• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 273
  • 192
  • 32
  • 26
  • 11
  • 9
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 760
  • 202
  • 174
  • 133
  • 124
  • 80
  • 71
  • 60
  • 57
  • 56
  • 55
  • 54
  • 52
  • 50
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
731

CD8+ T Cell and NK Responses to a Novel Dengue Epitope: A Possible Role for KIR3DL1 in Dengue Pathogenesis: A Dissertation

Townsley, Elizabeth 03 April 2014 (has links)
Variation in the sequence of T cell epitopes between dengue virus (DENV) serotypes is believed to alter memory T cell responses during second heterologous infections contributing to pathology following DENV infection. We identified a highly conserved, novel, HLA-B57-restricted epitope on the DENV NS1 protein, NS126-34. We predicted higher frequencies of NS126-34-specific CD8+ T cells in PBMC from individuals undergoing secondary, rather than primary, DENV infection due to the expansion of memory CD8+T cells. We generated a tetramer against this epitope (B57-NS126-34TET) and used it to assess the frequencies and phenotype of antigen-specific T cells in samples from a clinical cohort of children with acute DENV infection established in Bangkok, Thailand. High tetramer-positive T cell frequencies during acute infection were seen in only 1 of 9 subjects with secondary infection. B57-NS126-34-specific, other DENV epitope-specific CD8+ T cells, as well as total CD8+ T cells, expressed an activated phenotype (CD69+ and/or CD38+) during acute infection. In contrast, expression of CD71 was largely limited to DENV-specific CD8+ T cells. In vitro stimulation of CD8+ T cell lines, generated against three different DENV epitopes, indicated that CD71 expression was differentially sensitive to stimulation by homologous and heterologous variant peptides with substantial upregulation of CD71 detected to peptides which also elicited strong functional responses. CD71 may therefore represent a useful marker of antigenspecific T cell activation. During the course of our analysis we found substantial binding of B57-NS126-34 TET to CD8- cells. We demonstrated that the B57-NS126-34 TET bound KIR3DL1, an inhibitory receptor on natural killer (NK) cells. NK sensitive target cells presenting the NS126-34 peptide in the context of HLA-B57 were able to dampen functional responses of only KIR3DL1+ NK cells. Analysis of the activation of an NK enriched population in our Thai cohort revealed peak activation during the critical time phase in patients with severe dengue illness, dengue hemorrhagic fever, compared to people with mild illness. Our data identified CD71 as biologically useful marker to study DENV-specific CD8+ T cell responses and highlighted the role of viral peptides in modulating NK cell activation through KIR-MHC class I interactions during DENV infection.
732

The Epithelial Transmembrane Protein PERP Is Required for Inflammatory Responses to S. typhimurium Infection: A Dissertation

Hallstrom, Kelly N. 28 October 2015 (has links)
Salmonella enterica subtype Typhimurium (S. Typhimurium) is one of many non-typhoidal Salmonella enterica strains responsible for over one million cases of salmonellosis in the United States each year. These Salmonella strains are also a leading cause of diarrheal disease in developing countries. Nontyphoidal salmonellosis induces gastrointestinal distress that is characterized histopathologically by an influx of polymorphonuclear leukocytes (PMNs), the non-specific effects of which lead to tissue damage and contribute to diarrhea. Prior studies from our lab have demonstrated that the type III secreted bacterial effector SipA is a key regulator of PMN influx during S. Typhimurium infection and that its activity requires processing by caspase-3. Although we established caspase-3 activity is required for the activation of inflammatory pathways during S. Typhimurium infection, the mechanisms by which caspase-3 is activated remain incompletely understood. Most challenging is the fact that SipA is responsible for activating caspase-3, which begs the question of how SipA can activate an enzyme it requires for its own activity. In the present study, we describe our findings that the eukaryotic tetraspanning membrane protein PERP is required for the S. Typhimuriuminduced influx of PMNs. We further show that S. Typhimurium infection induces PERP accumulation at the apical surface of polarized colonic epithelial cells, and that this accumulation requires SipA. Strikingly, PERP accumulation occurs in the absence of caspase-3 processing of SipA, which is the first time we have shown SipA mediates a cellular event without first requiring caspase-3 processing. Previous work demonstrates that PERP mediates the activation of caspase-3, and we find that PERP is required for Salmonella-induced caspase-3 activation. Our combined data support a model in which SipA triggers caspase-3 activation via its cellular modulation of PERP. Since SipA can set this pathway in motion without being cleaved by caspase-3, we propose that PERP-mediated caspase-3 activation is required for the activation of SipA, and thus is a key step in the inflammatory response to S. Typhimurium infection. Our findings further our understanding of how SipA induces inflammation during S. Typhimurium infection, and also provide additional insight into how type III secreted effectors manipulate host cells.
733

