• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 260
  • 140
  • 74
  • 27
  • 26
  • 15
  • 10
  • 9
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 654
  • 196
  • 104
  • 65
  • 64
  • 58
  • 52
  • 52
  • 48
  • 48
  • 47
  • 46
  • 46
  • 44
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

O método da função Lagrangiana barreira modificada/penalidade / The penalty/modified barrier Lagrangian function method

Aguinaldo Aparecido Pereira 27 September 2007 (has links)
Neste trabalho propomos uma abordagem que utiliza o método de barreira modificada/penalidade para a resolução de problemas restritos gerais de otimização. Para isso, foram obtidos dados teóricos, a partir de um levantamento bibliográfico, que explicitaram os métodos primal-dual barreira logarítmica e método de barreira modificada. Nesta abordagem, as restrições de desigualdade canalizadas são tratadas pela função barreira de Frisch modificada, ou por uma extrapolação quadrática e as restrições de igualdade do problema através da função Lagrangiana. A implementação consiste num duplo estágio de aproximação: um ciclo externo, onde o problema restrito é convertido em um problema irrestrito, usando a função Lagrangiana barreira modificada/penalidade; e um ciclo interno, onde o método de Newton é utilizado para a atualização das variáveis primais e duais. É apresentada também uma função barreira clássica extrapolada para a inicialização dos multiplicadores de Lagrange. A eficiência do método foi verificada utilizando um problema teste e em problemas de fluxo de potência ótimo (FPO). / In this paper, we propose an approach that utilizes the penalty/modified barrier method to solve the general constrained problems. On this purpose, theoretical data were obtained, from a bibliographical review, which enlightened the logarithmic barrier primal-dual method and modified barrier method. In this approach, the bound constraints are handled by the modified log-barrier function, or by quadratic extrapolation and the equality constraints of the problem through Lagrangian function. The method, as implemented, consists of a two-stage approach: an outer cycle, where the constrained problem is transformed into unconstrained problem, using penalty/modified barrier Lagrangian function; and an inner cycle, where the Newton\'s method is used for update the primal and dual variables. Also, it is presented a classical barrier extrapolated function for initialization of Lagrange multipliers. The effectiveness of the proposed approach has been examined by solving a test problem and optimal power flow problems (OPF).
202

