• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bifurcations of families of 1-tori in 4D symplectic maps

Onken, Franziska 14 August 2015 (has links) (PDF)
The dynamics of Hamiltonian systems (e.g. planetary motion, electron dynamics in nano-structures, molecular dynamics) can be investigated by symplectic maps. While a lot of work has been done for 2D maps, much less is known for higher dimensions. For a generic 4D map regular 2D-tori are organized around a skeleton of families of elliptic 1D-tori, which can be visualized by 3D phase-space slices. An analysis of the different bifurcations of the families of 1D-tori in phase space and in frequency space by computing the involved hyperbolic and elliptic 1D-tori is presented. Applying known results of normal form analysis, both the local and the global structure can be understood: Close to a bifurcation of a 1D-torus, the phase-space structures are surprisingly similar to bifurcations of periodic orbits in 2D maps. Far away the phase-space structures can be explained by remnants of broken resonant 2D-tori. / Die Dynamik Hamilton'scher Syteme (z.B. Planetenbewegung, Elektronenbewegung in Nanostrukturen, Moleküldynamik) kann mit Hilfe symplektischer Abbildungen untersucht werden. Bezüglich 2D Abbildungen wurde bereits umfassende Forschungsarbeit geleistet, doch für Systeme höherer Dimension ist noch vieles unverstanden. In einer generischen 4D Abbildung sind reguläre 2D-Tori um ein Skelett aus Familien von elliptischen 1D-Tori organisiert, was in 3D Phasenraumschnitten visualisiert werden kann. Durch die Berechnung der beteiligten hyperbolischen und elliptischen 1D-Tori werden die verschiedenen Bifurkationen der Familien von 1D-Tori im Phasenraum und im Frequenzraum analysiert. Die Anwendung bekannter Ergebnisse aus Normalformanalysen ermöglicht das Verständnis sowohl des lokalen, als auch des globalen Regimes. Nahe an der Bifurkation eines 1D-Torus sind die Phasenraumstrukturen denen von Bifurkationen periodischer Orbits in 2D Abbildungen überraschend ähnlich. Weit entfernt können die Phasenraumstrukturen als Überreste eines zerplatzten resonanten 2D-Torus erklärt werden.
2

Bifurcations of families of 1-tori in 4D symplectic maps

Onken, Franziska 14 August 2015 (has links)
The dynamics of Hamiltonian systems (e.g. planetary motion, electron dynamics in nano-structures, molecular dynamics) can be investigated by symplectic maps. While a lot of work has been done for 2D maps, much less is known for higher dimensions. For a generic 4D map regular 2D-tori are organized around a skeleton of families of elliptic 1D-tori, which can be visualized by 3D phase-space slices. An analysis of the different bifurcations of the families of 1D-tori in phase space and in frequency space by computing the involved hyperbolic and elliptic 1D-tori is presented. Applying known results of normal form analysis, both the local and the global structure can be understood: Close to a bifurcation of a 1D-torus, the phase-space structures are surprisingly similar to bifurcations of periodic orbits in 2D maps. Far away the phase-space structures can be explained by remnants of broken resonant 2D-tori. / Die Dynamik Hamilton'scher Syteme (z.B. Planetenbewegung, Elektronenbewegung in Nanostrukturen, Moleküldynamik) kann mit Hilfe symplektischer Abbildungen untersucht werden. Bezüglich 2D Abbildungen wurde bereits umfassende Forschungsarbeit geleistet, doch für Systeme höherer Dimension ist noch vieles unverstanden. In einer generischen 4D Abbildung sind reguläre 2D-Tori um ein Skelett aus Familien von elliptischen 1D-Tori organisiert, was in 3D Phasenraumschnitten visualisiert werden kann. Durch die Berechnung der beteiligten hyperbolischen und elliptischen 1D-Tori werden die verschiedenen Bifurkationen der Familien von 1D-Tori im Phasenraum und im Frequenzraum analysiert. Die Anwendung bekannter Ergebnisse aus Normalformanalysen ermöglicht das Verständnis sowohl des lokalen, als auch des globalen Regimes. Nahe an der Bifurkation eines 1D-Torus sind die Phasenraumstrukturen denen von Bifurkationen periodischer Orbits in 2D Abbildungen überraschend ähnlich. Weit entfernt können die Phasenraumstrukturen als Überreste eines zerplatzten resonanten 2D-Torus erklärt werden.
3

