• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 32
  • 18
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 235
  • 152
  • 53
  • 49
  • 48
  • 25
  • 24
  • 24
  • 24
  • 23
  • 20
  • 19
  • 19
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Propriétés génériques des mesures invariantes en courbure négative / Generic properties of invariant measures in negative curvature

Belarif, Kamel 29 August 2017 (has links)
Dans ce mémoire, nous étudions les propriétés génériques satisfaites par des mesures invariantes par l’action du flot géodésique {∅t}t∈R sur des variétés M non compactes de courbure sectionnelle négative pincée. Nous nous intéressons dans un premier temps au cas des variétés hyperboliques. L’existence d’une représentation symbolique du flot géodésique pour les variétés hyperboliques convexes cocompactes ainsi que la propriété de mélange topologique du flot géodésique nous permet de démontrer que l’ensemble des mesures de probabilité ∅t−invariantes, faiblement mélangeantes est résiduel dans l’ensemble M1 des mesures de probabilité invariantes par l’action du flot géodésique. Si nous supposons que la courbure de M est variable, nous ignorons si le flot géodésique est topologiquement mélangeant. Ainsi les méthodes utilisées précédemment ne peuvent plus s’adapter à notre situation. Afin de généraliser le résultat précédent, nous faisons appel à des outils issus du formalisme thermodynamique développés récemment par F.Paulin, M.Pollicott et B.Schapira. Plus précisément, la démonstration de notre résultat repose sur la possibilité de construire, pour toute orbite périodique Op une suite de mesures de Gibbs mélangeantes, finies, convergeant faiblement vers la mesure de Dirac supportée sur Op. Nous montrons que ce fait est possible lorsque M est géométriquement finie. Dans le cas contraire, il n’existe pas d’exemple de variétés géométriquement infinies possédant une mesure de Gibbs finie. Cependant, nous conjecturons que ce fait est possible pour toute variété M. Afin de supporter cette affirmation, nous démontrons dans la dernière partie de ce manuscrit un critère de finitude pour les mesures de Gibbs. / In this work, we study the properties satisfied by the probability measures invariant by the geodesic flow {∅t}t∈R on non compact manifolds M with pinched negative sectional curvature. First, we restrict our study to hyperbolic manifolds. In this case, ∅t is topologically mixing in restriction to its non-wandering set. Moreover, if M is convex cocompact, there exists a symbolic representation of the geodesic flow which allows us to prove that the set of ∅t-invariant, weakly-mixing probability measures is a dense Gδ−set in the set M1 of probability measures invariant by the geodesic flow. The question of the topological mixing of the geodesic flow is still open when the curvature of M is non constant. So the methods used on hyperbolic manifolds do not apply on manifolds with variable curvature. To generalize the previous result, we use thermodynamics tools developed recently by F.Paulin, M.Pollicott et B.Schapira. More precisely, the proof of our result relies on our capacity of constructing, for all periodic orbits Op a sequence of mixing and finite Gibbs measures converging to the Dirac measure supported on Op. We will show that such a construction is possible when M is geometrically finite. If it is not, there are no examples of geometrically infinite manifolds with a finite Gibbs measure. We conjecture that it is always possible to construct a finite Gibbs measure on a pinched negatively curved manifold. To support this conjecture, we prove a finiteness criterion for Gibbs measures.
182

Estados de equilíbrio / Equilibrium states.

Silva, Márcio Henrique Batista da 08 December 2005 (has links)
We prove existence of Equilibrium states, including measures of maximal entropy, for a robust (open) class of expanding and non-uniformly expanding maps on compact and connect manifolds / Fundação de Amparo a Pesquisa do Estado de Alagoas / Provaremos a existência de Estados de equilíbrio, incluindo medidas de entropia máxima, para uma classe robusta (aberta) de transformações expansoras e nãouniformemente expansoras sobre uma variedade compacta e conexa.
183

Estimador do Tipo N?cleo para Densidades Limites de Cadeias de Markov com Espa?o de Estados Geral