Identification of material parameters in mechanical models

Meyer, Marcus 04 June 2010 (has links) (PDF)
Die Dissertation beschäftigt sich mit Parameteridentifikationsproblemen, wie sie häufig in Fragestellungen der Festkörpermechanik zu finden sind. Hierbei betrachten wir die Identifikation von Materialparametern -- die typischerweise die Eigenschaften der zugrundeliegenden Materialien repräsentieren -- aus gemessenen Verformungen oder Belastungen eines Testkörpers. In mathematischem Sinne entspricht dies der Lösung von Identifikationsproblemen, die eine spezielle Klasse von inversen Problemen bilden. Der Inhalt der Dissertation ist folgendermaßen gegliedert. Nach dem einführenden Abschnitt 1 wird in Abschnitt 2 ein Überblick von Optimierungs- und Regularisierungsverfahren zur stabilen Lösung nichtlinearer inverser Probleme diskutiert. In Abschnitt 3 betrachten wir die Identifikation von skalaren und stückweise konstanten Parametern in linearen elliptischen Differentialgleichungen. Hierbei werden zwei Testprobleme erörtert, die Identifikation von Diffusions- und Reaktionsparameter in einer allgemeinen elliptischen Differentialgleichung und die Identifikation der Lame-Konstanten in einem Modell der linearisierten Elastizität. Die zugrunde liegenden PDE-Modelle und Lösungszugänge werden erläutert. Insbesondere betrachten wir hier Newton-artige Algorithmen, Gradientenmethoden, Multi-Parameter Regularisierung and den evolutionären Algorithmus CMAES. Abschließend werden Ergebnisse einer numerischen Studie präsentiert. Im Abschnitt 4 konzentrieren wir uns auf die Identifikation von verteilten Parametern in hyperelastischen Materialmodellen. Das nichtlineare Elastizitätsproblem wird detailiert erläutert und verschiedene Materialmodelle werden diskutiert (linear elastisches St.-Venant-Kirchhoff Material und nichtlineare Neo-Hooke, Mooney-Rivlin und Modified-Fung Materialien. Zur Lösung des resultierenden Parameteridentifikationsproblems werden Lösungsansätze aus der optimalen Steuerung in Form eines Newton-Lagrange SQP Algorithmus verwendet. Die Resultate einer numerischen Studie werden präsentiert, basierend auf einem zweidimensionales Testproblem mit einer sogenannten Cook-Mebran. Abschließend wird im Abschnitt 5 die Verwendung adaptiver FEM für die Lösung von Parameteridentifikationsproblems kurz erörtert. / The dissertation is focussed on parameter identification problems arising in the context of structural mechanics. At this, we consider the identification of material parameters - which typically represent the properties of an underlying material - from given measured displacements and forces of a loaded test body. In mathematical terms such problems denote identification problems as a special case of general inverse problems. The dissertation is organized as follows. After the introductive section 1, section 2 is devoted to a survey of optimization and regularization methods for the stable solution of nonlinear inverse problems. In section 3 we consider the identification of scalar and piecewise constant parameters in linear elliptic differential equations and examine two test problems, namely the identification of diffusion and reaction parameters in a generalized linear elliptic differential equation of second order and the identification of the Lame constants in the linearized elasticity model. The underlying PDE models are introduced and solution approaches are discussed in detail. At this, we consider Newton-type algorithms, gradient methods, multi-parameter regularization, and the evolutionary algorithm CMAES. Consequently, numerical studies for a two-dimensional test problem are presented. In section 4 we point out the identification of distributed material parameters in hyperelastic deformation models. The nonlinear elasticity boundary value problem for large deformations is introduced. We discuss several material laws for linear elastic (St.-Venant-Kirchhoff) materials and nonlinear Neo-Hooke, Mooney-Rivlin, and Modified-Fung materials. For the solution of the corresponding parameter identification problem, we focus on an optimal control solution approach and introduce a regularized Newton-Lagrange SQP method. The Newton-Lagrange algorithm is demonstrated within a numerical study. Therefore, a simplified two-dimensional Cook membrane test problem is solved. Additionally, in section 5 the application of adaptive methods for the solution of parameter identification problems is discussed briefly.
203

Μελέτη των ριζών των associated ορθογωνίων q-πολυωνύμων / Study of the zeros of the associated orthogonal q-polynomials

Στάμπολας, Ιωάννης 29 June 2007 (has links)
Στη διατριβή αυτή μελετάται η μονοτονία και η κυρτότητα των ριζών ορισμένων οικογενειών associated ορθογωνίων q-πολυωνύμων που εμφανίζονται στο q-ανάλογο του σχήματος Askey. Για τη μελέτη της μονοτονίας και της κυρτότητας των ριζών χρησιμοποιείται μια συναρτησιακή αναλυτική μέθοδος η οποία βασίζεται στην αναδρομική σχέση τριών όρων που ικανοποιεί οποιαδήποτε οικογένεια ορθογωνίων πολυωνύμων. Επίσης για τον υπολογισμό των αθροισμάτων Newton των ριζών χρησιμοποιείται η συναρτησιακή αναλυτική μλεθοδος που παρουσιάστηκε από τους Υφαντή, Κοκολογιαννάκη και Σιαφαρίκα για τον υπολογισμό των αθροισμάτων Newton των ριζών των scaled corecursive associated ορθογωνίων πολυωνύμων. Επειδή τα ορθογώνια q-πολυώνυμα είναι q-ανάλογα κλασικών ορθογωνίων πολυωνύμων παίρνοντας το όριο q-1 προκύπτουν αντίστοιχα αποτελέσματα για τις ρίζες των κλασσικών ορθογωνίων πολυωνύμων. Τα αποτελέσματα αυτά γενικεύουν ενοποιούν και βελτιώνουν προηγούμενα αποτελέσματα. / In this thesis, we study the monotonicity properties and the convexity of the zeros of some families of associated orthogonal q-polynomials. Also, we calculate the Newton sum rules of these zeros. For the study of the monotonicity of the zeros, we use a functional analytic method based on the three terms recurrence relations satisfied by the associated orthogonal q-polynomials under consideration.
204

