Spelling suggestions: "subject:"énumération"" "subject:"numérisation""
1 |
ArithmexotiquesImbert, Laurent 11 April 2008 (has links) (PDF)
Un tour d'horizon de plusieurs systèmes de numération "exotiques" et leurs applications en cryptographie est proposé.
|
2 |
La collaboration mère-enfant en contexte de numération à la période préscolaire : l'importance de l'affectivité et des caractéristiques de l'enfantCaron, Lisbeth January 2007 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
3 |
La collaboration mère-enfant en contexte de numération à la période préscolaire : l'importance de l'affectivité et des caractéristiques de l'enfantCaron, Lisbeth January 2007 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
4 |
Analyse de systèmes dynamiques par discrétisation. Exemples d'applications en théorie des nombres et en biologie moléculaireSiegel, Anne 08 December 2008 (has links) (PDF)
Ce travail présente des contributions théoriques et pratiques à la théorie des codages symboliques de systèmes dynamiques. Les applications concernent différents champs mathématiques et la modélisation en biologie moléculaire. Le but est d'illustrer comment des méthodes de discrétisation de systèmes dynamiques et une approche algorithmique permettent d'exploiter au mieux les connaissances disponibles sur le système, même partielles. Un premier objectif est d'exhiber des informations au sujet d'une dynamique que l'on connaît explicitement et les traduire en propriétés concrètes. Un deuxième objectif est de produire de la connaissance sur une dynamique ou un modèle lorsqu'on ne le connaît pas explicitement.Dans ce document, ces deux questions sont abordées sur deux grandes classes de systèmes dynamiques. <br /><br />Les premiers systèmes considérés sont des automorphismes et des translations sur un tore. Inspirés par les cas unidimensionnels (beta-numération, étude des suites sturmiennes), la question principale qui se pose est de trouver un domaine fondamental pour le tore dans lequel les trajectoires de la dynamique considérée se codent par des systèmes symboliques simples. Dans le cas où l'automorphisme du tore considéré admet une unique direction dilatante (le cas Pisot), un bon candidat pour ces partitions est donné par un domaine dont la base est fractale, introduit par G. Rauzy dans les années 1980. Nous décrivons comment une approche décidable pour décrire le bord fractal du domaine et ses propriétés de pavage, permet de s'assurer qu'il s'agit d'un domaine adéquat pour un codage du l'automorphisme. La description du bord du domaine permet de décrire ses propriétés topologiques, et de les exploiter dans les différents domaines d'informatique théorique où les automorphismes et les additions sur un tore apparaissent. Ainsi, en théorie des nombres, nous nous appuyons sur la topologie du domaine pour caractériser les propriétés des développements finis ou purement périodiques de rationnels en base non entière. En géométrie discrète, ces propriétés s'interprètent en termes de conditions pour l'engendrement de plans discrets par des méthodes itératives. <br /><br />La deuxième classe de systèmes concerne les systèmes dynamiques de grande échelle en biologie moléculaire. Il s'avère que les données et les connaissances sur les modèles de régulations transcriptionnelles dans une cellule sont souvent trop partielles pour leur appliquer les méthodes usuellement utilisées pour la modélisation de systèmes expérimentaux. Dans ce document, nous discutons d'un formalisme (inspiré par la dynamique) qui permet d'interpréter les observations en biologie moléculaire, pour aider à la correction de modèles, et, dans le futur, à la mise en place de plans expérimentaux. Au vu de la qualité des données, les aspects dynamiques sont alors remplacés par des considérations sur les déplacements d'états stationnaires, et analyser les données revient à formaliser puis résoudre des contraintes portant sur des ensembles discrets. Nous montrons ainsi comment aborder les notions de corrections de modèles et de diagnostic de réseaux grande échelle.
