• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 14
  • 4
  • 3
  • Tagged with
  • 40
  • 34
  • 12
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Ein quasi-zweidimensionales Gas ultrakalter Argonatome vor einer Oberfläche

Gauck, Harald. Unknown Date (has links) (PDF)
Universiẗat, Diss., 1999--Konstanz.
32

Evolution der strukturellen, elektronischen und magnetischen Eigenschaften von NaxV2O5 als Funktion der Natriumkonzentration

Obermeier, Günter. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Augsburg.
33

Surface and Interface Electronic Structure in Ferroelectric BaTiO\(_3\) / Die elektronische Struktur an der Grenz- und Oberfläche des Ferroelektrikums BaTiO\(_3\)

Lutz, Peter January 2018 (has links) (PDF)
Transition metal oxides (TMO) represent a highly interesting material class as they exhibit a variety of different emergent phenomena including multiferroicity and superconductivity. These effects result from a significant interplay of charge, spin and orbital degrees of freedom within the correlated d-electrons. Oxygen vacancies (OV) at the surface of certain d0 TMO release free charge carriers and prompt the formation of a two-dimensional electron gas (2DEG). Barium titanate (BaTiO3) is a prototypical and promising d0 TMO. It displays ferroelectricity at room temperature and features several structural phase transitions, from cubic over tetragonal (at room temperature) and orthorhombic to rhombohedral. The spontaneous electric polarization in BaTiO3 can be used to manipulate the physical properties of adjacent materials, e.g. in thin films. Although the macroscopic properties of BaTiO3 are studied in great detail, the microscopic electronic structure at the surface and interface of BaTiO3 is not sufficiently understood yet due to the complex interplay of correlation within the d states, oxygen vacancies at the surface, ferroelectricity in the bulk and the structural phase transitions in BaTiO3. This thesis investigates the electronic structure of different BaTiO3 systems by means of angle-resolved photoelectron spectroscopy (ARPES). The valence band of BaTiO3 single crystals is systematically characterized and compared to theoretical band structure calculations. A finite p-d hybridization of titanium and oxygen states was inferred at the high binding energy side of the valence band. In BaTiO3 thin films, the occurrence of spectral weight near the Fermi level could be linked to a certain amount of OV at the surface which effectively dopes the host system. By a systematic study of the metallic surface states as a function of temperature and partial oxygen pressure, a model was established which reflects the depletion and accumulation of charge carriers at the surface of BaTiO3. An instability at T ~ 285K assumes a volatile behavior of these surface states. The ferroelectricity in BaTiO3 allows a control of the electronic structure at the interface of BaTiO3-based heterostructures. Therefore, the interface electronic structure of Bi/BaTiO3 was studied with respect to the strongly spin-orit coupled states in Bi by also including a thickness dependent characterization. The ARPES results, indeed, confirm the presence of Rashba spin-split electronic states in the bulk band gap of the ferroelectric substrate. By varying the film thickness in Bi/BaTiO3, it was able to modify the energy position and the Fermi vector of the spin-split states. This observation is associated with the appearance