Inflammation d’origine non-pathogénique durant la gestation, implication dans les complications de la grossesse et impact sur le développement cérébral

Brien, Marie-Ève 03 1900 (has links)
INTRODUCTION : Le retard de croissance intra-utérin (RCIU), la prééclampsie (PE) et l’accouchement prématuré (AP) sont d’importantes pathologies de la grossesse fortement associées à un mauvais fonctionnement du placenta, organe central au développement du fœtus. Environ 5-12% de toutes les grossesses sont pathologiques et ces dernières sont associées avec un risque accru de désordres neurodéveloppementaux chez l’enfant. L'inflammation est un point central à toutes les complications de la grossesse et le lien causal entre l’inflammation et ces pathologies a été démontré à l’aide de plusieurs modèles animaux d’inflammation prénatale, menant à des dommages cérébraux chez les nouveau-nés. Cependant, la majorité des modèles utilisent des stimuli infectieux, bien que des pathogènes soient rarement détectés en clinique. Malgré l'absence d'infection détectable, des évidences d'inflammation, telles que des niveaux élevés de cytokines pro-inflammatoires et d’alarmines, sont présentes. Les alarmines sont des médiateurs endogènes et une autre cause d'inflammation de plus en plus associée aux pathologies de la grossesse. L’acide urique est une des alarmines les plus étudiées comme médiateur endogène d’inflammation, mais son effet sur la grossesse est peu connu. Ainsi, mon hypothèse était que l’exposition prénatale particulièrement à l’acide urique serait associée aux complications de la grossesse, serait une cause de dommage placentaire et subséquemment altèrerait le neurodéveloppement fœtal, menant à des dommages cérébraux à long terme chez l’enfant. Mon OBJECTIF général était de comprendre le lien entre inflammation prénatale non-pathogénique, les complications de la grossesse et les effets sur le placenta et le cerveau en développement. Spécifiquement, j’ai déterminé la présence d’inflammation dans les complications majeures de la grossesse puis je me suis concentré sur la PE et l’implication de l’activation immunitaire dans cette pathologie. En parallèle, j’ai établi le lien entre l’inflammation non-pathogénique, les dommages placentaires et le RCIU. Finalement, j’ai évalué le neurodéveloppement après l’exposition in-utero à une inflammation non-pathogénique et j’ai investigué le potentiel d’un nouveau traitement dans mon modèle préclinique. MÉTHODOLOGIES ET RÉSULTATS: J’ai analysé le profil inflammatoire de 200 femmes avec ou sans complications de la grossesse (Ctrl, PE, AP, RCIU) et j’ai démontré que chaque complication présente un profil inflammatoire circulant distinct, particulièrement présent chez les femmes avec PE. De plus, j’ai analysé plus en profondeur les femmes avec PE et observé une augmentation d’acide urique dans la circulation maternelle, en lien avec un profil immunitaire qui était altéré et des changements structuraux au niveau du placenta. Pour déterminer les effets directs de l'acide urique, nous avons utilisé des cultures de trophoblastes primaires, cellule principale du placenta, et des explants placentaires humains. Nous avons démontré que l’acide urique induisait un profil pro-inflammatoire augmentant particulièrement la sécrétion d’IL-1β et d’IL-6 et induisait aussi l'apoptose des trophoblastes. En parallèle, j’ai développé un nouveau modèle préclinique de rates gestantes qui ont été injectées par voie intrapéritonéale avec l’acide urique du temps de gestation 18 (G18) à G21. L’injection d'acide urique in vivo à la fin de la gestation chez le rat a entrainé l’augmentation de cytokines (IL-1β, TNF-α et IL-6) et l’infiltration de cellules immunitaires dans le placenta ainsi qu’un RCIU chez le fœtus qui persistait dans la période postnatale. De plus, les bébés exposés in-utero à l’acide urique avaient une altération neurodéveloppementale caractérisée par l’activation microgliale et astrogliale en plus d’une diminution des capacités motrices. Ces effets de l’acide urique étaient dépendants de l'IL-1β et bloqués par l’antagoniste spécifique du récepteur de l’IL-1 (IL-1Ra). CONCLUSIONS: L’inflammation est associée à toutes les complications de la grossesse, mais les profils diffèrent selon la