Linking Geometry, Algebra and Calculus with GeoGebra

Böhm, Josef 12 April 2012 (has links) (PDF)
GeoGebra is a free, open-source, and multi-platform software that combines dynamic geometry, algebra and calculus in one easy-to-use package. Students from middle-school to university can use it in classrooms and at home. In this workshop, we will introduce the features of GeoGebra with a special focus on not very common applications of a dynamic geometry program. We will inform about plans for developing training and research networks connected to GeoGebra. We can expect that at the time of the conference a spreadsheet will be integrated into GeoGebra which offers new ways teaching mathematics using the interplay between the features of a spreadsheet and the objects of dynamic geometry.
205

Modélisation de la captation de particules sur un cylindre par la méthode des éléments finis /

McLaughlin, Carroll, January 1984 (has links)
Mémoire (M.Sc. A.)-- Université du Québec à Chicoutimi, 1984. / "Mémoire présenté comme exigence partielle de la maîtrise en sciences appliquées en ressources et systèmes" CaQCU bibliographie: p. 56-58. Document électronique également accessible en format PDF. CaQCU
206

Géométrie des variétés de Fano singulières et des fibrés projectifs sur une courbe / Geometry of singular Fano varieties and projective vector bundles over curves

Montero Silva, Pedro Pablo 11 October 2017 (has links)
Cette thèse est consacrée à la géométrie des variétés de Fano et des fibrés projectifs sur une courbe projective lisse.Dans la première partie on étudie la géométrie des variétés de Fano pas trop singulières admettant un diviseur premier de nombre de Picard 1. En étudiant les contractions associées aux rayons extrémaux dans le cône de Mori de ces variétés nous fournissons un théorème de structure en dimension 3 pour les variétés dont le nombre de Picard est maximal. Ensuite, nous traitons le cas des variétés toriques et nous étendons le théorème de structure aux variétés toriques de dimension supérieure à 3 dont le nombre de Picard est maximal. Enfin, nous traitons les relèvements des contractions extrémales aux espaces de revêtement universels en codimension 1.Dans la deuxième partie on étudie les corps de Newton-Okounkov sur les fibrés projectifs sur une courbe projective lisse. En nous inspirant des estimations de Wolfe utilisées pour calculer la fonction de volume sur ces variétés, nous calculons tous les corps de Newton-Okounkov par rapport aux drapeaux linéaires et nous étudions comment ces corps dépendent de la décomposition en cellules de Schubert par rapport aux drapeaux linéaires compatibles avec la filtration de Harder-Narasimhan du fibré. De plus, nous caractérisons les fibrés vectoriels semi-stables sur une courbe projective lisse à l'aide des corps de Newton-Okounkov. / This thesis is devoted to the geometry of Fano varieties and projective vector bundles over a smooth projective curve.In the first part we study the geometry of mildly singular Fano varieties on which there is a prime divisor of Picard number 1. By studying the contractions associated to extremal rays in the Mori cone of these varieties, we provide a structure theorem in dimension 3 for varieties with maximal Picard number. Afterwards, we address the case of toric varieties and we extend the structure theorem to toric varieties of dimension greater than 3 and with maximal Picard number. Finally, we treat the lifting of extremal contractions to universal covering spaces in codimension 1.In the second part we study Newton-Okounkov bodies on projective vector bundles over a smooth projective curve. Inspired by Wolfe's estimates used to compute the volume function on these varieties, we compute all Newton-Okounkov bodies with respect to linear flags and we study how these bodies depend on the Schubert cell decomposition with respect to linear flags which are compatible with the Harder-Narasimhan filtration of the bundle. Moreover, we characterize semi-stable vector bundles over smooth projective curves via Newton-Okounkov bodies.
207