Elektronen-Energieverlustspektroskopie von quasi-eindimensionalen Kupraten und Vanadaten

Atzkern, Stefan 20 January 2002 (has links) (PDF)
This work presents a joint theoretical and experimental investigation of the electronic structure of quasi one-dimensional cuprates and vanadates. Electron energy-loss spectroscopy in transmission was employed to measure the momentum-dependent loss function of Li2CuO2, CuGeO3, V2O5 and NaV2O5. The comparison between the experimental data and the results from bandstructure as well as cluster calculations allows an explanation of the mobility and correlations of the electrons in these systems. The investigation of the electronic structure of the structurally related cuprates Li2CuO2 and CuGeO3 is exemplary for the study of the transition from a quasi zero-dimensional to a quasi one-dimensional system. In contrast to Li2CuO2 where the electron transitions are strongly localized, the excited states in CuGeO3 can be assigned to the electron hopping to the nearest-neighboured CuO4 plaquettes. The shift of spectral weight from the high energy to the low energy region with increasing coupling between the plaquettes, observed in edge-sharing CuO2 chains, is confirmed by the applied cluster modell. The momentum dependent loss functions of NaV2O5 deliver information about the mobility and correlations of electrons in a quarter-filled ladder system which determine the transition from the charge ordered state into the unordered state at 34 K. Thcontributions of the 3d electrons to the EELS spectra of NaV2O5 are filtered by comparing these spectra with the loss functions of the structurally related V2O5 (d0 configuration). For NaV2O5 the picture of linear chains of V-O-V rungs containing a single d electron in a molecular orbital-like state is confirmed. The comparison of the experimentally determined optical conductivities and those derived from the bandstructrure calculations yield a good agreement upon adoption of an on-site Coulomb interaction U = 2-3 eV. In contrast to the strongly anisotropic hopping within the ladder plane the intersite Coulomb interactions V are about the same size. These interactions are the driving force for the transition from an unordered state at room temperature into a zigzag ordered state observed at low temperatures. / In einer Kombination aus experimentellen und theoretischen Methoden wurden in dieser Arbeit die Elektronenstrukturen von quasi-eindimensionalen Kupraten und Vanadaten untersucht. Dazu wurde die impulsabhängige Verlustfunktion mit Hilfe der Elektronen-Energieverlustspektroskopie in Transmission an Einkristallen von Li2CuO2, CuGeO3, V2O5 und NaV2O5 gemessen. Der Vergleich der experimentellen Daten mit Ergebnissen aus Bandstruktur- und Cluster-Rechnungen erlaubte Rückschlüsse auf die Beweglichkeit und Korrelationen der Elektronen in diesen Systemen. Die Untersuchung der elektronischen Anregungen in den strukturell sehr ähnlichen Kupraten Li2CuO2 und CuGeO3 ist beispielhaft für das Studium des Übergangs von einem quasi-nulldimensionalen zu einem quasi-eindimensionalen System. In Li2CuO2 finden die elektronischen Übergänge vorwiegend lokal auf der CuO4-Plakette statt. Dagegen findet man in CuGeO3 angeregte Zustände, die als das Hüpfen der Elektronen auf benachbarte Plaketten interpretiert werden können. Das angewandte Cluster-Modell bestätigt für eine zunehmende Kopplung zwischen den Plaketten die in eckenverbundenen Kupratketten beobachtete Verschiebung des spektralen Gewichts vom hoch- zum niederenergetischen Bereich. Die Verlustfunktionen von NaV2O5 liefern wertvolle Informationen über die Freiheitsgrade und Korrelationen der Elektronen in einem viertelgefüllten Leitersystem, die wesentlich den Phasenübergang zwischen geordneter und ungeordneter Ladung bei 34 K bestimmen. Die Beiträge der 3d-Elektronen von NaV2O5 zu den EELS-Spektren konnten durch eine vergleichende Studie der Verlustfunktionen des strukturell verwandten V2O5, das keine d-Elektronen besitzt, separiert werden. Die Beschreibbarkeit der Elektronenstruktur in NaV2O5 durch ein effektives Modell einfach besetzter, molekülähnlicher V-O-V-Sprossen wird bestätigt. Die Coulomb-Wechselwirkung U kann in diesem Modell auf den Wertebereich zwischen 2 und 3 eV eingeschränkt werden. Im Gegensatz zu den stark anisotropen Hüpfwahrscheinlichkeiten in der Leiterebene sind die Coulomb-Wechselwirkungen V zwischen Elektronen auf benachbarten Vanadiumplätzen nahezu von gleicher Größe. Diese Wechselwirkungen sind die treibende Kraft für den Übergang von einem ungeordneten Zustand bei Raumtemperatur in einen zickzackgeordneten Grundzustand bei tiefen Temperaturen.
4