of an interface state which was observed for very low film thickness. Both spectral findings suggest a significant coupling between the Bi films and BaTiO3. / Übergangsmetalloxide stellen eine hochinteressante Materialklasse dar, da sie eine Vielzahl neuartiger Phänomene, wie z.B. multiferroische Eigenschaften und Supraleitung, aufweisen. Diese Effekte sind die Folge eines komplexen Zusammen- spiels zwischen den Freiheitsgraden von Ladung, Spin und der orbitalen Komponente innerhalb eines korrelierten d-Elektronensystems. Sauerstoffstörstellen an der Ober- fläche von einigen dieser Systeme führen zu der Ausbildung freier Ladungsträger und der damit verbundenen Erzeugung eines 2-dimensionalen Elektronengases (2DEG). Das in dieser Arbeit untersuchte Bariumtitanat (BaTiO3) ist ein typisches und sehr vielversprechendes d0-Übergangsmetalloxid. Zum einen ist es ferroelektrisch bei Raumtemperatur und zum anderen weist es mehrere strukturelle Phasenübergänge auf, von kubisch über tetragonal (bei Raumtemperatur) und orthorhombisch zu rhom- boedrisch. Die spontane elektrische Polarisation in BaTiO3 kann dazu verwendet werden um physikalische Eigenschaften angrenzender Materialsysteme, z.B. von Dünnfilmen, zu beeinflussen. Obwohl vor allem die makroskopischen ferroelektrischen Eigenschaften von BaTiO3 bereits detailliert untersucht wurden, ist die mikrosko- pische elektronische Struktur in BaTiO3 und in BaTiO3-Grenzflächen noch nicht voll- ständig verstanden. Der Grund hierfür ist ein komplexes Wechselspiel zwischen elek- tronischen Korrelationseffekten, Sauerstoffstörstellen, Ferroelektrizität und struk- turellen Aspekten. Diese Dissertation befasst sich mit der elektronischen Struktur von verschiede- nen BaTiO3-Systemen, unter Verwendung der winkelaufgelösten Photoelektronen- spektroskopie (PES). Zum einen wurde das Valenzband von BaTiO3-Einkristallen systematisch untersucht und mit theoretischen Rechnungen verglichen. Dabei konnte eine endliche p-d-Hybridisierung von Titan- mit Sauerstoff-Zuständen im Valenzband festgestellt werden. Weiterhin wurde in BaTiO3-Dünnfilmen das Auftreten von spek- tralem Gewicht nahe des Ferminiveaus beobachtet. Diese metallischen Zustände sind auf eine erhöhte Dichte von Sauerstoffstörstellen an der Oberfläche zurückzuführen, wodurch das System effektiv dotiert wird. Die systematische Untersuchung der elek- tronischen Struktur in Abhängigkeit von Temperatur und Sauerstoff-Partialdruck wurde erfolgreich durch ein Modell beschrieben, das eine Instabilität der metallischen Zustände bei T ≈ 285K aufzeigt. Die ferroelektrische Eigenschaft von BaTiO3 kann in Heterostrukturen dazu verwendet werden, um die elektronische Struktur an der Grenzfläche zu kontrol- lieren. Zu diesem Zweck wurde in dieser Arbeit die mikroskopische elektronische Struktur an der Grenzfläche von Bi/BaTiO3 bedeckungsabhängig charakterisiert und im Hinblick auf die spin-polarisierten Zustände in Bi untersucht. So konnten Rashba-spinaufgespaltene elektronische Zustände in der Volumenbandlücke des fer- roelektrischen Substrates nachgewiesen werden. Eine Variation der Filmdicke in Bi/BaTiO3 führte zu einer energetischen Verschiebung und zu einer Änderung des Fermivektors der spinaufgespaltenen Zustände. Diese Beobachtung hängt stark mit dem Ausbilden eines Grenzflächenzustandes zusammen, der für sehr niedrige Be- deckungen beobachtet wurde. Beide Effekte weisen zudem auf eine Wechselwirkung zwischen den Bi-Filmen und BaTiO3
34

