• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 263
  • 128
  • 63
  • 44
  • 10
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 676
  • 109
  • 94
  • 80
  • 57
  • 56
  • 56
  • 50
  • 49
  • 49
  • 47
  • 44
  • 43
  • 42
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
541

Aqueous Dispersions of Graphene Oxide, Reduced Graphene Oxide and Functionalized Graphene Oxide

Konkena, Bharathi January 2014 (has links) (PDF)
Graphene sheets, one atom thick, two dimensional layers of carbon atoms, have gained enormous importance over the past few years due to their unique attributes - high electronic, thermal conductivities and exceptional mechanical strength. Chemical reduction of graphene oxide (GO) has been considered as a viable route for large scale production of graphene sheets. The reduced graphene oxide (r -GO) sheets although their conductivities are comparatively lower than that of graphene are nevertheless versatile material for applications in thin films and composites. An important consideration in the design of solution processing techniques for the preparation of processable graphene sheets is the dispersibility of GO and r -GO in different solvents, especially aqueous dispersibility. While GO is dispersible in water over a wide range of pH values, r -GO shows poor dispersibility and over a limited range of pH values. Graphene oxide, the oxidized form of graphene, are single atomic layers with lateral dimension that can extend to hundreds of nanometers. The sheets contain a sizable fraction of carbons that are sp3 hybridized and covalently bonded to oxygen in the form of epoxy, carbonyls as well as ionizable hydroxyl and carboxylic functional groups located on the rim of the sheets. The remaining carbons form isolated sp2 graphene like networks. On reduction the oxygen functionalities are removed and the sp2 network partially restored. This thesis focuses on the aqueous dispersibility of GO and r -GO, and describes a strategy to enhance the dispersibility of r -GO by cyclodextrin functionalization. Chapter 1 of the thesis provides a brief review of the synthetic procedures and structure of GO and r -GO while Chapter 2 describes the experimental methods and characterization techniques used in the thesis. The chemistry underlying the aqueous dispersibility of GO and r -GO at different values of pH have been investigated by zeta potential measurements, pH titrations and infrared spectroscopy (Chapter 3). These measurements show that r -GO sheets have ionizable groups with a single pKa value (8.0) while GO sheets have groups that are more acidic (pKa = 4.3), in addition to groups with pKa values of 6.6 and 9.0. Infrared spectroscopy has been used to follow the sequence of ionization events. In both GO and r -GO sheets, it is ionization of the carboxylic groups that is primarily responsible for the build up of charge, but on GO sheets, the presence of phenolic and hydroxyl groups in close proximity to the carboxylic groups lowers the pKa value by stabilizing the carboxylate anion, resulting in superior water dispersibility. Till recently GO was primarily considered only as an easily available precursor for chemical routes to r -GO but it has now been recognized as an interesting material in its own right. Two such attributes that have attracted wide spread attention are the in- trinsic and tunable fluorescence of GO as well as formation of liquid crystalline phases. Aqueous dispersions of GO exhibit strong pH dependent fluorescence in the visible region that originates, in part, from the oxygenated functionalities present. In Chapter 4, the spectral migration on nanosecond timescales of the pH dependent features in the fluores- cence spectra of GO is described. The changes in the steady state fluorescence spectra with pH have been correlated with the sequence of dissociation events that occur in GO dispersions at different values of pH described in Chapter 3, from time resolved emission spectra (TRES) constructed from the wavelength dependent fluorescence decay curves, it is shown that the migration is associated with excited state proton transfer. Both ‘intramolecular’ and ‘intermolecular’ transfers involving the quasimolecular oxygenated aromatic fragments are observed. Aqueous dispersions of GO constitute a distinctive class of 2D-anisotropic colloids with competing interactions - long range electrostatic repulsion, originating from ionized carboxylic groups located on the rim of the sheets and weak dispersive attractive interactions originating from the un-oxidized sp2 graphitic domains. In Chapter 5, it is shown that, colloidal dispersions of GO are intrinsically frustrated, exhibiting a range of arrested or metastable states, encompassing fluid, glass and gels that coexist with liquid crystalline order. These states can be accessed by varying the relative magnitudes of the repulsive and attractive forces by changing the ionic strength of the medium, by addition of salt and/or the concentration of the dispersion. At low salt concentrations, where long range electrostatic repulsions dominates, the formation of a repulsive Wigner glass is observed while at high salt concentrations, when attractive forces dominate, the formation of gels that exhibits a nematic to columnar liquid crystalline transition. These studies highlights how the chemical structure of GO - hydrophilic ionizable groups and hydrophobic graphitic domains coexisting on a single sheet - gives rise to a rich and complex phase diagram. The poor dispersibility of r -GO in aqueous media limits its use in practical applica- tions. To enhance the dispersibility, r -GO sheets have been functionalized by covalently linking -cyclodextrin ( -CD) cavities to the sheets via an amide linkage (Chapter 6). The functionalized -CD: rGO sheets, in contrast to r -GO, are dispersible over a wide range of pH values (2 - 13). Zeta potential measurements indicate that there is more than one factor responsible for the dispersibility. It is shown that planar aromatic molecules adsorbed on the r -GO sheet as well as nonplanar molecules included in the tethered -CD cavities have their fluorescence effectively quenched by the -CD: rGO sheets. The -CD: rGO sheets combine the hydrophobicity associated with r -GO along with the hydrophobicity of the cyclodextrin cavities in a single water dispersible material. Resonance Raman spectroscopy is a powerful analytical tool for detecting and identi- fying analytes, but the associated strong fluorescence background severely limits the use of the technique. In Chapter 7, it is shown that the cyclodextrin functionalized -CD: rGO sheets, described in Chapter 6, provides a versatile platform for resonance Raman detection. Planar aromatic and dye molecules that adsorb on the r -GO graphitic domains and non-planar molecules included within the tethered -CD cavities have their fluorescence effectively quenched. Using the water dispersible -CD: rGO sheets, it is possible to record the resonance Raman spectra of adsorbed and included organic chromophores directly in aqueous media without having to extract or deposit on a substrate. The Raman signal intensities show a linear dependence with the concentration of analyte present in water. This is significant, as it allows for the identification and estimation of organic analytes present in water by resonance Raman spectroscopy.
542