Soares, Maria Aparecida da Silva 25 February 2010 (has links)
Made available in DSpace on 2015-03-03T15:22:33Z (GMT). No. of bitstreams: 1 MariaASS_DISSERT.pdf: 1267496 bytes, checksum: aabe75eb05da3e6d622acfd6e208c192 (MD5) Previous issue date: 2010-02-25 / In this work we studied the consistency for a class of kernel estimates of f f (.) in the Markov chains with general state space E C Rd case. This study is divided into two parts: In the first one f (.) is a stationary density of the chain, and in the second one f (x) v (dx) is the limit distribution of a geometrically ergodic chain / Neste trabalho vamos estudamos a consist?ncia para uma classe de estimadores n?cleo de f (.) em cadeias de Markov com espa?o de estados geral E c Rd. Este estudo ? dividido em duas partes: Na primeira f (.) ? uma densidade estacion?ria de uma cadeia, e no segundo f (x) v (dx) ? a distribui??o limite de uma cadeia geometricamente erg?dica
184

Teorema Ergódico Multiplicativo de Oseledets

Silva, Eberson Ferreira da 08 April 2013 (has links)
Made available in DSpace on 2015-05-15T11:46:14Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1157760 bytes, checksum: 92f98240dbe489848ba24b01c26729de (MD5) Previous issue date: 2013-04-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this paper, we study a version of the Multiplicative Ergodic Theorem of Oseledets for diffeomorphisms of class C1 on a compact Riemannian manifold of finite dimension which ensures the existence of Lyapunov exponents at almost every point with respect to a Borel probability measure invariant by diffeomorphism. In fact, we demonstrate the theorem in a more general version, namely in the context of linear cocycles. The theorem of Oseledets for diffeomorphisms will be established as a special case of this version. / Neste trabalho, estudamos uma versão do Teorema Ergódico Multiplicativo de Oseledets para difeomorfismos de classe C1 sobre uma variedade Riemanniana compacta de dimensãofinita que garante a existência dos expoentes de Lyapunov em quase todo ponto com relação a uma medida de probabilidade boreliana invariante pelo difeomorfismo. Na verdade, demonstraremos o teorema em uma versão mais geral, a saber, no contexto de cociclos lineares. O teorema de Oseledets para difeomorfismos será estabelecido como um caso particular desta versão.
185

Théorie ergodique des actions de groupes et algèbres de von Neumann / Groups, Actions and von Neumann algebras