Elektrisches und magnetisches Schalten im nichtlinearen mesoskopischen Transport / Electric and magnetic switching in nonlinear mesoscopic transport

Hartmann, David January 2008 (has links) (PDF)
Im Rahmen dieser Arbeit wurden Transporteigenschaften von Nanostrukturen basierend auf modulationsdotierten GaAs/AlGaAs Heteroübergängen untersucht. Derartige Heterostrukturen zeichnen sich durch ein hochbewegliches zweidimensionales Elektronengas (2DEG) aus, das sich wenige 10 nm unterhalb der Probenoberfläche ausbildet. Mittels Elektronenstrahl-Lithographie und nasschemischer Ätztechnik wurde dieses Ausgangsmaterial strukturiert. Eindimensionale Leiter mit Kanalweiten von wenigen 10 nm wurden auf diese Weise hergestellt. Die Vorzüge derartiger Strukturen zeigen sich im ballistischen Elektronentransport über mehrere 10 µm und einer hohen Elektronenbeweglichkeit im Bereich von 10^6cm^2/Vs. Als nanoelektronische Basiselemente wurden eingehend eindimensionale Quantendrähte sowie y-förmig verzweigte Strukturen untersucht, deren Kanalleitwert über seitliche Gates kontrolliert werden kann. Dabei wurden die Transportmessungen überwiegend im stark nichtlinearen Transportregime bei Temperaturen zwischen 4,2 K und Raumtemperatur durchgeführt. Der Fokus dieser Arbeit lag insbesondere in der Untersuchung von Verstärkungseigenschaften und kapazitiven Kopplungen zwischen Nanodrähten, der Realisierung von komplexen Logikfunktionen wie Zähler- und Volladdiererstrukturen, dem Einsatz von Quantengates sowie der Analyse von rauschaktiviertem Schalten, stochastischen Resonanzphänomenen und Magnetfeldasymmetrien des nichtlinearen mesoskopischen Leitwertes. / This thesis reports on transport features of nanoelectronic devices based on modulation doped GaAs/AlGaAs heterostructures with a two dimensional electron gas (2DEG) a few 10 nm below the sample surface. Using electron beam lithography and wet chemical etching techniques low dimensional conductors were designed with a channel width of a few 10 nm. Such conductors enable ballistic transport up to 10 µm with high electron mobilities in the range of 10^6cm^2/Vs. One dimensional quantum wires as well as y-branched structures were used as nanoelectronic basic elements, which were controlled by lateral side-gates. Transport measurements were mainly performed in the strong nonlinear transport regime at temperatures between 4.2 K and room temperature. Experimental investigations were focused on gain, capacitive couplings between single nanowires, the realisation of complex logic functions like counter and fulladder devices, quantum-gate applications, noise activated switching, stochastic resonance phenomena and magnetic field asymmetries of the nonlinear mesoscopic transport.
35

Charge properties of cuprates: ground state and excitations

Waidacher, Christoph 03 March 2000 (has links) (PDF)
This thesis analyzes charge properties of (undoped) cuprate compounds from a theoretical point of view. The central question considered here is: How does the dimensionality of the CU-O sub-structure influence its charge degrees of freedom? The model used to describe the Cu-O sub-structure is the three- (or multi-) band Hubbard model. Analytical approaches are employed (ground-state formalism for strongly correlated systems, Mori-Zwanzig projection technique) as well as numerical simulations (Projector Quantum Monte Carlo, exact diagonalization). Several results are compared to experimental data. The following materials have been chosen as candidates to represent different Cu-O sub-structures: Bi2CuO4 (isolated CuO4 plaquettes), Li2CuO2 (chains of edge-sharing plaquettes), Sr2CuO3 (chains of corner-sharing plaquettes), and Sr2CuO2Cl2 (planes of plaquettes). Several results presented in this thesis are valid for other cuprates as well. Two different aspects of charge properties are analyzed: 1) Charge properties of the ground state 2) Charge excitations. (gekürzte Fassung)
36

Elektronen-Energieverlustspektroskopie von quasi-eindimensionalen Kupraten und Vanadaten