Solubilité aqueuse, coefficient de partage octanol-eau et pression de vapeur de contaminants alimentaires organiques de la famille des phthalates et alkylphénols : détermination expérimentale et modélisation / Aqueous solubility, octanol-water partition coefficient and vapor pressure of organic food packaging contaminants : experimental determination and modeling

Ishak, Hanane 18 September 2017 (has links)
Cette étude s’attache à la caractérisation physico-chimique des contaminants des emballages alimentaires organiques, précisément les phtalates et les alkylphénols, en terme de solubilité aqueuse, coefficient de partage octanol-eau et pression de vapeur. Cette caractérisation se situe dans le cadre des règlementations REACH concernant l’identification des substances chimiques toxiques. Les mesures expérimentales de solubilité aqueuse sont effectuées par la méthode dynamique de saturation dans un intervalle de température [298.15-328.15K], celles du coefficient de partage octanol-eau avec la méthode « shake-flask » à 298.15. Les mesures de pression de vapeur sont réalisées avec la méthode dynamique de saturation dans un intervalle de température [313.15-423.15K] et validées avec la méthode statique. A partir de ces mesures, les coefficients de partage air-eau et octanol-air sont déterminés. En addition des mesures expérimentales, une prédiction de ces propriétés est effectuée avec les modèles thermodynamiques : UNIFAC originale, UNIQUAC, NRTL et COSMO-sac-dsp. A l’issue de ces résultats, une évaluation quantitative et qualitative de chacun des modèles est effectuée. Cette évaluation facilitera l’optimisation des paramètres de chacun des modèles des deux familles dans le but de créer un modèle de prédiction du phénomène de migration de l’emballage vers l’aliment / The aim of this study is the physical-chemical characterization of the organic food packaging contaminants, particularly phthalates and alkyl phenols, in terms of aqueous solubility, octanol-water partition coefficient and vapor pressure. This characterization falls within the scope of REACH regulations for the identification of chemical substances. The aqueous solubility measurements are performed using the dynamic saturation method in a temperature range of [298.15 – 328.15K], those of octanol-water partition coefficient with the “shake-flask” method at 298.15K. The vapor pressure measurements are carried out with the “dynamic saturation method” in a temperature range between 313.15 and 423.15K, and validated with the static method. These measurements are used in the determination of air-water and octnol-air partition coefficients. Beside experimental measurements, these poperties are predicted using thermodynamic models: UNIFAC originale, UNIQUAC, NRTL and COSMO-sac-dsp. A qualitative and quantitative evaluation is performed for each model. This evaluation will facilitate the optimization of the models’ parameters concerning phthalates and alkyl phenols in order to generate a model for the contaminants migration process
543

Nouveau procédé de bioraffinage du tournesol plante entière par fractionnement thermo-mécano-chimique en extrudeur bi-vis : étude de l'extraction aqueuse des lipides et de la mise en forme du raffinat en agromatériaux par thermomoulage