Carderi, Alessandro 23 June 2015 (has links)
Dans cette thèse, on s'intéresse à la théorie mesurée des groupes, à l'entropie sofique et aux algèbres d'opérateurs ; plus précisément, on étudie les actions des groupes sur des espaces de probabilités, des propriétés fondamentales de leur entropie sofique (pour des groupes discrets), leurs groupes pleins (pour des groupes Polonais), et les algèbres de von Neumann et leurs sous-algèbres moyennables (pour des groupes à caractère hyperbolique et des réseaux de groupes de Lie). Cette thèse est constituée de trois parties.Dans une première partie j'étudie l'entropie sofique des actions profinies. L'entropie sofique est un invariant des actions mesurées des groupes sofiques défini par L. Bowen qui généralise la notion d'entropie introduite par Kolmogorov. La définition d'entropie sofique nécessite de fixer une approximation sofique du groupe. Nous montrons que l'entropie sofique des actions profinies est effectivement dépendante de l'approximation sofique choisie dans le cas des groupes libres et certains réseaux de groupes de Lie.La deuxième partie est un travail en collaboration avec François Le Maître. Elle est constituée d'un article prépublié dans lequel nous généralisons la notion de groupe plein aux actions préservant une mesure de probabilité des groupes polonais, et en particulier, des groupes localement compacts. On définit une topologie polonaise sur ces groupes pleins et on étudie leurs propriétés topologiques fondamentales, notamment leur rang topologique et la densité des éléments apériodiques.La troisième partie est un travail en collaboration avec Rémi Boutonnet. Elle est constituée de deux articles prépubliés dans lesquels nous considérons la question de la maximalité de la sous-algèbre de von Neumann d'un sous-groupe moyennable maximal, dans celle du groupe ambiant. Nous résolvons la question dans le cas des groupes à caractère hyperbolique en utilisant les techniques de Sorin Popa. Puis, nous introduisons un critère dynamique à la Furstenberg, permettant de résoudre la question pour des sous-groupes moyennables de réseaux des groupes de Lie en rang supérieur. / This dissertation is about measured group theory, sofic entropy and operator algebras. More precisely, we will study actions of groups on probability spaces, some fundamental properties of their sofic entropy (for countable groups), their full groups (for Polish groups) and the amenable subalgebras of von Neumann algebras associated with hyperbolic groups and lattices of Lie groups. This dissertation is composed of three parts.The first part is devoted to the study of sofic entropy of profinite actions. Sofic entropy is an invariant for actions of sofic groups defined by L. Bowen that generalize Kolmogorov's entropy. The definition of sofic entropy makes use of a fixed sofic approximation of the group. We will show that the sofic entropy of profinite actions does depend on the chosen sofic approximation for free groups and some lattices of Lie groups. The second part is based on a joint work with François Le Maître. The content of this part is based on a prepublication in which we generalize the notion of full group to probability measure preserving actions of Polish groups, and in particular, of locally compact groups. We define a Polish topology on these full groups and we study their basic topological properties, such as the topological rank and the density of aperiodic elements. The third part is based on a joint work with Rémi Boutonnet. The content of this part is based on two prepublications in which we try to understand when the von Neumann algebra of a maximal amenable subgroup of a countable group is itself maximal amenable. We solve the question for hyperbolic and relatively hyperbolic groups using techniques due to Popa. With different techniques, we will then present a dynamical criterion which allow us to answer the question for some amenable subgroups of lattices of Lie groups of higher rank.
186

Propriété (T) de Kazhdan relative à l'espace / Kazhdan's property (T) relative to the space

Bouljihad, Mohamed 28 June 2016 (has links)
L'objet de cette thèse est l'étude de la propriété (T) relative à l'espace (ou rigidité au sens de Popa) d'actions de groupes dénombrables sur des espaces de probabilité standards préservant une mesure de probabilité (pmp). Ces dix dernières années, la propriété (T) relative à l'espace a permis de résoudre de nombreux problèmes dans le cadre de la théorie ergodique des actions de groupes et des algèbres de von Neumann. Néanmoins, certains aspects théoriques de cette notion restent largement mystérieux. Une question encore ouverte consiste à déterminer les groupes admettant une action libre ergodique pmp ayant la propriété (T) relative à l'espace. Nous montrons dans cette thèse que les groupes de type fini non-moyennables linéaires sur un corps de caractéristique nulle admettent une action ergodique pmp possédant cette propriété. Si le groupe est à radical résoluble trivial, l'action que nous construisons est aussi libre.Pour ce faire, nous commençons par étudier la stabilité de la propriété (T) relative à l'espace vis-à-vis de différentes constructions d'actions pmp  : produit, restriction, co-induction, induction. Puis, nous donnons une caractérisation de la propriété (T) relative à l'espace dans le cas d'actions pmp sur un espace homogène G/Λ de groupe de Lie p-adique d'un sous-groupe dénombrable Γ du groupe des transformations affines de G stabilisant le réseau Λ. L'action de Γ sur G/Λ a la propriété (T) relative à l'espace si et seulement s'il n'existe pas de mesure de probabilité Γ-invariante sur l'espace projectif de l'algèbre de Lie de G. Par ailleurs, nous étudions le cas d'actions de groupes par automorphismes sur des nilvariétés définies par des graphes finis. / The purpose of this thesis is to study the Kazhdan's property (T) relative to the space (also called rigidity in the sense of Popa) of probability measure preserving actions of countable groups on standard probability measure spaces (p.m.p.).This last decade, some problems in the theory of ergodic theory and von Neumann algebras were solved using the property (T) relative to the space. However, the theoretical aspects of its study remain largely mysterious. An open question asks which groups admit a p.m.p. free and ergodic action which has the property (T) relative to the space. We show in this dissertation that every finitely-generated non-amenable linear groups over a field of characteristic zero admits a p.m.p. ergodic action which has this property. If this group has trivial solvable radical, we prove that these actions can be chosen to be free.In order to obtain these results, we start by investigating natural questions concerning the stability of the property (T) relative to the space through standard constructions : products, restriction, co-induction, induction. Then, we give a criterion for the property (T) relative to the space to hold in the case of p.m.p. actions on homogeneous space G/ Λ of a p-adic Lie group for a countable subgroup Γ of affine transformations of G stabilizing the lattice Λ. The action of Γ on G/Λ has the property (T) relative to the space if and only if the induced action of Γ on the projective space of the Lie algebra of G admits no invariant probability measure.Moreover, we study the case of actions by automorphims on nilvarietes defined by finite graphs.
187