Polígono de Newton de una foliación de tipo curva generalizada / Polígono de Newton de una foliación de tipo curva generalizada

Fernández, Percy, Saravia, Nancy 25 September 2017 (has links)
Generalized curve foliations are a type of foliations that have a similar reduction as the one given by curves. Camacho, Lins Neto, and Sad showed that generalized curve no-dicritical foliations have the same reduction of singularities than their separatrices. In this paper we give a novel proof of Dulac's theorem ([9]) using techniques of Rouille ([19]). This theorem shows that for generalized curve no-dicritical foliations their Newton polygons and their separatrices are equal. Using Dulac's theorem we return to a result (wrongly) stated by Loray, which is notquite right, as noticed by Fernandez, Mozo and, Neciosup. / Foliaciones de tipo curva generalizada son una clase de foliaciones que tienen una reducción de singularidades similar a la que existe para curvas. Camacho, Lins Neto and Sad mostraron que aquellas que son no dicríticas tienen la misma reducción que la de su conjunto de separatrices. En este artículo presentamos una prueba novedosa del teorenma de Dulac utilizando técnicas de Rouillé. Este teorema muestra que para foliaciones no dicríticas de tipo curva generalizada su polígono de Newton y el su conjunto de sepatrices coinciden. Mediante el teorema de Dulac retornamos a un resultado conjeturado por Loray que no es del todo cierto, como fue anotado por Fernández, Mozo y Neciosup.
208

Symétries nonrelativistes et gravitation de Newton-Cartan / Nonrelativistic symetries and Newton-Cartan gravity

Morand, Kevin 02 October 2014 (has links)
Bien qu’ayant vu le jour dans un cadre dit relativiste avec l’avènement de la théorie de la relativité générale, le lien intime existant entre géométrie de l’espace-temps d’une part, et gravitation d’autre part, peut se voir étendu aux théories dites nonrelativistes, l’exemple paradigmatique en étant la reformulation géométrique de la gravitation Newtonienne initiée par E. Cartan. De tels espace-temps nonrelativistes diffèrent structurellement de leurs homologues relativistes, ces disparités étant le plus naturellement expliquées en réinterprétant ces premiers comme réduction dimensionnelle d’espace-temps relativistes privilégiés. L’ambition de cette thèse est double : Dans une première partie, nous nous intéressons à une généralisation de la classe d’espace-temps relativistes permettant le formalisme ambiant, étudions leur interprétation géométrique ainsi que la classe élargie de structures nonrelativistes pouvant y être plongées. La seconde partie de ce manuscrit concerne le point de vue, informé par la théorie des groupes, que porte E. Cartan sur la géométrie différentielle et plus précisément l’éclairage que projettent les géométries de Cartan sur les structures nonrelativistes, à la fois dans leur définition intrinsèque et dans leur relation avec des structures relativistes au travers du formalisme ambiant. / With the advent of general relativity, the profound interaction between the geometry of spacetime and gravitational phenomena became a truism of modern physics. However, the intimate relationship between spacetime geometry and gravitation is by no means restricted to relativistic physics but can in fact be successfully applied to nonrelativistic physics, the paradigmatic example being E. Cartan geometrisation of Newtonian gravity. This geometrisation of nonrelativistic gravitation involves some nonrelativistic structures whose discrepancies in comparison with their relativistic peers are better understood when embedded inside specific classes of relativistic gravitational waves. The ambition of this Doctoral Thesis is twofold: In a first part, we discuss a generalisation of the class of gravitational waves allowing the embedding of nonrelativistic features, explore their geometric properties and the new nonrelativistic structures emerging from this study. In a second part, we advocate how the group-theoretically oriented approach of Cartan to differential geometry can shed new light on nonrelativistic structures, both in an intrinsic and ambient fashion.
209

Analyse mathématique de l’interaction d’un fluide non-visqueux avec des structures immergées / Mathematical analysis of the interaction of an inviscid fluid with immersed structures