Elektronen-Energieverlustspektroskopie von quasi-eindimensionalen Kupraten und Vanadaten

Atzkern, Stefan 30 August 2001 (has links)
This work presents a joint theoretical and experimental investigation of the electronic structure of quasi one-dimensional cuprates and vanadates. Electron energy-loss spectroscopy in transmission was employed to measure the momentum-dependent loss function of Li2CuO2, CuGeO3, V2O5 and NaV2O5. The comparison between the experimental data and the results from bandstructure as well as cluster calculations allows an explanation of the mobility and correlations of the electrons in these systems. The investigation of the electronic structure of the structurally related cuprates Li2CuO2 and CuGeO3 is exemplary for the study of the transition from a quasi zero-dimensional to a quasi one-dimensional system. In contrast to Li2CuO2 where the electron transitions are strongly localized, the excited states in CuGeO3 can be assigned to the electron hopping to the nearest-neighboured CuO4 plaquettes. The shift of spectral weight from the high energy to the low energy region with increasing coupling between the plaquettes, observed in edge-sharing CuO2 chains, is confirmed by the applied cluster modell. The momentum dependent loss functions of NaV2O5 deliver information about the mobility and correlations of electrons in a quarter-filled ladder system which determine the transition from the charge ordered state into the unordered state at 34 K. Thcontributions of the 3d electrons to the EELS spectra of NaV2O5 are filtered by comparing these spectra with the loss functions of the structurally related V2O5 (d0 configuration). For NaV2O5 the picture of linear chains of V-O-V rungs containing a single d electron in a molecular orbital-like state is confirmed. The comparison of the experimentally determined optical conductivities and those derived from the bandstructrure calculations yield a good agreement upon adoption of an on-site Coulomb interaction U = 2-3 eV. In contrast to the strongly anisotropic hopping within the ladder plane the intersite Coulomb interactions V are about the same size. These interactions are the driving force for the transition from an unordered state at room temperature into a zigzag ordered state observed at low temperatures. / In einer Kombination aus experimentellen und theoretischen Methoden wurden in dieser Arbeit die Elektronenstrukturen von quasi-eindimensionalen Kupraten und Vanadaten untersucht. Dazu wurde die impulsabhängige Verlustfunktion mit Hilfe der Elektronen-Energieverlustspektroskopie in Transmission an Einkristallen von Li2CuO2, CuGeO3, V2O5 und NaV2O5 gemessen. Der Vergleich der experimentellen Daten mit Ergebnissen aus Bandstruktur- und Cluster-Rechnungen erlaubte Rückschlüsse auf die Beweglichkeit und Korrelationen der Elektronen in diesen Systemen. Die Untersuchung der elektronischen Anregungen in den strukturell sehr ähnlichen Kupraten Li2CuO2 und CuGeO3 ist beispielhaft für das Studium des Übergangs von einem quasi-nulldimensionalen zu einem quasi-eindimensionalen System. In Li2CuO2 finden die elektronischen Übergänge vorwiegend lokal auf der CuO4-Plakette statt. Dagegen findet man in CuGeO3 angeregte Zustände, die als das Hüpfen der Elektronen auf benachbarte Plaketten interpretiert werden können. Das angewandte Cluster-Modell bestätigt für eine zunehmende Kopplung zwischen den Plaketten die in eckenverbundenen Kupratketten beobachtete Verschiebung des spektralen Gewichts vom hoch- zum niederenergetischen Bereich. Die Verlustfunktionen von NaV2O5 liefern wertvolle Informationen über die Freiheitsgrade und Korrelationen der Elektronen in einem viertelgefüllten Leitersystem, die wesentlich den Phasenübergang zwischen geordneter und ungeordneter Ladung bei 34 K bestimmen. Die Beiträge der 3d-Elektronen von NaV2O5 zu den EELS-Spektren konnten durch eine vergleichende Studie der Verlustfunktionen des strukturell verwandten V2O5, das keine d-Elektronen besitzt, separiert werden. Die Beschreibbarkeit der Elektronenstruktur in NaV2O5 durch ein effektives Modell einfach besetzter, molekülähnlicher V-O-V-Sprossen wird bestätigt. Die Coulomb-Wechselwirkung U kann in diesem Modell auf den Wertebereich zwischen 2 und 3 eV eingeschränkt werden. Im Gegensatz zu den stark anisotropen Hüpfwahrscheinlichkeiten in der Leiterebene sind die Coulomb-Wechselwirkungen V zwischen Elektronen auf benachbarten Vanadiumplätzen nahezu von gleicher Größe. Diese Wechselwirkungen sind die treibende Kraft für den Übergang von einem ungeordneten Zustand bei Raumtemperatur in einen zickzackgeordneten Grundzustand bei tiefen Temperaturen.
5