Étude de la dynamique symbolique des développements en base négative, système de Lyndon / Study of the symbolic dynamics of expansions in negative base, Lyndon system

Nguema Ndong, Florent 26 September 2013 (has links)
Ce travail est consacré à l'étude de systèmes de Lyndon (pour la relation d'ordre alterné) et àla dynamique symbolique des développements des nombres en base négative. Pour un réel ß > 1fixé, nous construisons un code préfixe récurrent positif permettant non seulement de montrerl'intrinsèque ergodicité du —ß-shift mais aussi de déterminer la fonction zêta qui lui est associée.Nous étudions les conditions pour lesquelles le —ß-shift possède la spécification.En outre, lorsque ß est strictement plus petit que le nombre d'or, le langage du —ß-shift admet desmots intransitifs. Cet état de fait engendre dans le système dynamique des cylindres négligeablespar rapport à la mesure d'entropie maximale. Ces cylindres génèrent sur Iß=[—ß/(ß+1),1/(ß+1)[ depetits intervalles de mesure nulle (la mesure considérée étant l'unique mesure ergodique sur Iß).Nous en faisons une étude détaillée, en particulier nous déterminons ces intervalles "trous".Par ailleurs, nous étudions l'unicité des systèmes de numération des entiers relatifs en base négative et nous montrons qu'à chaque mot de Lyndon correspond un tel système. / This work deals with the study of the Lyndon systems (for alternate order) and the symbolicdynamics of the expansions of real numbers in negative base. For a given real ß > 1, we showthe intrinsic ergodicity of the —ß-shift using a positive recurring prefix code and we determine theassociated zeta function. We study the conditions for which the —ß-shift admits the specificationproperty.Moreover, when ß is less than golden ratio, the language of the —ß-shift contains intransitive words.These words lead to some cylinders negligible with respect to the measure with maximal entropy.In the interval Iß=[—ß/(ß+1),1/(ß+1)[, these cylinders correspond to some gaps: small interval withmeasure zero (with respect to the unique ergodic measure on Iß). We make a detailed study ofthese gaps.Otherwise, we study the uniqueness of the number systems of integers in negative base and weshow that to each Lyndon word corresponds to a such system.
188

Lineárně kvadratické optimální řízení ve spojitém čase / Continuous Time Linear Quadratic Optimal Control

Vostal, Ondřej January 2017 (has links)
We partially solve the adaptive ergodic stochastic optimal control problem where the driving process is a fractional Brownian motion with Hurst parameter H > 1/2. A formula is provided for an optimal feedback control given a strongly consistent estimator of the parameters of the controlled system is avail- able. There are some special conditions imposed on the estimator which means the results are not completely general. They apply, for example, in the case where the estimator is independent of the driving fractional Brownian motion. In the course of the thesis, construction of stochastic integrals of suitable determinis- tic functions with respect to fractional Brownian motion with Hurst parameter H > 1/2 over the unbounded positive real half-line is presented as well. 1
189