Benyo, Krisztian 25 September 2018 (has links)
Cette thèse porte sur l’analyse mathématique de l’interaction d’un fluide non-visqueux avec des structures immergées. Plus précisément, elle est structurée autour de deux axes principaux. L’un d’eux est l’analyse asymptotique du mouvement d’une particule infinitésimale en milieu liquide. L’autre concerne l’interaction entre des vagues et une structure immergée. La première partie de la thèse repose sur l’analyse mathématique d’un système d’équations différentielles ordinaires non-linéaires d’ordre 2 modélisant le mouvement d’un solide infiniment petit dans un fluide incompressible en 2D. Les inconnues du modèle décrivent la position du solide, c’est-à-dire la position du centre de masse et son angle de rotation. Les équations proviennent de la deuxième loi de Newton avec un prototype de force de type Kutta-Joukowski. Plus précisément, nous étudions la dynamique de ce système lorsque l’inertie du solide tend vers 0. Les principaux outils utilisés sont des développements asymptotiques multiéchelles en temps. Pour la dynamique de la position du centre de masse, l’étude met en évidence des analogies avec le mouvement d’une particule chargée dans un champ électromagnétique et la théorie du centre-guide. En l’occurrence, le mouvement du centreguide est donné par une équation de point-vortex. La dynamique de l’angle est quant à elle donnée par une équation de pendule non-linéaire lentement modulée. Des régimes très différents se distinguent selon les données initiales. Pour de petites vitesses angulaires initiales la méthode de Poincaré-Lindstedt fait apparaitre une modulation des oscillations rapides, alors que pour de grandes vitesses angulaires initiales, un movement giratoire bien plus irrégulier est observé. C’est une conséquence particulière et assez spectaculaire de l’enchevêtrement des trajectoires homocliniques. La deuxième partie de la thèse porte sur le problème des vagues dans le cas où le domaine occupé par le fluide est à surface libre et avec un fond plat sur lequel un objet solide se translate horizontalement sous l’effet des forces de pression du fluide. Nous avons étudié deux systèmes asymptotiques qui décrivent le cas d’un fluide parfait incompressible en faible profondeur. Ceux-ci correspondent respectivement aux équations de Saint-Venant et de Boussinesq. Grâce à leur caractère bien-posé en temps long, les modèles traités permettent de prendre en compte certains effets de la mécanique du solide, comme les forces de friction, ainsi que les effets non-hydrostatiques. Notre analyse théorique a été complétée par des études numériques. Nous avons développé un schéma de différences finies d’ordre élevé et nous l’avons adapté à ce problème couplé afin de mettre en évidence les effets d’un solide (dont le mouvement est limité à des translations sur le fond) sur les vagues qui passent au dessus de lui. A la suite de ces travaux, nous avons souligné l’influence des forces de friction sur ce genre de systèmes couplés ainsi que sur le déferlement des vagues. Quant à l’amortissement dû aux effets hydrodynamiques, une vague ressemblance avec le phénomène de l’eau morte est mise en évidence. / This PhD thesis concerns the mathematical analysis of the interaction of an inviscid fluid with immersed structures. More precisely it revolves around two main problems: one of them is the asymptotic analysis of an infinitesimal immersed particle, the other one being the interaction of water waves with a submerged solid object. Concerning the first problem, we studied a system of second order non-linear ODEs, serving as a toy model for the motion of a rigid body immersed in a two-dimensional perfect fluid. The unknowns of the model describe the position of the object, that is the position of its center of mass and the angle of rotation; the equations arise from Newton’s second law with the consideration of a Kutta-Joukowski type lift force. It concerns the detailed analysis of the dynamic of this system when the solid inertia tends to 0. For the evolution of the position of the solid’s center of mass, the study highlights similarities with the motion of a charged particle in an electromagnetic field and the wellknown “guiding center approximation”; it turns out that the motion of the corresponding guiding center is given by a point-vortex equation. As for the angular equation, its evolution is given by a slowly-in-time modulated non-linear pendulum equation. Based on the initial values of the system one can distinguish qualitatively different regimes: for small angular velocities, by the Poincaré-Lindstedt method one observes a modulation in the fast time-scale oscillatory terms, for larger angular velocities however erratic rotational motion is observed, a consequence of Melnikov’s observations on the presence of a homoclinic tangle. About the other problem, the Cauchy problem for the water waves equations is considered in a fluid domain which has a free surface on the upper vertical limit and a flat bottom on which a solid object moves horizontally, its motion determined by the pressure forces exerted by the fluid. Two shallow water asymptotic regimes are detailed, well-posedness results are obtained for both the Saint-Venant and the Boussinesq system coupled with Newton’s equation characterizing the solid motion. Using the particular structure of the coupling terms one is able to go beyond the standard scale for the existence time of solutions to the Boussinesq system with a moving bottom. An extended numerical study has also been carried out for the latter system. A high order finite difference scheme is developed, extending the convergence ratio of previous, staggered grid based models. The discretized solid mechanics are adapted to represent important features of the original model, such as the dissipation due to the friction term. We observed qualitative differences for the transformation of a passing wave over a moving solid object as compared to an immobile one. The movement of the solid not only influences wave attenuation but it affects the shoaling process as well as the wave breaking. The importance of the coefficient of friction is also highlighted, influencing qualitative and quantitative properties of the coupled system. Furthermore, we showed the hydrodynamic damping effects of the waves on the solid motion, reminiscent of the so-called dead water phenomenon.
210