Evon, Philippe 28 April 2008 (has links) (PDF)
L'extraction aqueuse des lipides de la graine de tournesol est étudiée en contacteur agité. La diffusion à l'intérieur des particules est le facteur limitant de l'échange de matière. Les protéines sont impliquées dans l'entraînement et la stabilisation des lipides par l'eau. Le fractionnement de la plante entière est également étudié avec l'eau en extrusion bi-vis. Un extrait et un raffinat sont obtenus séparément et en une seule étape continue. Des rendements d'extraction en huile de 55 % peuvent être obtenus sous forme d'émulsions huile/eau. Leur stabilité est assurée par la présence à l'interface de tensioactifs : les phospholipides et les protéines voire les pectines. Les extraits se composent aussi d'une phase hydrophile. Prépondérante, elle contient des composés hydrosolubles (protéines, pectines…). Riches en fibres, les raffinats présentent une teneur significative en protéines au comportement thermoplastique. Ils peuvent être transformés en agromatériaux par thermomoulage.
544

Valorisation de polyols en phase aqueuse sur catalyseurs bimétalliques supportés pour la production d'hydrocarbures / Polyols valorization in aqueous phase on bimetallic supported catalysts for hydrocarbons production

Messou, Davina Gnamien-Bla 09 December 2016 (has links)
La biomasse végétale (source de carbone renouvelable) peut être utilisée pour fabriquer des carburants liquides et produits de base pour la chimie. Ainsi depuis environ une dizaine d'années, se développe le procédé APHDO (Aqueous Phase HydroDeOxygenation) de transformation directe en phase aqueuse de polyols d'origine lignocellulosique (comme le sorbitol) en alcanes valorisables (C5-C6). Ce procédé repose sur une catalyse hétérogène bifonctionnelle métal/acide et fait intervenir des ruptures compétitives de liaisons C-C et C-O. L'objectif de la thèse est de mettre au point des systèmes bimétalliques supportés actifs et sélectifs pour la transformation du sorbitol en hexane. La modification d'un catalyseur de référence Pt/SiO2-Al2O3 par ajout de Re, Ir, Pd, Rh et Ru est effectuée par trois techniques de synthèse : co-imprégnation, imprégnations successives et dépôt par réduction catalytique. Les performances des catalyseurs bimétalliques sont comparées à isoconversion de sorbitol à celles des catalyseurs monométalliques parents pour un test catalytique réalisé en autoclave, avec une solution aqueuse à 10% massique de sorbitol, à 240°C et 60 bar de pression totale sous H2. Les produits se répartissent en phase gaz (CO2, alcanes en C1-C6) et liquide (composés oxygénés). Le sorbitane et l'isosorbide sont majoritairement formés en phase liquide, le dernier étant un intermédiaire clé de la transformation du sorbitol dans cette étude. Les catalyseurs Pt-Ru/SiO2-Al2O3 s'avèrent les plus sélectifs pour la réaction, celui préparé par imprégnations successives conduisant à une plus forte proportion de C6 en phase gaz comparé aux deux monométalliques Pt/SiO2-Al2O3 et Ru/SiO2-Al2O3. / Plant Biomass (renewable source of carbon) can be used to make liquid fuels and basic products of chemistry. So, from about ten years, the APHDO (Aqueous Phase HydroDeOxygenation) process is developed for the direct transformation in aqueous phase of polyols from Biomass (such as sorbitol) into renewable alkanes (C5-C6). This process involves a metal/acid bifunctional heterogeneous catalysis and competitive C-O and C-C bond cleavages. The aim of the PhD work is to develop supported bimetallic systems active and selective for the transformation of sorbitol into hexane. The modification of a reference Pt/SiO2-Al2O3 catalyst by addition of Re, Ir, Pd, Rh and Ru is carried out by three synthesis methods: co-impregnation, successive impregnations and deposit by catalytic reduction. The performances of bimetallic catalysts are compared at sorbitol isoconversion to those of the parent monometallic catalysts for a catalytic test carried out in an autoclave with an aqueous solution of sorbitol (10 wt%) at 240°C and 60 bar total pressure under dihydrogen. The products are distributed in the gas phase (CO2, C1-C6 alkanes) and in the liquid phase (oxygenated compounds). Sorbitan and isosorbide are predominantly formed in the liquid phase, the latter being a key intermediate of sorbitol transformation in this study. Pt-Ru/SiO2-Al2O3 catalysts are the most selective for the reaction, the one prepared by successive impregnations leads to a higher proportion of C6 in gaseous phase compared to both monometallic Pt/SiO2-Al2O3 and Ru/SiO2-Al2O3 catalysts.
545