Atzkern, Stefan 20 January 2002 (has links) (PDF)
This work presents a joint theoretical and experimental investigation of the electronic structure of quasi one-dimensional cuprates and vanadates. Electron energy-loss spectroscopy in transmission was employed to measure the momentum-dependent loss function of Li2CuO2, CuGeO3, V2O5 and NaV2O5. The comparison between the experimental data and the results from bandstructure as well as cluster calculations allows an explanation of the mobility and correlations of the electrons in these systems. The investigation of the electronic structure of the structurally related cuprates Li2CuO2 and CuGeO3 is exemplary for the study of the transition from a quasi zero-dimensional to a quasi one-dimensional system. In contrast to Li2CuO2 where the electron transitions are strongly localized, the excited states in CuGeO3 can be assigned to the electron hopping to the nearest-neighboured CuO4 plaquettes. The shift of spectral weight from the high energy to the low energy region with increasing coupling between the plaquettes, observed in edge-sharing CuO2 chains, is confirmed by the applied cluster modell. The momentum dependent loss functions of NaV2O5 deliver information about the mobility and correlations of electrons in a quarter-filled ladder system which determine the transition from the charge ordered state into the unordered state at 34 K. Thcontributions of the 3d electrons to the EELS spectra of NaV2O5 are filtered by comparing these spectra with the loss functions of the structurally related V2O5 (d0 configuration). For NaV2O5 the picture of linear chains of V-O-V rungs containing a single d electron in a molecular orbital-like state is confirmed. The comparison of the experimentally determined optical conductivities and those derived from the bandstructrure calculations yield a good agreement upon adoption of an on-site Coulomb interaction U = 2-3 eV. In contrast to the strongly anisotropic hopping within the ladder plane the intersite Coulomb interactions V are about the same size. These interactions are the driving force for the transition from an unordered state at room temperature into a zigzag ordered state observed at low temperatures. / In einer Kombination aus experimentellen und theoretischen Methoden wurden in dieser Arbeit die Elektronenstrukturen von quasi-eindimensionalen Kupraten und Vanadaten untersucht. Dazu wurde die impulsabhängige Verlustfunktion mit Hilfe der Elektronen-Energieverlustspektroskopie in Transmission an Einkristallen von Li2CuO2, CuGeO3, V2O5 und NaV2O5 gemessen. Der Vergleich der experimentellen Daten mit Ergebnissen aus Bandstruktur- und Cluster-Rechnungen erlaubte Rückschlüsse auf die Beweglichkeit und Korrelationen der Elektronen in diesen Systemen. Die Untersuchung der elektronischen Anregungen in den strukturell sehr ähnlichen Kupraten Li2CuO2 und CuGeO3 ist beispielhaft für das Studium des Übergangs von einem quasi-nulldimensionalen zu einem quasi-eindimensionalen System. In Li2CuO2 finden die elektronischen Übergänge vorwiegend lokal auf der CuO4-Plakette statt. Dagegen findet man in CuGeO3 angeregte Zustände, die als das Hüpfen der Elektronen auf benachbarte Plaketten interpretiert werden können. Das angewandte Cluster-Modell bestätigt für eine zunehmende Kopplung zwischen den Plaketten die in eckenverbundenen Kupratketten beobachtete Verschiebung des spektralen Gewichts vom hoch- zum niederenergetischen Bereich. Die Verlustfunktionen von NaV2O5 liefern wertvolle Informationen über die Freiheitsgrade und Korrelationen der Elektronen in einem viertelgefüllten Leitersystem, die wesentlich den Phasenübergang zwischen geordneter und ungeordneter Ladung bei 34 K bestimmen. Die Beiträge der 3d-Elektronen von NaV2O5 zu den EELS-Spektren konnten durch eine vergleichende Studie der Verlustfunktionen des strukturell verwandten V2O5, das keine d-Elektronen besitzt, separiert werden. Die Beschreibbarkeit der Elektronenstruktur in NaV2O5 durch ein effektives Modell einfach besetzter, molekülähnlicher V-O-V-Sprossen wird bestätigt. Die Coulomb-Wechselwirkung U kann in diesem Modell auf den Wertebereich zwischen 2 und 3 eV eingeschränkt werden. Im Gegensatz zu den stark anisotropen Hüpfwahrscheinlichkeiten in der Leiterebene sind die Coulomb-Wechselwirkungen V zwischen Elektronen auf benachbarten Vanadiumplätzen nahezu von gleicher Größe. Diese Wechselwirkungen sind die treibende Kraft für den Übergang von einem ungeordneten Zustand bei Raumtemperatur in einen zickzackgeordneten Grundzustand bei tiefen Temperaturen.
37