Untersuchung der elektronischen Struktur quasi-zweidimensionaler Einlagerungsverbindungen

Danzenbächer, Steffen 13 November 2001 (has links) (PDF)
Thema der vorliegenden Arbeit ist die Untersuchung ausgewählter niederdimensionaler Schichtgittersysteme, wobei das Hauptinteresse in der Erforschung der elektronischen Struktur im Zusammenhang mit Interkalationsexperimenten liegt. Einkristalline Graphit-, TiSe2- und TaSe2-Proben wurden vor und nach der Interkalation mit winkelaufgelöster Photoemission, Fermi- und Isoenergieflächenmessungen und Elektronenbeugung (LEED) analysiert. Als Interkalationsmaterialien wurden U, Eu, Gd und Cs verwendet. Die experimentellen Daten wurden mit Ergebnissen von LDA-LCAO-Bandstrukturrechnungen und Simulationen im Rahmen eines Single-Impurity-Anderson-Modells verglichen. Neben dem Einfluß unterschiedlicher Valenzelektronen der interkalierten Atome auf den Einlagerungsprozeß werden Fragen zum Lokalisierungsverhalten von 4f- und 5f-Zuständen und zu den Veränderungen in der Dimensionalität der Verbindungen durch die Einlagerung diskutiert. Ein weiterer Schwerpunkt dieser Arbeit befaßt sich mit Untersuchungen zur temperaturabhängigen Ausbildung von Ladungsdichtewellen in 1T-TaSe2. / Subject of the present thesis are investigations of selected low-dimensional layered lattice systems, with the principal goal to study the electronic structure in relation to intercalation experiments. Single-crystalline graphite-, TiSe2 - and TaSe2- samples were analyzed by angle-resolved photoemission, Fermi- and isoenergy-surface measurements, and low energy electron diffraction experiments before and after intercalation. U, Eu, Gd, and Cs were used as materials for the intercalation process. The experimental results were compared with theoretical LDA-LCAO band-structure calculations and with simulations in the framework of a single-impurity Anderson model. In addition to the influence of different numbers of valence electrons from intercalated atoms, questions concerning the localization of 4f and 5f states and changes in the dimensionality of the compounds due to the intercalation process are discussed. Investigations of the temperature dependent formation of charge density waves in 1T-TaSe2 complete this work.
6

Phonon Spectroscopy and Low-Dimensional Electron Systems / The Effect of Acoustic Anisotropy and Carrier Confinement / Phononenspektroskopie und niederdimensionale Elektronensysteme