Molecular Simulation Study of Electric Double Layer Capacitor With Aqueous Electrolytes

Verma, Kaushal January 2017 (has links) (PDF)
Electric double layer capacitors (EDLCs) are an important class of electrical energy storage devices which store energy in the form of electric double layers. The charging mechanism is highly reversible physical adsorption of ions into the porous electrodes, which empower these devices to show a remarkable power performance (15kW/kg) and greater life expectancy (> 1 million cycles). However, they store a small amount of energy (5Wh/kg) when compared with batteries. Optimization of the performance of EDLCs based on porous activated carbons is highly challenging due to complex charging process prevailing in the Nano pores of electrodes. Molecular simulations provide information at the molecular scale which in turn can be used to develop insights that can explain experimental results and design improved EDLCs. The conventional approach to simulate EDLCs places both the electrodes and electrolyte region in a single simulation box. With present day computers, however, this one-box method limits us to system sizes of the order of nanometres whereas the size of a typical EDLC is at least of the order of micrometres. To overcome this system size limitation, a Gibbs-ensemble based Monte Carlo (MC) method was recently developed, where the electrodes are simulated in a separate simulation boxes and each box is subjected to periodic boundary conditions in all the three directions. This allows us to eliminate the electrode-electrolyte interface. The simulation of the bulk electrolyte is avoided through the use of the grand canonical ensemble. The electrode atoms in the electrode are maintained at an equal constant electric potential likewise the case in a pure conductor with the use of the constant voltage ensemble. In this thesis, the Gibbs-ensemble based MC simulations are performed for an EDLC consisting of porous electrodes. The simulations are performed with aqueous electrolytes of type MX and DX2 (where M=Na+, K+; D=Ca+2; X=Cl , F ) for a wide variety of operating conditions. The water is modelled as a continuum background with a dielectric constant value of 30. The electrodes are silicon carbide-derived carbon, whose microstructure generated from reverse MC technique, is used in the simulations. The results from these simulations help us understand the charge storage mechanism, the effect of size and valence of ions on the performance of nonporous carbon based EDLCs when the hydration effects are indignant. The thesis first demonstrates the presence of finite size effects in the simulations performed with the one-box method for KCl electrolyte. The capacitance (ratio of the charged stored on the positive electrode to the voltage applied) values obtained for KCl electrolyte with the one-box method are significantly higher than the corresponding values obtained from the Gibbs-ensemble method. This shows the presence of finite size effects in the one-box method simulations and justices the use of the Gibbs-ensemble based method in our simulations. The fundamental characteristics of aqueous electrolytes in the EDLC are analyzed with the simulation results for KCl electrolyte. In agreement with experiments and modern mean held theory, the capacitance monotonically decreases with voltage (bell-shaped curve) due to overcrowding of ions near the electrode surface. The charge storage mechanism in both the electrodes is mainly a combination of countering (ions oppositely charged to that of the electrode) adsorption and ion exchange, where coins (ions identically charged to that of the electrode) are replaced with countering. However, at higher voltages, the mechanism is predominantly counter ion adsorption because of the scarcity of coins in the electrodes. The mechanism is preferentially more ion exchange for the positive electrode because of its relatively bulky countering, Cl . The shifting of mechanism towards counter ion adsorption at higher voltages and preferential ion exchange process for the positive electrode are in qualitative agreement with the recent experimental results. The constraint of equal electric potential on all the electrode atoms of the amorphous electrode in the simulations resulted in a non-uniform average charge distribution on the electrodes. It shows that the Gibbs-ensemble simulation approach can account for the polarization effects which arises due to a complex topology of the electrodes. In agreement with earlier experiments and simulation studies, the local structure analyses of the electrodes shows that the highly conned ions store charge more efficiently. On the application of voltage difference between the electrodes, the electrolyte ions move towards higher degree of con ned regions of the electrodes indicating the charging process involves local rearrangement and rescuing of electrolyte ions. The thesis also discusses the effect of temperature and bulk concentration on the performance of EDLCs. The Gibbs-ensemble based simulations are performed for the EDLC with varying temperature and bulk concentration for the KCl electrolyte independently. In agreement with the Guo -Chapman theory and experiments, the capacitance decreases with the temperature and increases with the bulk concentration. This is because the concentration of countering in the electrodes decreases with an increase in the temperature but increases with an increase in the bulk concentration. Lastly, the effect of ion size and valency on the performance of EDLCs is analyzed. The capacitance monotonically decreases with voltage (bell-shaped curve) for all the electrolytes, except for NaF, where a maximum is observed at a non-zero finite voltage (camel-shaped curve). The capacitances of NaCl and NaF are greater than that for KCl and KF, respectively. This is because the smaller Na+ ions have more accessibility to narrow con ned regions, where the charge storage efficiency is high. As expected, the capacitance for CaCl2 and CaF2 are highest among their monovalent counterparts, NaCl and KCl; NaF and KF, respectively. This is attributed to the relatively smaller double layer thickness of the bivalent Ca+2 ions. Interestingly, at higher voltages, the capacitance for the bivalent electrolytes approaches the capacitance for the monovalent electrolytes because the concentration of Ca+2 ions in the negative electrode increases sluggishly with voltage due to a strong electrostatic repulsion between Ca+2 ions.
546