Um modelo de linha de transmissão bifásica desenvolvido diretamente no domínio das fases

Souza Junior, Newton Vieira de [UNESP] 26 August 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:32Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-08-26Bitstream added on 2014-06-13T19:28:03Z : No. of bitstreams: 1 souzajunior_nv_me_ilha.pdf: 788447 bytes, checksum: 8b9466a049a4bdb01e9292faf0c87bb0 (MD5) / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Sabe-se que uma linha de transmissão polifásica pode ser representada no domínio modal, por seus n modos de propagação que se comportam como sendo n linhas monofásicas independentes. Uma vez calculadas as correntes e tensões no domínio modal, as mesmas são convertidas para o domínio das fases por meio de uma matriz de transformação modal. A matriz de transformação modal é uma matriz cujos elementos são escritos em função dos parâmetros longitudinais e transversais da linha, variam em função da frequência e, geralmente, são obtidos por meio de métodos numéricos. Deste modo, diz-se que o modelo obtido é um modelo numérico de linha. Neste trabalho foi feita uma abordagem a respeito de um modelo analítico de linha de transmissão bifásica. O modelo proposto utiliza também a representação modal, mas a matriz de transformação será obtida analiticamente em função dos parâmetros da linha. Deste modo, foi possível obter, analiticamente, relações entre as correntes e tensões de fase da linha baseando-se unicamente nos parâmetros longitudinais e transversais da mesma / It is know that polyphase transmission line can be represented in the modal domain its n propagation modes that behave as n independent single-phase lines. Once calculated the currents and voltages in the modal domain, they are converted into the realm of the phases by means of a modal transformation matrix. The modal transformation matrix is a matrix whose elements re written against the parameters of longitudinal and cross the and they are usually obtained by numerical methods. In this paper an approach was made on an analytical model of two-phase transmission line. The proposed model uses the modal representation, but the transmission matrix obtained analytical in terms of line parameters. The development of the analytical model will be based on the modal model. Thus, initially will be obtained analytically, a modal matrix decomposition that allows to calculate analytically the eigenvalues of the product [Z][Y] line. Once obtained the eigenvalues it possible to abtain the modes of propagation and characteristic impedance of the line modes. Then, using the solutions algebraic differential equation of a single-phase line, we abtain the equations of currents and voltages of each of modes of spread of the row. In a final step, the equations of modal currents and voltages are converted into the realm of the phases, resulting in algebraic equations that can calculate the currents and phase voltages of the line in the frequency domain

Page generated in 0.0415 seconds