Lehmann, Dietmar 01 January 2006 (has links) (PDF)
The generation and propagation of pulses of nonequilibrium acoustic phonons and their interaction with semiconductor nanostructures are investigated. Such studies can give unique information about the properties of low-dimensional electron systems, but in order to interpret the experiments and to understand the underlying physics, a comparison with theoretical models is absolutely necessary. A central point of this work is therefore a universal theoretical approach allowing the simulation and the analysis of phonon spectroscopy measurements on low-dimensional semiconductor structures. The model takes into account the characteristic properties of the considered systems. These properties are the elastic anisotropy of the substrate material leading to focusing effects and highly anisotropic phonon propagation, the anisotropic nature of the different electron-phonon coupling mechanisms, which depend manifestly on phonon wavevector direction and polarization vector, and the sensitivity to the confinement parameters of the low-dimensional electron systems. We show that screening of the electron-phonon interaction can have a much stronger influence on the results of angle-resolved phonon spectroscopy than expected from transport measurements. Since we compare theoretical simulations with real experiments, the geometrical arrangement and the spatial extension of phonon source and detector are also included in the approach enabling a quantitative analysis of the data this way. To illustrate the influence of acoustic anisotropy and carrier confinement on the results of phonon spectroscopy in detail we analyse two different applications. In the first case the low-dimensional electron system acts as the phonon detector and the phonon induced drag current is measured. Our theoretical model enables us to calculate the electric current induced in low-dimensional electron systems by pulses of (ballistic) nonequilibrium phonons. The theoretical drag patterns reproduce the main features of the experimental images very well. The sensitivity of the results to variations of the confining potential of quasi-2D and quasi-1D electrons is demonstrated. This provides the opportunity to use phonon-drag imaging as unique experimental tool for determining the confinement lengths of low-dimensional electron systems. By comparing the experimental and theoretical images it is also possible to estimate the relative strength of the different electron-phonon coupling mechanisms.In the second application the low-dimensional electron system acts as the phonon pulse source and the angle and mode dependence of the acoustic phonon emission by hot 2D electrons is investigated. The results exhibit strong variations in the phonon signal as a function of the detector position and depend markedly on the coupling mechanism, the phonon polarization and the electron confinement width. We demonstrate that the ratio of the strengths of the emitted longitudinal (LA) and transverse (TA) acoustic phonon modes is predicted correctly only by a theoretical model that properly includes the effects of acoustic anisotropy on the electron-phonon matrix elements, the screening, and the form of the confining potential. A simple adoption of widely used theoretical assumptions, like the isotropic approximation for the phonons in the electron-phonon matrix elements or the use of simple variational envelope wavefunctions for the carrier confinement, can corrupt or even falsify theoretical predictions.We explain the `mystery of the missing longitudinal mode' in heat-pulse experiments with hot 2D electrons in GaAs/AlGaAs heterojunctions. We demonstrate that screening prevents a strong peak in the phonon emission of deformation potential coupled LA phonons in a direction nearly normal to the 2D electron system and that deformation potential coupled TA phonons give a significant contribution to the phonon signal in certain emission directions. / Die vorliegende Arbeit beschäftigt sich mit der Ausbreitung von akustischen Nichtgleichgewichtsphononen und deren Wechselwirkung mit Halbleiter-Nanostrukturen. Güte und Effizienz moderner Halbleiter-Bauelemente hängen wesentlich vom Verständnis der Wechselwirkung akustischer Phononen mit niederdimensionalen Elektronensystemen ab. Traditionelle Untersuchungsmethoden, wie die Messung der elektrischen Leitfähigkeit oder der Thermospannung, erlauben nur eingeschränkte Aussagen. Sie mitteln über die beteiligten Phononenmoden und eine Trennung der einzelnen Wechselwirkungsmechanismen ist nur näherungsweise möglich ist. Demgegenüber erlaubt die in der Arbeit diskutierte Methode der winkel- und zeitaufgelösten Phononen-Spektroskopie ein direktes Studium des Beitrags einzelner Phononenmoden, d.h. in Abhängigkeit von Wellenzahlvektor und Polarisation der Phononen. Im Mittelpunkt der Arbeit steht die Fragestellung, wie akustische Anisotropie und Ladungsträger-Confinement die Ergebnisse der winkel- und zeitaufgelösten Phononen-Spektroskopie beeinflussen und prägen. Dazu wird ein umfassendes theoretisches Modell zur Simulation von Phononen-Spektroskopie-Experimenten an niederdimensionalen Halbleitersystemen vorgestellt. Dieses erlaubt sowohl ein qualitatives Verständnis der ablaufenden physikalischen Prozesse als auch eine quantitative Analyse der Messergebnisse. Die Vorteile gegenüber anderen Modellen und Rechnungen liegen dabei in dem konsequenten Einbeziehen der akustischen Anisotropie, nicht nur für die Ausbreitung der Phononen, sondern auch für die Matrixelemente der Wechselwirkung, sowie eine saubere Behandlung des Confinements der Elektronen in den niederdimensionalen Systemen. Dabei werden die Grenzen weit verbreiteter Näherungsansätze für die Elektron-Phonon-Matrixelemente und das Elektronen-Confinement deutlich aufgezeigt. Für den quantitativen Vergleich mit realen Experimenten werden aber auch solche Größen, wie die endliche räumliche Ausdehnung von Phononenquelle und Detektor, die Streuung der Phononen an Verunreinigungen oder die Abschirmung der Elektron-Phonon-Kopplung durch die Elektron-Elektron-Wechselwirkung berücksichtigt.Im zweiten Teil der Arbeit wird der theoretische Apparat auf typische experimentelle Fragestellungen angewandt. Im Falle der Phonon-Drag-Experimente an GaAs/AlGaAs Heterostrukturen wird der durch akustische Nichtgleichgewichtsphononen in zwei- und eindimensionalen Elektronensystemen induzierte elektrische Strom (Phonon-Drag-Strom) als Funktion des Ortes der Phononenquelle bestimmt. Das in der Arbeit hergeleitete theoretische Modell kann die experimentellen Resultate für die Winkelabhängigkeit des Drag-Stromes sowohl für Messungen mit und ohne Magnetfeld qualitativ gut beschreiben. Außerdem wird der Einfluss unterschiedlicher Confinementmodelle und unterschiedlicher Wechselwirkungsmechanismen studiert. Dadurch ist es möglich, aus Phonon-Drag-Messungen Rückschlüsse auf die elektronischen und strukturellen Eigenschaften der niederdimensionalen Elektronensysteme zu ziehen (Fermivektor, effektive Masse, Elektron-Phonon-Kopplungskonstanten, Form des Confinementpotentials). Als weiteres Anwendungsbeispiel wird das Problem der Energierelaxation (aufgeheizter)zweidimensionaler Elektronensysteme in GaAs Heterostrukturen und Quantentrögen untersucht. Für Elektronentemperaturen unterhalb 50 K werden die Gesamtemissionsrate als Funktion der Temperatur und die winkelaufgelöste Emissionsrate (als Funktion der Detektorposition) berechnet. Für beide Größen wird erstmals eine gute Übereinstimmung zwischen Theorie und Experiment gefunden. Es zeigt sich, dass akustische Anisotropie und Abschirmungseffekte zu überraschenden neuen Ergebnissen führen können. Ein Beispiel dafür ist der unerwartet große Beitrag der mittels Deformationspotential-Wechselwirkung emittierten transversalen akustischen Phononen, der bei einer Emission der Phononen näherungsweise senkrecht zum zweidimensionalen System beobachtet werden kann.
7