pathologie étudiée. La PE est associée à des changements immunitaires importants. L'acide urique à l'interface materno-fœtale induit inflammation et altère les fonctions placentaires de façon IL-1-dépendante. Finalement, l’exposition à l’acide urique en fin de gestation chez le rat induit l’inflammation placentaire, le RCIU et altère le développement cérébral des bébés. Un traitement prénatal anti-inflammatoire permet de minimiser l’inflammation et ses effets négatifs sur le cerveau. / INTRODUCTION: Intra-uterine growth restriction (IUGR), preeclampsia (PE) and preterm birth (PTB) are important pathologies of pregnancy strongly associated with poor placental function, a central organ for fetal development. About 5-12% of all pregnancies are pathological and this increases the risk of neurodevelopmental disorders. Inflammation is central to all pregnancy complications and the causal link has been demonstrated with several animal models of prenatal inflammation leading to brain damage in newborns. However, these models use infectious stimuli although pathogens are rarely detected clinically. Despite the absence of detectable infection, evidence of inflammation, such as elevated levels of pro-inflammatory cytokines and alarmins, is observed. Alarmins are endogenous mediators, another cause of inflammation increasingly associated with pathological pregnancies. Uric acid is one of the most studied alarmins, however its effect on pregnancy is mostly unknown. Thus, my hypothesis was that prenatal exposure particularly to uric acid is associated with pregnancy complications and is a cause of placental damage which subsequently impairs fetal neurodevelopment, leading to long-term brain damage in the child. My general OBJECTIVE was to understand the link between non-pathogenic prenatal inflammation, pregnancy complications and its effect on the placenta and the developing brain. Specifically, I detected the presence of inflammation in major pregnancy complications and subsequently focused on PE and its immune activation. In parallel, I established the causal link between non-infectious inflammation, placental damage and IUGR. Finally, I evaluated brain development following in utero inflammation and investigated a therapeutic target in my preclinical model. METHODS AND RESULTS: I analyzed the inflammatory profile of 200 women with or without pregnancy complications (Ctrl, IUGR, PE, PTB) and demonstrated that each complication has a distinct circulating inflammatory profile, particularly in women with PE. In addition, I further analyzed women with PE and observed a uric acid increase in the maternal circulation, related to an altered immune profile and structural changes in the placenta. To determine the direct effects of uric acid, we used cultures of primary trophoblasts, the main cell of the placenta, and human placental explants. We have shown that uric acid induces a pro-inflammatory profile, particularly increasing the secretion of IL-1β and IL-6 and induces apoptosis of trophoblasts. In parallel, I developed a new preclinical model of pregnant rats that were injected intraperitoneally with uric acid from gestation time 18 (G18) to G21. The injection of uric acid at the end of gestation in the rat caused increase cytokines (IL-1β, TNF-α and IL-6), the infiltration of immune cells in the placenta as well as an IUGR in the fetus that persisted into the postnatal period. Additionally, babies exposed to uric acid in utero have neurodevelopmental impairment characterized by microglial and astroglial activation in addition to decreased motor function. These effects of uric acid was dependent on IL-1β and was blocked by the IL-1 receptor antagonist (IL-1Ra). CONCLUSIONS: Inflammation is associated with all pregnancy complications, however, with different profiles depending on the pathology studied. PE is associated with significant immune changes. Uric acid at the maternal-fetal interface induced inflammation and altered placental functions in an IL-1-dependent manner. Ultimately, exposure to uric acid in late rat pregnancy induced placental inflammation, IUGR, and impaired brain development. Prenatal anti-inflammatory treatment helped minimize inflammation and these negative effects on the brain.
734