Electronic structure and exchange integrals of low-dimensional cuprates

Rosner, Helge 19 September 1999 (has links) (PDF)
The physics of cuprates is strongly influenced by the dimension of the cooper-oxygen network in the considered crystals. Due to the rich manifoldness of different network geometries realized by nature, cuprates are ideal model systems for experimental and theoretical studies of low-dimensional, strongly correlated systems. The dimensionality of the considered model compounds varies between zero and three with a focus on one- and two-dimensional compounds. Starting from LDA band structure calculations, the relevant orbitals for the low-energy physics have been characterized together with a discussion of the chemical bonding in the investigated compounds. By means of a systematic approach for various compounds, the influence of particular structural components on the electronic structure could be concluded. For the undoped cuprate compounds, paramagnetic LDA band structure calculations yield a metallic groundstate instead of the experimentally observed insulating behavoir. The strong correlations were taken into account using Hubbard- or Heisenberg-like models for the investigation of the magnetic couplings in cuprates. The necessary parameters were obtained from tight-binding parameterizations of LDA band structures. Finallly, several ARPES as well as XAS measurements were interpreted. The present work shows, that the combination of experiment, LDA, and model calculations is a powerful tool for the investigation of the electronic structure of strongly correlated systems.
38

Electronic structure and exchange integrals of low-dimensional cuprates

Rosner, Helge 12 October 1999 (has links)
The physics of cuprates is strongly influenced by the dimension of the cooper-oxygen network in the considered crystals. Due to the rich manifoldness of different network geometries realized by nature, cuprates are ideal model systems for experimental and theoretical studies of low-dimensional, strongly correlated systems. The dimensionality of the considered model compounds varies between zero and three with a focus on one- and two-dimensional compounds. Starting from LDA band structure calculations, the relevant orbitals for the low-energy physics have been characterized together with a discussion of the chemical bonding in the investigated compounds. By means of a systematic approach for various compounds, the influence of particular structural components on the electronic structure could be concluded. For the undoped cuprate compounds, paramagnetic LDA band structure calculations yield a metallic groundstate instead of the experimentally observed insulating behavoir. The strong correlations were taken into account using Hubbard- or Heisenberg-like models for the investigation of the magnetic couplings in cuprates. The necessary parameters were obtained from tight-binding parameterizations of LDA band structures. Finallly, several ARPES as well as XAS measurements were interpreted. The present work shows, that the combination of experiment, LDA, and model calculations is a powerful tool for the investigation of the electronic structure of strongly correlated systems.
39

Charge properties of cuprates: ground state and excitations

Waidacher, Christoph 17 March 2000 (has links)
This thesis analyzes charge properties of (undoped) cuprate compounds from a theoretical point of view. The central question considered here is: How does the dimensionality of the CU-O sub-structure influence its charge degrees of freedom? The model used to describe the Cu-O sub-structure is the three- (or multi-) band Hubbard model. Analytical approaches are employed (ground-state formalism for strongly correlated systems, Mori-Zwanzig projection technique) as well as numerical simulations (Projector Quantum Monte Carlo, exact diagonalization). Several results are compared to experimental data. The following materials have been chosen as candidates to represent different Cu-O sub-structures: Bi2CuO4 (isolated CuO4 plaquettes), Li2CuO2 (chains of edge-sharing plaquettes), Sr2CuO3 (chains of corner-sharing plaquettes), and Sr2CuO2Cl2 (planes of plaquettes). Several results presented in this thesis are valid for other cuprates as well. Two different aspects of charge properties are analyzed: 1) Charge properties of the ground state 2) Charge excitations. (gekürzte Fassung)
40

Elektronen-Energieverlustspektroskopie von quasi-eindimensionalen Kupraten und Vanadaten