Parâmetros fitoquímicos, genotóxicos e de crescimento de alecrim em diferentes salinidades e doses de nitrogênio / Phytochemical, genotoxic and growth parameters of rosemary in different salinities and nitrogen doses

Frescura, Viviane Dal Souto 14 November 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Rosmarinus officinalis L., popularly known as rosemary, is a medicinal and aromatic species used in the cosmetics and food processing industries, with interest for the herbal industry. This study aimed to determine the biomass production and volatile oil during the growth of rosemary plants cultivated under different salinity (nutritious solution concentrations) and different nitrogen (N) concentrations, and to evaluate the effect of the extracts and volatile oil of the species on the Allium cepa L. cell cycle and genetic material, as well as knowing the phenolic compounds present in the extracts and the chemical composition of volatile oil. The work was divided into two stages: the first aimed evaluating the production of biomass and volatile oil during the rosemary plants growth cultivated under different nutritious solution concentrations, as well as the effect of oil and extracts on the A. cepa cell cycle and genetic material, besides determining the chemical composition of the oil and the phenolic compounds present in the extracts; the second stage aimed evaluating biomass and volatile oil production during the rosemary plants growth cultivated under different N concentrations, as well as the effect of oil and the extracts on the A. cepa cell cycle and genetic material, and determining the chemical composition of the oil and the phenolic compounds present in the extracts as well. The rosemary leaves were collected and analyzed for dry matter, volatile oil extraction and preparation of aqueous extracts by infusion at 5, 20, and 50 g.L-1 concentrations for plants cultivated under different salinities, and 5 and 50 g.L-1 concentrations for plants cultivated at different N concentrations. The volatile oil was analyzed by Gas Chromatography to knowledge of its constitution, and the aqueous extracts were analyzed by High Performance Liquid Chromatography for phenolic compounds determination. The oil and extracts effect was evaluated on the A. cepa cell cycle and genetic material. The completely randomized design was used, and the biomass production and volatile oil yield data were subjected to analysis of variance with polynomial regression and the remaining data were compared by the Scott-Knott test at the 5% level of probability. The nutritious solution concentration, the N concentration and the plant age interfere into the biomass production, and consequently into the rosemary volatile oil yield. However, do not alter the oil and extracts effect on the A. cepa cell cycle and genetic material. The volatile oil and extracts inhibited cell division in all concentrations, and this effect is dose-dependent. In addition, extracts did not show genotoxicity, in spite of oil concentration of 10% being genotoxic. The majority compounds camphor, 1.8 cineole, α-pinene, β-myrcene and verbenone, beyond of β-pinene compounds only controlling the oil crop plants in the concentrations of 8:05, 13:05 and 15:55 mmol.L-1. The phenolic compounds present in the extracts were rosmarinic acid, chlorogenic acid, caffeic acid, carnosic acid, kaempferol, quercetin and rutin. / Rosmarinus officinalis L., popularmente conhecida como alecrim, é uma espécie medicinal e aromática utilizada na indústria de cosméticos e agroalimentícia, com interesse para a indústria de fitoterápicos. Objetivou-se determinar a produção de fitomassa, óleo volátil, composição química do óleo e compostos fenólicos presentes nos extratos, durante o crescimento de plantas de alecrim cultivadas com diferentes salinidades (concentrações de solução nutritiva) e diferentes doses de nitrogênio (N), além de avaliar o efeito dos extratos e óleo volátil da espécie sobre o ciclo celular e material genético de Allium cepa L.. Foram coletadas as folhas de alecrim para determinação da fitomassa, extração de óleo volátil e preparo de extratos aquosos por infusão. Avaliou-se a produção de fitomassa e óleo volátil durante o crescimento de plantas de alecrim cultivadas com diferentes salinidades (1.0, 2.0, 3.0, 4.0 e 5.0 dS.m-1) e em diferentes doses de N (5.55, 8.05, 10.55, 13.05 e 15.55 mmol.L-1), além de avaliar o efeito do óleo (3 e 10%) e dos extratos (nas concentrações de 5, 20, e 50 g L-1 para as plantas cultivadas em diferentes salinidades e nas concentrações de 5 e 50 g L-1 a partir das plantas cultivadas em diferentes doses de N), sobre o ciclo celular e material genético de A. cepa. O óleo volátil foi submetido à análise por Cromatografia Gasosa para conhecimento de sua constituição, e os extratos aquosos à análise por Cromatografia Líquida de Alta Eficiência para a determinação dos compostos fenólicos. As plantas cultivadas em diferentes salinidades foram coletadas aos 100 e aos 160 dias após o plantio (DAP) e as cultivadas em diferentes doses de N aos 90, 180, 270 e 365 DAP. Foi utilizado o delineamento experimental inteiramente casualizado, os dados de produção de fitomassa e rendimento de óleo volátil foram submetidos à análise de variância com regressão polinomial e os demais dados foram comparados pelo teste Scott-Knott (p<0,05). A salinidade, a dose de N e a idade fisiológica da planta interferem na produção de fitomassa e consequentemente no rendimento de óleo volátil de alecrim e não alteram o efeito do óleo e dos extratos sobre o ciclo celular e material genético de A. cepa. O óleo volátil e os extratos inibiram a divisão celular em todas as concentrações estudadas e esse efeito é dose dependente, mas sem apresentar genotoxicidade, exceto na concentração de 10% quando o óleo foi genotóxico. Os compostos majoritários do óleo foram cânfora, 1.8 cienol, α-pineno, β-myrceno e verbenona, além dos compostos β-pineno majoritários apenas no óleo de plantas cultivadas nas concentrações de 8.05, 13.05 e 15.55 mmol.L-1. Os compostos fenólicos presentes nos extratos foram ácido rosmarínico, ácido clorogênico, ácido cafeico, ácido carnósico, canferol, quercetina e rutina.
547