Systèmes dynamiques substitutifs et renormalisation / Substitutive dynamical systems and renormalisation

Emme, Jordan 23 November 2016 (has links)
Ce travail de thèse porte sur l'étude de systèmes dynamiques substitutifs. Les substitutions ont historiquement été introduites pour décrire la suite des sommes des chiffres modulo 2 en base 2 . On étudie des propriétés de la suite somme des chiffres et notamment les propriétés des densités asymptotiques d'ensembles liés aux autocorrélations de fonctions arithmétiques définies par les fonctions somme des chiffres. On démontre notamment un théorème de la limite centrale pour ces densités. On étudie également les propriétés de régularité de la fonction de pression dans le cadre du formalisme thermodynamique, introduit par Bowen, Ruelle et Sinaï, pour une famille de potentiels définis en terme de distance à l'attracteur de la substitution de k-bonacci. On démontre la convergence des itérés de l'opérateur de renormalisation introduit par Baraviera, Leplaideur et Lopes vers un point fixe pour cette même famille de potentiels. Enfin, on étudie des propriétés de régularité de certaines mesures spectrales associées à des pavages auto-similaires en s'appuyant sur des travaux de Bufetov et Solomyak portant sur les déviations des sommes ergodiques dans le cas de l'action par translation de \R^d sur les pavages auto-similaires de R^d. On démontre qu'après renormalisation, ces mesures spectrales se comportent comme des mesures de Radon autour de zér / In the present work we study substitutive dynamical systems. Historically, substitutions have been introduced in order to describe the sequence of the sum-of-digits mod 2 in base 2. We study some properties of densities of sets defined by sum-of-digits functions, sets which are linked with autocorrelations of some arithmétic functions. We prove that these densities are usually normally distributed. We also study the regularity of the pressure function in the framework of the thermodynamics formalism, introduced by Bowen, Ruelle and Sinaï, for a family of potentials defined in terms of distance to the attractor of the k-bonacci substitution. We also show that the iterations of the renormalisation operator defined by Baraviera, Leplaideur and Lopes converges towards a fixed point of this operator. Finally we study the regularity of some spectral measures associated to self-similar tilings using mostly works from Bufetov and Solomyak on the deviations of ergodic sums for the action of translations by vectors in R^d on self-similar tilings of R^d. We prove that, afeter renormalisation, these spectral measures behave like Radon measures around
190

The Role Of Potential Theory In Complex Dynamics

Bandyopadhyay, Choiti 05 1900 (has links) (PDF)
Potential theory is the name given to the broad field of analysis encompassing such topics as harmonic and subharmonic functions, the Dirichlet problem, Green’s functions, potentials and capacity. In this text, our main goal will be to gain a deeper understanding towards complex dynamics, the study of dynamical systems defined by the iteration of analytic functions, using the tools and techniques of potential theory. We will restrict ourselves to holomorphic polynomials in C. At first, we will discuss briefly about harmonic and subharmonic functions. In course, potential theory will repay its debt to complex analysis in the form of some beautiful applications regarding the Julia sets (defined in Chapter 8) of a certain family of polynomials, or a single one. We will be able to provide an explicit formula for computing the capacity of a Julia set, which in some sense, gives us a finer measurement of the set. In turn, this provides us with a sharp estimate for the diameter of the Julia set. Further if we pick any point w from the Julia set, then the inverse images q−n(w) span the whole Julia set. In fact, the point-mass measures with support at the discrete set consisting of roots of the polynomial, (qn-w) will eventually converge to the equilibrium measure of the Julia set, in the weak*-sense. This provides us with a very effective insight into the analytic structure of the set. Hausdorff dimension is one of the most effective notions of fractal dimension in use. With the help of potential theory and some ergodic theory, we can show that for a certain holomorphic family of polynomials varying over a simply connected domain D, one can gain nice control over how the Hausdorff dimensions of the respective Julia sets change with the parameter λ in D.

Page generated in 0.0455 seconds