Regulation of the germinal center reaction by T helper cells and T regulatory cells

Wu, Hao 11 April 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Germinal Centers (GCs) are transient lymphoid structures that arise in lymphoid organs in response to T cell-dependent antigen. Within the GC, follicular T helper (TFH) cells promote GC B cell differentiation and in turn the proper antibody production to protect us from invading pathogens. We wished to study the regulation of this process by transcription factors STAT3 and Bcl6. STAT3 is important for both TFH cell differentiation and IL-4 production by Th2 cells. IL-4 is a major functional cytokine produced by TFH cells. To dissect the role of STAT3 in IL-4 production by TFH cells, we generated T cell-specific conditional STAT3 knockout mice (STAT3KO). Compared to WT mice, TFH cell differentiation in STAT3KO mice was partially impaired, both in spleen following sheep red blood cells (SRBC) immunization and in Peyer's patches (PPs). In STAT3KO mice, the numbers of splenic GC B cells were markedly decreased, whereas PP GC B cells developed at normal numbers and IgG1 class switching was greatly increased. Unexpectedly, we found that STAT3 intrinsically suppressed the expression of IL-4 and Bcl6 in TFH cells. Mechanistically, in vitro repression of IL-4 expression in CD4 T cells by Bcl6 required STAT3 function. Apart from TFH cells, the GC reaction is also controlled by regulatory follicular T helper (TFR) cells, a subset of Treg cells. To study the mechanism of how TFR cells regulate the GC reaction, we generated mice specifically lacking TFR cells by specifically deleting Bcl6 in Treg cells. Following immunization, these "Bcl6FC" mice developed normal TFH and GC B cell populations. However, Bcl6FC mice produced altered antigen-specific antibody responses, with reduced titers of IgG and increased IgA. Bcl6FC mice also developed IgG antibodies with significantly decreased avidity to antigen in an HIV-1 gp120 "prime-boost" vaccine model. Additionally, TFH cells from Bcl6FC mice produced higher levels of Interferon-γ, IL-10 and IL-21. Loss of TFR cells therefore leads to highly abnormal TFH and GC B cell responses. Overall, our studies have uncovered unexpected regulatory roles of STAT3 in TFH cell function as well as the novel regulatory roles of TFR cells on cytokine production by TFH cells and on antibody production.
735

Understanding of Salmonella-phytopathogen-environment-plant interactions and development of novel antimicrobial to reduce the Salmonella burden in fresh tomato production

Deblais, Loic January 2018 (has links)
No description available.
736

Surveillance of Host and Pathogen Derived Metabolites Activates Intestinal Immunity

Peterson, Nicholas D. 30 June 2022 (has links)
Intestinal epithelial cells function, in part, to detect infection with pathogenic organisms and are key regulators of intestinal immune homeostasis. However, it is not fully understood how intestinal epithelial cells sense pathogen infection and coordinate the induction of protective immune defenses. Here, we define two new mechanisms of innate immune regulation in a metazoan host. First, we characterize the first bacterial pattern recognition receptor and its natural ligand in Caenorhabditis elegans. We show that the C. elegans nuclear hormone receptor NHR-86/HNF4 directly senses phenazine-1-carboxamide (PCN), a metabolite produced by pathogenic strains of Pseudomonas aeruginosa. PCN binds to the ligand-binding domain of NHR-86/HNF4, a ligand-gated transcription factor, and activates innate immunity in intestinal epithelial cells. In addition, we show that C. elegans NHR-86 senses PCN, and not other phenazine metabolites, as a marker of pathogen virulence to engage protective anti-pathogen defenses. Second, we show that a phase transition of the C. elegans Toll/interleukin-1 receptor domain protein (TIR-1) controls signaling by the C. elegans p38 PMK-1 MAPK pathway. Physiologic stress, both P. aeruginosa infection and sterol scarcity, induce multimerization of TIR-1 within intestinal epithelial cells. Like the mammalian homolog of TIR-1, SARM1, oligomerization and phase transition of C. elegans TIR-1 dramatically potentiate its NAD+ glycohydrolase activity. TIR-1/SARM1 multimerization and NAD+ glycohydrolase activity are required for activation of C. elegans p38 PMK-1 pathway signaling and pathogen resistance. These data uncover a mechanism by which nematodes interpret environmental conditions to prime innate immune defenses and promote survival in microbe rich environments. C. elegans animals augment these immune defenses by surveying for ligands specifically associated with toxigenic pathogens that are poised to cause disease. These findings define a new paradigm of intestinal immune control that informs the evolution of innate immunity in all metazoans.
737