Phonon Spectroscopy and Low-Dimensional Electron Systems: The Effect of Acoustic Anisotropy and Carrier Confinement

Lehmann, Dietmar 20 January 2006 (has links)
The generation and propagation of pulses of nonequilibrium acoustic phonons and their interaction with semiconductor nanostructures are investigated. Such studies can give unique information about the properties of low-dimensional electron systems, but in order to interpret the experiments and to understand the underlying physics, a comparison with theoretical models is absolutely necessary. A central point of this work is therefore a universal theoretical approach allowing the simulation and the analysis of phonon spectroscopy measurements on low-dimensional semiconductor structures. The model takes into account the characteristic properties of the considered systems. These properties are the elastic anisotropy of the substrate material leading to focusing effects and highly anisotropic phonon propagation, the anisotropic nature of the different electron-phonon coupling mechanisms, which depend manifestly on phonon wavevector direction and polarization vector, and the sensitivity to the confinement parameters of the low-dimensional electron systems. We show that screening of the electron-phonon interaction can have a much stronger influence on the results of angle-resolved phonon spectroscopy than expected from transport measurements. Since we compare theoretical simulations with real experiments, the geometrical arrangement and the spatial extension of phonon source and detector are also included in the approach enabling a quantitative analysis of the data this way. To illustrate the influence of acoustic anisotropy and carrier confinement on the results of phonon spectroscopy in detail we analyse two different applications. In the first case the low-dimensional electron system acts as the phonon detector and the phonon induced drag current is measured. Our theoretical model enables us to calculate the electric current induced in low-dimensional electron systems by pulses of (ballistic) nonequilibrium phonons. The theoretical drag patterns reproduce the main features of the experimental images very well. The sensitivity of the results to variations of the confining potential of quasi-2D and quasi-1D electrons is demonstrated. This provides the opportunity to use phonon-drag imaging as unique experimental tool for determining the confinement lengths of low-dimensional electron systems. By comparing the experimental and theoretical images it is also possible to estimate the relative strength of the different electron-phonon coupling mechanisms.In the second application the low-dimensional electron system acts as the phonon pulse source and the angle and mode dependence of the acoustic phonon emission by hot 2D electrons is investigated. The results exhibit strong variations in the phonon signal as a function of the detector position and depend markedly on the coupling mechanism, the phonon polarization and the electron confinement width. We demonstrate that the ratio of the strengths of the emitted longitudinal (LA) and transverse (TA) acoustic phonon modes is predicted correctly only by a theoretical model that properly includes the effects of acoustic anisotropy on the electron-phonon matrix elements, the screening, and the form of the confining potential. A simple adoption of widely used theoretical assumptions, like the isotropic approximation for the phonons in the electron-phonon matrix elements or the use of simple variational envelope wavefunctions for the carrier confinement, can corrupt or even falsify theoretical predictions.We explain the `mystery of the missing longitudinal mode' in heat-pulse experiments with hot 2D electrons in GaAs/AlGaAs heterojunctions. We demonstrate that screening prevents a strong peak in the phonon emission of deformation potential coupled LA phonons in a direction nearly normal to the 2D electron system and that deformation potential coupled TA phonons give a significant contribution