Etude des processus de corrosion du nickel par dynamique moléculaire avec un potentiel réactif ReaxFF / Study of nickel corrosion processes by molecular dynamics with reactive potential ReaxFF

Assowe Dabar, Omar 04 December 2012 (has links)
La compréhension des processus de corrosion est un élément majeur de l’étude de la durabilité des matériaux en environnements agressifs. C’est dans ce cadre que ce travail de thèse se situe. L’objectif est d’apporter un nouvel éclairage sur les processus de corrosion du nickel en milieu aqueux en utilisant la simulation par dynamique moléculaire avec un champ de force réactif « ReaxFF ».Nous nous sommes particulièrement intéressé aux réactions entres les molécules d’eau et les surfaces monocristallines de nickel. Ces résultats ont montré aucune dissociation de l’eau sur les surfaces. Par ailleurs, une adsorption des molécules en bicouche a été constatée, traduisant la polarisation mutuelle entre l’eau et le nickel, ce que confirme le calcul de charges. La surface du métal s’est chargée positivement alors que la première couche d’eau se charge négativement, reproduisant la double couche électrique. L’introduction d’un champ électrique extérieur a conditionné la réaction entre l’eau et le nickel. La présence du champ a permis d’observer les différentes étapes d’oxydation du nickel : l’adsorption des molécules d’eau puis leurs dissociations en OH- et H3O+. La dissolution des atomes de nickel à la surface puis la pénétration de O dans Ni. Ces processus d’oxydation sont répétés au cours du temps pour obtenir le film d’oxyde. L’épaisseur du film d’oxyde dépend linéairement de l’intensité du champ électrique. La cinétique d’oxydation est améliorée pour la surface (110) par rapport aux autres surfaces étudiées. L’étude de l’oxydation d’un bicristal de nickel a montré des processus identique. Par ailleurs, nous avons constaté que les premiers germes d’oxydation se sont produits au niveau des joints de grains et se sont propagés sur toute la surface. L’ensemble de ces résultats est en bon accord avec les observations expérimentales / Understanding of corrosion processes is important for the study of the durability of materials in aggressive environment. The objective is to provide new lights on the corrosion processes of nickel in aqueous condition with molecular dynamics simulation using a reactive force field "ReaxFF."We are particularly interested by the reaction between water molecules and mono-crystalline surfaces of nickel. No dissociation of water was showed on the surfaces. Moreover, an adsorption of molecules in bilayer was observed, reflecting the mutual polarization between water and nickel, which confirms the charge calculation. The metal surface is positively charged and the first water layer charged negatively, reproducing the electrical double layer. The introduction of an external electric field has conditioned the reaction between water and nickel. The presence of the field permits to observe the different stages of nickel corrosion: adsorption of water molecules, their dissociation into OH- and H3O+, the dissolution of the nickel atoms on the surface and the penetration of O in Ni. These oxidation processes are repeated over time to obtain the oxide film. The thickness of the oxide film depends linearly on the electric field intensity. The oxidation kinetics is improved to the surface (110) compared with other orientations studied. All these results are in good agreement with experimental observations
548