Aerobic Uptake of Cholesterol by Ergosterol Auxotrophic Strains in Candida glabrata & Random and Site-Directed Mutagenesis of ERG25 in Saccharomyces cerevisiae

Whybrew, Jennafer Marie 27 September 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Candida albicans and Candida glabrata are opportunistic human pathogens that are the leading cause of fungal infections, which are increasingly becoming the leading cause of sepsis in immunosuppressed individuals. C. glabrata in particular has become a significant concern due to the increase in clinical isolates that demonstrate resistance to triazole antifungal drugs, the most prevalent treatment for such infections. Triazole drugs target the ERG11 gene product and prevent C-14 demethylation of the first sterol intermediate, lanosterol, preventing the production of the pathways end product ergosterol. Ergosterol is required by yeast for cell membrane fluidity and cell signaling. Furthermore, C. glabrata, and not C. albicans, has been reported to utilize cholesterol as a supplement for growth. Although drug resistance is known to be caused by an increase in expression of drug efflux pumps, we hypothesize a second mechanism: that the overuse of triazole drugs has lead to the increase of resistance by C. glabrata through a 2-step process: 1) the accumulation of ergosterol auxotrophic mutations and 2) mutants able to take up exogenous cholesterol anaerobically in the body acquire a second mutation allowing uptake of cholesterol aerobically. Two groups of sterol auxotrophic C. glabrata clinical isolates have been reported to take up sterol aerobically but do not produce a sterol precursor. Sterol auxotrophs have been created in C. glabrata by disrupting different essential genes (ERG1, ERG7, ERG11, ERG25, and ERG27) in the ergosterol pathway to assess which ergosterol mutants will take up sterols aerobically. Random and site-directed mutagenesis was also completed in ERG25 of Saccharmoyces cerevisiae. The ERG25 gene encodes a sterol C-4 methyloxidase essential for sterol biosynthesis in plants, animals, and yeast. This gene functions in turn with ERG26, a sterol C-3 dehydrogenase, and ERG27, a sterol C-3 keto reductase, to remove two methyl groups at the C-4 position on the sterol A ring. In S. cerevisiae, ERG25 has four putative histidine clusters, which bind non-heme iron and a C-terminal KKXX motif, which is a Golgi to ER retrieval motif. We have conducted site-directed and random mutagenesis in the S. cerevisiae wild-type strain SCY876. Site-Directed mutagenesis focused on the four histidine clusters, the KKXX C-terminal motif and other conserved amino acids among various plant, animal, and fungal species. Random mutagenesis was completed with a procedure known as gap repair and was used in an effort to find novel changes in enzyme function outside of the parameters utilized for site-directed mutagenesis. The four putative histidine clusters are expected to be essential for gene function by acting as non-heme iron binding ligands bringing in the oxygen required for the oxidation-reduction in the C-4 demethylation reaction.
738

Antibiotic Treatment of Pseudomonas aeruginosa Biofilms Stimulates Expression of mgtE, a Virulence Modulator