Atzkern, Stefan 30 August 2001 (has links)
This work presents a joint theoretical and experimental investigation of the electronic structure of quasi one-dimensional cuprates and vanadates. Electron energy-loss spectroscopy in transmission was employed to measure the momentum-dependent loss function of Li2CuO2, CuGeO3, V2O5 and NaV2O5. The comparison between the experimental data and the results from bandstructure as well as cluster calculations allows an explanation of the mobility and correlations of the electrons in these systems. The investigation of the electronic structure of the structurally related cuprates Li2CuO2 and CuGeO3 is exemplary for the study of the transition from a quasi zero-dimensional to a quasi one-dimensional system. In contrast to Li2CuO2 where the electron transitions are strongly localized, the excited states in CuGeO3 can be assigned to the electron hopping to the nearest-neighboured CuO4 plaquettes. The shift of spectral weight from the high energy to the low energy region with increasing coupling between the plaquettes, observed in edge-sharing CuO2 chains, is confirmed by the applied cluster modell. The momentum dependent loss functions of NaV2O5 deliver information about the mobility and correlations of electrons in a quarter-filled ladder system which determine the transition from the charge ordered state into the unordered state at 34 K. Thcontributions of the 3d electrons to the EELS spectra of NaV2O5 are filtered by comparing these spectra with the loss functions of the structurally related V2O5 (d0 configuration). For NaV2O5 the picture of linear chains of V-O-V rungs containing a single d electron in a molecular orbital-like state is confirmed. The comparison of the experimentally determined optical conductivities and those derived from the bandstructrure calculations yield a good agreement upon adoption of an on-site Coulomb interaction U = 2-3 eV. In contrast to the strongly anisotropic hopping within the ladder plane the intersite Coulomb interactions V are about the same size. These interactions are the driving force for the transition from an unordered state at room temperature into a zigzag ordered state observed at low temperatures. / In einer Kombination aus experimentellen und theoretischen Methoden wurden in dieser Arbeit die Elektronenstrukturen von quasi-eindimensionalen Kupraten und Vanadaten untersucht. Dazu wurde die impulsabhängige Verlustfunktion mit Hilfe der Elektronen-Energieverlustspektroskopie in Transmission an Einkristallen von Li2CuO2, CuGeO3, V2O5 und NaV2O5 gemessen. Der Vergleich der experimentellen Daten mit Ergebnissen aus Bandstruktur- und Cluster-Rechnungen erlaubte Rückschlüsse auf die Beweglichkeit und Korrelationen der Elektronen in diesen Systemen. Die Untersuchung der elektronischen Anregungen in den strukturell sehr ähnlichen Kupraten Li2CuO2 und CuGeO3 ist beispielhaft für das Studium des Übergangs von einem quasi-nulldimensionalen zu einem quasi-eindimensionalen System. In Li2CuO2 finden die elektronischen Übergänge vorwiegend lokal auf der CuO4-Plakette statt. Dagegen findet man in CuGeO3 angeregte Zustände, die als das Hüpfen der Elektronen auf benachbarte Plaketten interpretiert werden können. Das angewandte Cluster-Modell bestätigt für eine zunehmende Kopplung zwischen den Plaketten die in eckenverbundenen Kupratketten beobachtete Verschiebung des spektralen Gewichts vom hoch- zum niederenergetischen Bereich. Die Verlustfunktionen von NaV2O5 liefern wertvolle Informationen über die Freiheitsgrade und Korrelationen der Elektronen in einem viertelgefüllten Leitersystem, die wesentlich den Phasenübergang zwischen geordneter und ungeordneter Ladung bei 34 K bestimmen. Die Beiträge der 3d-Elektronen von NaV2O5 zu den EELS-Spektren konnten durch eine vergleichende Studie der Verlustfunktionen des strukturell verwandten V2O5, das keine d-Elektronen besitzt, separiert werden. Die Beschreibbarkeit der Elektronenstruktur in NaV2O5 durch ein effektives Modell einfach besetzter, molekülähnlicher V-O-V-Sprossen wird bestätigt. Die Coulomb-Wechselwirkung U kann in diesem Modell auf den Wertebereich zwischen 2 und 3 eV eingeschränkt werden. Im Gegensatz zu den stark anisotropen Hüpfwahrscheinlichkeiten in der Leiterebene sind die Coulomb-Wechselwirkungen V zwischen Elektronen auf benachbarten Vanadiumplätzen nahezu von gleicher Größe. Diese Wechselwirkungen sind die treibende Kraft für den Übergang von einem ungeordneten Zustand bei Raumtemperatur in einen zickzackgeordneten Grundzustand bei tiefen Temperaturen.

Page generated in 0.5434 seconds