|
5 |
Une méthodologie du calcul des fonctions élémentairesMuller, Jean-Michel 13 September 1985 (has links) (PDF)
On approfondit la notion de bases discrètes présentée dans un rapport précédent, en montrant en particulier son extension possible à d'autres bases de numérotation que la base 2. On élabore des algorithmes de calcul des fonctions mathématiques usuelles dans n'importe quelle base de numérotation. On établit un résultat de complexité
|
6 |
Une analyse de l'enseignement de la numération. Vers de nouvelles pistes.Mounier, Eric 14 December 2010 (has links) (PDF)
De nombreuses recherches ont été entreprises en direction de l'apprentissage et de l'enseignement de la numération écrite chiffrée de position. Des difficultés persistent chez les élèves. L'écriture chiffrée ne constitue pas une simple transcription écrite du langage oral ; elle est vecteur de nouvelles connaissances mathématiques à apprendre. En France, la classe de Cours Préparatoire, le CP, concerne les enfants de 6-7 ans. Or, en arrivant au CP, les élèves ont une approche des nombres essentiellement en lien avec leur désignation orale, associée le plus souvent à une activité de dénombrement un par un. Par ailleurs, les situations de classe requièrent des médiations gérées par l'enseignant qui ne peuvent faire abstraction des connaissances anciennes des élèves. Comme il semble impossible de faire une séquence sur les nombres sans les nommer, se pose alors la question de la place des désignations orales dans l'apprentissage de la numération décimale de position : comment en faire une aide et non un obstacle ? La thèse revisite le contenu mathématique pour faire un nouvel inventaire des possibles. Elle fait un bilan des travaux existants et des difficultés résistantes des élèves dans les débuts des apprentissages. Elle rend compte des pratiques actuelles à travers l'analyse des manuels et des mises en œuvre effectives en classe. Elle ouvre des perspectives de recherches à partir de nouvelles propositions pour l'enseignement à ce niveau.
|
7 |
Contributions à l'étude de la dérivation des expressions rationnelles et à l'étude des systèmes de numération abstraitsAngrand, Pierre-Yves 08 March 2012 (has links) (PDF)
Les travaux de cette thèse s'inscrivent dans la théorie des automates et des langages formels. ils peuvent se diviser en deux parties qui donnent également deux visions différentes de manipuler les langages dans la théorie des automates. La première partie s'intéresse à la notion de dérivation des expressions qui permet de faire passer le formalisme des quotients de langages au niveau des expressions rationnelles. en particulier cette thèse étudie les termes dérivés cassés d'une expression rationnelle. ces termes dérivés cassés permettent, sous certaines circonstances, et à l'aide d'autres opérations, une réversibilité de la transformation d'un automate en une expression rationnelle. Dans la seconde partie, la théorie des automates est utilisée pour traiter des problèmes sur les systèmes de numération. les systèmes de numération représentent des nombres par des mots. il est possible d'utiliser des automates et des transducteurs afin d'être capable de 'compter' sur un langage rationnel représentant les entiers. plus précisément ces automates sont étudiés pour le cas des systèmes de numération abstraits qui associent à chaque entier un mot d'un langage rationnel, ordonné par l'ordre radiciel. dans un tel système, la fonction qui permet de calculer le mot suivant est une fonction co-séquentielle par morceaux, c'est-à-dire qu'il suffit de lire deux fois le mot d'entrée de la droite vers la gauche pour qu'une machine calcule son image.
