de Newton, a qual possibilita através das curvas de temperatura x tempo determinar as temperaturas necessárias para o cálculo do calor específico. / The knowledge of the properties of the thermophysics is extremely important to the study of the metallic alloys obtained from the solidification, once this one it is directly related to the heat transfer coefficient at the metal / mold interface. Thus, the researchers group of metallurgy and environment – GAPEMM of Federal University of Pará develops a line of research that proposes to develop techniques and procedures which has as main objective to determine them. On the other side, it is known that there is a significant correlation among process, structure, and properties obtained from a material during solidification. Since the distribution of solute in a metallic alloy occurs in a heterogeneous way. The way the solidification happens and the quantification of the varieties involved in the process has fundamental influence in the properties of the material. The present study used alloys Al-Cu (Al-2%Cu, Al-5%Cu e Al-8%Cu) obtained from a process upward directional solidification, made through one dispositive planned, constructed and calibrated by gapemm. Through these researches, there’s the intention to study the specific heat as it gets away the plate mold as well as the raise of the solute content. To do this, it was used a technique known in the literature as the Newton´s law cooling, which makes it possible through the curves of temperature x time to determine the necessary temperatures that will allow the calculation of the specific heat.
|
248 |
Adaptive Curvature for Stochastic OptimizationJanuary 2019 (has links)
abstract: This thesis presents a family of adaptive curvature methods for gradient-based stochastic optimization. In particular, a general algorithmic framework is introduced along with a practical implementation that yields an efficient, adaptive curvature gradient descent algorithm. To this end, a theoretical and practical link between curvature matrix estimation and shrinkage methods for covariance matrices is established. The use of shrinkage improves estimation accuracy of the curvature matrix when data samples are scarce. This thesis also introduce several insights that result in data- and computation-efficient update equations. Empirical results suggest that the proposed method compares favorably with existing second-order techniques based on the Fisher or Gauss-Newton and with adaptive stochastic gradient descent methods on both supervised and reinforcement learning tasks. / Dissertation/Thesis / Masters Thesis Computer Science 2019
|
249 |
Review of Bad Boy of Gospel Music: The Calvin Newton Story, by Russ CheathamTolley, Rebecca 01 January 2004 (has links)
No description available.
|
250 |
Lagrange Interpolation on Leja PointsTaylor, Rodney 01 April 2008 (has links)
In this dissertation we investigate Lagrange interpolation. Our first result will deal with a hierarchy of interpolation schemes. Specifically, we will show that given a triangular array of points in a regular compact set K, such that the corresponding Lebesgue constants are subexponential, one always has the uniform convergence of Ln(f) to f for all functions analytic on K. We will then show that uniform convergence of Ln(f) to f for all analytic functions f is equivalent to the fact that the probability measures γn = 1/n Σn j=1 δzn,j , which are associated with our triangular array, converge weak star to the equilibrium distribution for K.
Motivated by our hierarchy, we will then come to our main result, namely that the Lebesgue constants associated with Leja sequences on fairly general compact sets are subexponential. More generally, considering Newton interpolation on a sequence of points, we will show that the weak star convergence of their corresponding probability measures to the equilibrium distribution, together with a certain distancing rule, implies that their corresponding Lebesgue constants are sub-exponential.
|
Page generated in 0.0348 seconds