to the phonon signal in certain emission directions. / Die vorliegende Arbeit beschäftigt sich mit der Ausbreitung von akustischen Nichtgleichgewichtsphononen und deren Wechselwirkung mit Halbleiter-Nanostrukturen. Güte und Effizienz moderner Halbleiter-Bauelemente hängen wesentlich vom Verständnis der Wechselwirkung akustischer Phononen mit niederdimensionalen Elektronensystemen ab. Traditionelle Untersuchungsmethoden, wie die Messung der elektrischen Leitfähigkeit oder der Thermospannung, erlauben nur eingeschränkte Aussagen. Sie mitteln über die beteiligten Phononenmoden und eine Trennung der einzelnen Wechselwirkungsmechanismen ist nur näherungsweise möglich ist. Demgegenüber erlaubt die in der Arbeit diskutierte Methode der winkel- und zeitaufgelösten Phononen-Spektroskopie ein direktes Studium des Beitrags einzelner Phononenmoden, d.h. in Abhängigkeit von Wellenzahlvektor und Polarisation der Phononen. Im Mittelpunkt der Arbeit steht die Fragestellung, wie akustische Anisotropie und Ladungsträger-Confinement die Ergebnisse der winkel- und zeitaufgelösten Phononen-Spektroskopie beeinflussen und prägen. Dazu wird ein umfassendes theoretisches Modell zur Simulation von Phononen-Spektroskopie-Experimenten an niederdimensionalen Halbleitersystemen vorgestellt. Dieses erlaubt sowohl ein qualitatives Verständnis der ablaufenden physikalischen Prozesse als auch eine quantitative Analyse der Messergebnisse. Die Vorteile gegenüber anderen Modellen und Rechnungen liegen dabei in dem konsequenten Einbeziehen der akustischen Anisotropie, nicht nur für die Ausbreitung der Phononen, sondern auch für die Matrixelemente der Wechselwirkung, sowie eine saubere Behandlung des Confinements der Elektronen in den niederdimensionalen Systemen. Dabei werden die Grenzen weit verbreiteter Näherungsansätze für die Elektron-Phonon-Matrixelemente und das Elektronen-Confinement deutlich aufgezeigt. Für den quantitativen Vergleich mit realen Experimenten werden aber auch solche Größen, wie die endliche räumliche Ausdehnung von Phononenquelle und Detektor, die Streuung der Phononen an Verunreinigungen oder die Abschirmung der Elektron-Phonon-Kopplung durch die Elektron-Elektron-Wechselwirkung berücksichtigt.Im zweiten Teil der Arbeit wird der theoretische Apparat auf typische experimentelle Fragestellungen angewandt. Im Falle der Phonon-Drag-Experimente an GaAs/AlGaAs Heterostrukturen wird der durch akustische Nichtgleichgewichtsphononen in zwei- und eindimensionalen Elektronensystemen induzierte elektrische Strom (Phonon-Drag-Strom) als Funktion des Ortes der Phononenquelle bestimmt. Das in der Arbeit hergeleitete theoretische Modell kann die experimentellen Resultate für die Winkelabhängigkeit des Drag-Stromes sowohl für Messungen mit und ohne Magnetfeld qualitativ gut beschreiben. Außerdem wird der Einfluss unterschiedlicher Confinementmodelle und unterschiedlicher Wechselwirkungsmechanismen studiert. Dadurch ist es möglich, aus Phonon-Drag-Messungen Rückschlüsse auf die elektronischen und strukturellen Eigenschaften der niederdimensionalen Elektronensysteme zu ziehen (Fermivektor, effektive Masse, Elektron-Phonon-Kopplungskonstanten, Form des Confinementpotentials). Als weiteres Anwendungsbeispiel wird das Problem der Energierelaxation (aufgeheizter)zweidimensionaler Elektronensysteme in GaAs Heterostrukturen und Quantentrögen untersucht. Für Elektronentemperaturen unterhalb 50 K werden die Gesamtemissionsrate als Funktion der Temperatur und die winkelaufgelöste Emissionsrate (als Funktion der Detektorposition) berechnet. Für beide Größen wird erstmals eine gute Übereinstimmung zwischen Theorie und Experiment gefunden. Es zeigt sich, dass akustische Anisotropie und Abschirmungseffekte zu überraschenden neuen Ergebnissen führen können. Ein Beispiel dafür ist der unerwartet große Beitrag der mittels Deformationspotential-Wechselwirkung emittierten transversalen akustischen Phononen, der bei einer Emission der Phononen näherungsweise senkrecht zum zweidimensionalen System beobachtet werden kann.
8