Metals in Dynamic Chemistry: Selection &amp; Catalysis

Timmer, Brian J.J. January 2017 (has links)
In the adaptation to the oxidative environment on earth, metals played a crucial role for the evolution of life. The presence of metals also allowed access to advanced functions due to their unique coordination sphere and reactivity. This thesis focused on exploiting these unique properties for further development of the field of dynamic chemistry – a field in which adaptation plays a central role as well. The first part of the thesis aimed to create a better understanding of multivalent effects in carbohydrate-lectin interactions. By reversible ligand coordination to zinc ions one of the nanoplatforms, the Borromean rings, could be selectively obtained. After carbohydrate functionalization the binding events were monitored by quartz crystal microbalance technology and compared to glycosylated fullerenes and dodecaamide cages. Overall, this investigation indicated that statistical and polyelectrolyte effects play a considerable role in the observed multivalent effects. The second part of the thesis aimed to design and synthesize a new catalyst for application in aqueous olefin metathesis. This afforded a ruthenium based catalyst that was applied in the self- and cross-metathesis of highly functionalized substrates, such as carbohydrates. In addition, it was shown that addition of a small amount of acetic acid prevented undesired double bond isomerization. The last part of the thesis aimed to explore new methods to discover transition metal catalysts. Dynamic exchange of directing groups generated a pool of potential substrates for C-H activation. Combining this pool of substrates with a pool of potential catalysts resulted in amplification of a reactive substrate/metal combination. By iterative deconvolution in combination with mass spectrometry, this “intermediate” could be identified from the mixture, proving applicability of this alternative approach to catalyst discovery. / <p>QC 20170809</p>
549

Development of aqueous ion-intercalation battery systems for high power and bulk energy storage

Key, Julian D.V. January 2013 (has links)
Philosophiae Doctor - PhD / Aqueous ion-intercalation batteries (AIB’s) have the potential to provide both high power for hybrid-electric transport, and low cost bulk energy storage for electric grid supply. However, a major setback to AIB development is the instability of suitable ionintercalation anode material in aqueous electrolyte. To counter this problem, the use of activated carbon (AC) (a supercapacitor anode) paired against the low cost ionintercalation cathode spinel LiMn2O4 (LMO) provides a stable alternative. This thesis comprises two novel areas of investigation concerning: (1) the development of the AC/LMO cell for high power applications, and (2) the introduction of PbSO4 as a high capacity alternative anode material paired against LMO for low cost bulk energy storage. The study on AC/LMO explores the electrode combination’s practical specific energy and power capability at high P/E (power to energy ratio) of 50:1 suitable for hybrid electric vehicle batteries. To study the relationship between electrode material loading density, active material performance, and current collector mass contribution, a specially designed cell was constructed for galvanic cycling of different thicknesses of electrode. Between a loading density range of 25 – 100 mg, ~50 mg of total active material between two 1 cm2 current collectors produced the highest 50:1 P/E ratio values of 4 Wh/kg and 200 W/kg, constituting a 4-fold reduction of the active material values of thin films at 50:1 P/E. The cycling potentials of the individual electrodes revealed that doublings of electrode film loading density increased the LMO electrode’s polarization and voltage drop to similar levels as doublings in applied current density. However, by increasing the charging voltage from 1.8 V to 2.2 V, 6 Wh/kg and 300 W/kg was obtainable with minimal loss of energy efficiency. Finally a large-format cell of a calculated 3 Ah capacity at 50:1 P/E was constructed and tested. The cell produced ~60% of the anticipated capacity due to a suspected high level of resistance in the electrode contact points. The overall conclusion to the study was that AC/LMO holds promise for high power applications, and that future use of higher rate capability forms of LMO offers a promising avenue for further research. v The second part of this thesis presents the development of a novel cell chemistry, PbSO4/LMO, that has yet to be reported elsewhere in existing literature. The cell uses aqueous pH 7, 1 M, Li2SO4 electrolyte, and forms an electrode coupling where the PbSO4 anode charge/discharge is analogous to that in Pb-acid batteries. The average discharge voltage of the cell was 1.4 V and formed a flat charge/discharge plateau. The use of a low cost carbon coating method to encapsulate PbSO4 microparticles had a marked improvement on cell performance, and compared to uncoated PbSO4 improved both rate capability and specific capacity of the material. The active materials of the carbon-coated PbSO4/LMO cell produced a specific energy 51.1 Wh/kg, which, if a 65% yield is possible for a practical cell format, equals 38.4 Wh/kg, which is 15 Wh/kg higher than AC/LMO bulk storage cells at 23 Wh/kg, but lower than Pb-acid batteries at ~25-50 Wh/kg. Interestingly, the specific capacity of PbSO4 was 76 mAh/g compared to 100 mAh/g in Pb-acid cells. The predicted cost of the cell, providing a 65% value of the active material specific energy for a practical cell can be realized, is on par with Pb-acid battery technology and, importantly, uses 2.3 × less Pb/kWh. The cycling stability achieved thus far is promising, but will require testing over comparable cycle life periods to commercial batteries, which could be anywhere between 5 – 15 years.
550