Redelman, Carly Virginia 07 August 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Pseudomonas aeruginosa is a gram negative opportunistic pathogen with the capacity to cause serious disease by forming biofilms, most notably in the lungs of cystic fibrosis (CF) patients. Biofilms are communities of microorganisms that adhere to a solid surface, undergo global regulatory changes, secrete exopolysaccharides, and are innately antibiotic resistant. Virulence modulation is an important tool utilized by P. aeruginosa to propagate infection and biofilm formation in the CF airway. Many different virulence modulatory pathways and proteins have been identified including the protein, MgtE. MgtE has recently been discovered and has been implicated in virulence modulation, as an isogeneic mutation of mgtE leads to increased cytotoxicity. To further elucidate the role of MgtE in P. aerugionsa infections, transcriptional and translational regulation of this protein following antibiotic treatment has been explored. I have demonstrated that mgtE is transcriptionally upregulated following antibiotic treatment of most of the twelve antibiotics tested utilizing RT-PCR and QRT-PCR. A novel model system was employed, which utilizes cystic fibrosis bronchial epithelial (CFBE) cells homozygous for the ΔF508 mutation for these studies. This model system allows P. aeruginosa biofilms to form on CFBE cells modeling the P. aeruginosa in the CF airway. Translational effects of antibiotic treatment on MgtE have been attempted via Western blotting and cytotoxicity assays. Furthermore, to explore the possibility that mgtE is interacting with a known regulatory pathway, a transposon-mutant library was utilized and the regulatory proteins, AlgR and NarX, among others have been identified as possibly interacting with MgtE. Lastly, an MgtE homologue from Staphylococcus aureus was utilized to further demonstrate the virulence modulatory effects of MgtE by demonstrating the expression of the homologue results in decreased cytotoxicity, exactly like expression of the native P. aeruginosa MgtE. This research explores a newly discovered protein that impacts cytotoxicity and biofilm formation and provides valuable information about P. aeruginosa virulence.
739

Development, Expansion and Role of Myeloid-Derived Suppressor Cells in Post-Sepsis Immune Suppression

Alkhateeb, Tuqa 01 August 2020 (has links)
Myeloid-derived suppressor cells (MDSCs) numbers increase significantly in sepsis and are associated with high mortality rates. These myeloid cell precursors promote immunosuppression, especially in the late (post sepsis) stage. However, the mechanisms that underlie MDSC expansion and programming are not completely understood. To investigate these mechanisms, we used a cecal-ligation and puncture (CLP) mouse model of polymicrobial sepsis that progresses from an early/acute proinflammatory phase to a late/chronic immunosuppressive phase. Previous studies in our laboratory showed that microRNA (miR)-21 and miR-181b elevate levels of the transcription factor nuclear factor 1 (NFI-A) that promotes MDSC expansion. We report here that miR-21 and miR-181b regulate NFI-A expression via a post-transcriptional regulatory mechanism by recruiting RNA-binding proteins HuR and Ago1 to stabilize NFI-A mRNA, thus increasing its protein levels. Studies in our laboratory also showed that inflammatory mediator S100A9 accumulates in the nucleus in Gr1+CD11b+ myeloid precursors in the later phases of sepsis and is necessary for their expansion and programming into immunosuppressive MDSCs. We demonstrate here that nuclear S100A9 associates with specific transcription factors that activate miR-21 and miR-181b expressions. In our final manuscript, we uncover another layer of the mechanisms of MDSC expansion and programming. We found that long non-coding RNA (lncRNA) Hotairm1 binds to and recruits S100A9 to the nucleus to program Gr1+CD11b+ myeloid precursors into MDSCs in the later phases of sepsis. Together, our results reveal three regulatory layers involving NFI-A, S100A9 and Hotairm1 in the pathway leading to MDSCs development in sepsis and suggest that therapeutically targeting these molecular switches might improve sepsis survival.
740

Assessment of pathogenic bacteria and heavy metal pollution in sediment and water of Kahwa River, Bukavu, Democratic Republic of the Congo

Manegabe, Bahati Justin 02 1900 (has links)
Anthropogenic activities generate waste products that pollute the environment with bacteria and heavy metals. This research assessed pollution of the Kahwa River, Bukavu Town, DRC with cadmium and lead (HMs) and bacterial enteropathogens. A survey of businesses, households and healthcare facilities showed general use of the river to remove effluent and waste. Indicator organisms were cultured at over 200 cfu/100 ml showing faecal contamination of the river water. Antibiotic resistance was shown by enteropathogenic Vibrio cholerae and Salmonella typhi to ampicillin and cotrimoxazole with some sensitivity shown to ciprofloxacin. River water contained HMs at around 40 times the World Health Organisation limit for drinking water. The bacteria, particularly from river sediment, tolerated HMs up to a concentration of 1.5 mg/ml. The presence in the Kahwa River of antibiotic-resistant pathogens showing tolerance to HMs has serious public health implications / Environmental Management / M.Sc. (Environmental management)

Page generated in 0.0565 seconds