Untersuchung der elektronischen Struktur quasi-zweidimensionaler Einlagerungsverbindungen

Danzenbächer, Steffen 29 November 2001 (has links)
Thema der vorliegenden Arbeit ist die Untersuchung ausgewählter niederdimensionaler Schichtgittersysteme, wobei das Hauptinteresse in der Erforschung der elektronischen Struktur im Zusammenhang mit Interkalationsexperimenten liegt. Einkristalline Graphit-, TiSe2- und TaSe2-Proben wurden vor und nach der Interkalation mit winkelaufgelöster Photoemission, Fermi- und Isoenergieflächenmessungen und Elektronenbeugung (LEED) analysiert. Als Interkalationsmaterialien wurden U, Eu, Gd und Cs verwendet. Die experimentellen Daten wurden mit Ergebnissen von LDA-LCAO-Bandstrukturrechnungen und Simulationen im Rahmen eines Single-Impurity-Anderson-Modells verglichen. Neben dem Einfluß unterschiedlicher Valenzelektronen der interkalierten Atome auf den Einlagerungsprozeß werden Fragen zum Lokalisierungsverhalten von 4f- und 5f-Zuständen und zu den Veränderungen in der Dimensionalität der Verbindungen durch die Einlagerung diskutiert. Ein weiterer Schwerpunkt dieser Arbeit befaßt sich mit Untersuchungen zur temperaturabhängigen Ausbildung von Ladungsdichtewellen in 1T-TaSe2. / Subject of the present thesis are investigations of selected low-dimensional layered lattice systems, with the principal goal to study the electronic structure in relation to intercalation experiments. Single-crystalline graphite-, TiSe2 - and TaSe2- samples were analyzed by angle-resolved photoemission, Fermi- and isoenergy-surface measurements, and low energy electron diffraction experiments before and after intercalation. U, Eu, Gd, and Cs were used as materials for the intercalation process. The experimental results were compared with theoretical LDA-LCAO band-structure calculations and with simulations in the framework of a single-impurity Anderson model. In addition to the influence of different numbers of valence electrons from intercalated atoms, questions concerning the localization of 4f and 5f states and changes in the dimensionality of the compounds due to the intercalation process are discussed. Investigations of the temperature dependent formation of charge density waves in 1T-TaSe2 complete this work.

Page generated in 0.1165 seconds