Electrochemical Investigations Of Sub-Micron Size And Porous Positive Electrode Materials Of Li-Ion Batteries

Sinha, Nupur Nikkan 05 1900 (has links) (PDF)
A Comprehensive review of literature on electrode materials for lithium-ion batteries is provided in Chapter 1 of the thesis. Chapter 2 deals with the studies on porous, sub-micrometer size LiNi1/3Co1/3O2 as a positive electrode material for Li-ion cells synthesized by inverse microemulsion route and polymer template route. The electromechanical characterization studies show that carbon-coated LiNi1/3Co1/3O2 samples exhibit improved rate capability and cycling performance. Furthermore, it is anticipated that porous LiNi1/3Co1/3O2 could be useful for high rates of charge-discharge cycling. Synthesis of sub-micrometer size, porous particles of LiNi1/3Co1/3O2 using a tri-block copolymer as a soft template is carried out. LiNi1/3Co1/3O2 sample prepared at 900ºC exhibits a high rate capability and stable capacity retention of cycling. The electrochemical performance of LiNi1/3Co1/3O2 prepared in the absence of the polymer template is inferior to that of the sample prepared in the presence of the polymer template. Chapter 4 involves the synthesis of sub-micrometer size particles of LiMn2O4 in quaternary microemulsion medium. The electrochemical characterization studies provide discharge capacity values of about 100 mAh g-1 at C/5 rate and there is moderate decrease in capacity by increasing the rate of charge-discharge cycling. Studies also include charge-discharge cycling as well as ac impedance studies in temperature range from -10 to 40º C. Chapter 5 reports the synthesis of nano-plate LiFePO4 by polyol route starting from two reactants, namely, FePO42H2O and LiOH.2H2O. The electrodes fabricated out of nano-plate of LiFePO4 exhibit a high electrochemical activity. A stable capacity of about 155 mAh g-1 is measured at 0.2 C over 50 charge-discharge cycles. Mesoporous LiFePO4/C composite with two sizes of pores is prepared for the first time via solution-based polymer template technique. The precursor of LiFePO4/C composite is heated at different temperatures in the range from 600 to 800ºC to study the effect of crystalllinity, porosity and morphology on the electrochemical performance. The compound obtained at 700ºC exhibits a high rate capability and stable capacity retention on cycling with pore size distribution around 4 and 46nm. In Chapter 6, the electrochemical characterization of LiMn2O4 in an aqueous solution of 5 M LiNO3 is reported. A typical cell employing LiMn2O4 as the positive electrode and V2O5 as the negative electrode was assembled and the characterized by charge-discharge cycling in 5 M LiNO3 aqueous electrolyte. Furthermore, it is shown that Li+-ion in LiMn2O4 can be replaced by other divalent ions resulting in the formation of MMn2O4 (M = Ca, Mg, Ba and Sr) in aqueous M(NO3)2 electrolytes by subjecting LiMn2O4 electrodes to cyclic voltametry. Cyclic voltammetry and chronopotentiometry studies suggest that MMn2O4 can undergo reversible redox reaction by intercalation/deintercalation of M2+-ions in aqueous M(NO3)2 electrolytes.

Page generated in 0.0731 seconds