|
8 |
Contributions à l'étude de la dérivation des expressions rationnelles et à l'étude des systèmes de numération abstraits / Contributions to the study of the derivation of rational expression and to the study of abstract numeration systemsAngrand, Pierre-Yves 08 March 2012 (has links)
Les travaux de cette thèse s'inscrivent dans la théorie des automates et des langages formels. ils peuvent se diviser en deux parties qui donnent également deux visions différentes de manipuler les langages dans la théorie des automates. La première partie s'intéresse à la notion de dérivation des expressions qui permet de faire passer le formalisme des quotients de langages au niveau des expressions rationnelles. en particulier cette thèse étudie les termes dérivés cassés d'une expression rationnelle. ces termes dérivés cassés permettent, sous certaines circonstances, et à l'aide d'autres opérations, une réversibilité de la transformation d'un automate en une expression rationnelle. Dans la seconde partie, la théorie des automates est utilisée pour traiter des problèmes sur les systèmes de numération. les systèmes de numération représentent des nombres par des mots. il est possible d'utiliser des automates et des transducteurs afin d'être capable de 'compter' sur un langage rationnel représentant les entiers. plus précisément ces automates sont étudiés pour le cas des systèmes de numération abstraits qui associent à chaque entier un mot d'un langage rationnel, ordonné par l'ordre radiciel. dans un tel système, la fonction qui permet de calculer le mot suivant est une fonction co-séquentielle par morceaux, c'est-à-dire qu'il suffit de lire deux fois le mot d'entrée de la droite vers la gauche pour qu'une machine calcule son image. / The works in this thesis lies in the automata and formal languages theory. in the first part, the notion of derivation of rational expressions is studied. more precisely the broken derived terms of a rational expressions. Theses broken derived terms allow, under certain circumstances, with some other operations on automata, to have the reversibility of the transformation of an automaton into a rational expression. In the second part, automata and tranducers allow to 'count' on a numeration system, where integers are represented by words on a rational language. more precisely, this part adress the problem of counting in an abstract numeration systems, which maps to any word of a rational language, ordored by radix order, the integer corresponding to the order of the word. in such a numeration system, the function which computes the successor of a word is a piecewise co-sequential function: it can be realised by a machine which reads the input two times to give the output.
|
9 |
Comportements maternels et réussite scolaire : l'influence de l'étayage et de l'affectivité au préscolaireGiguère, Laura January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
10 |
Les décisions didactiques d'un enseignant dans un EIAH : étude de facteurs de type histoire didactique / Didactic decisions of a teacher in a TEL : didactical history type factor's studyBrasset, Nathalie 01 December 2017 (has links)
Ce travail de thèse porte sur les micro-décisions (Comiti, Grenier & Margolinas, 1995) c’est-à-dire les décisions didactiques de l’enseignant en classe, l’objectif est de contribuer au développement d’un système informatique capable d’accompagner l’enseignant dans ses prises de décisions.Nous avons choisi d’étudier ces décisions en entrant par un savoir : la numération en cycle 2 (Tempier, 2013). Le cadre théorique retenu pour la description de ce savoir est la Théorie Anthropologique du Didactique (Chevallard, 1998) plus spécifiquement une version implémentable : T4TEL (Chaachoua, Ferraton, & Desmoulins, 2013), (Chaachoua & Bessot, 2016).Afin de modéliser l’activité du professeur au sein d’une situation didactique et de prendre en compte ses activités en dehors de cette situation nous utilisons la structuration du milieu (Margolinas, 2004). Les micro-décisions de l’enseignant sont ainsi étudiées en rapport avec son projet d’enseignement, ses observations de l’activité des élèves, ses connaissances de type épistémiques et de type histoire didactique.Notre méthode de recherche est une ingénierie didactique dont la spécificité est d’impliquer des enseignants dans les phases d’analyse et de conception. Dans le cadre de cette ingénierie nous avons conçu : (1) une simulation du matériel de numération « bûchettes » : « SimBûchettes » ; (2) une base d’exercice pour « SimBûchettes » et (3) un dispositif expérimental. Ce dispositif expérimental est composé d’un outil de simulation côté élève dont les fondements sont didactiques - « Simbûchettes » - et d’un outil d’orchestration, côté enseignant, qui lui permet de consulter et d’organiser l’activité des élèves en temps réel - instanciation du Framework Chao (Wang, 2016) pour « Simbûchettes » -. Via notre dispositif nous avons accès aux actions de l’enseignant sachant les informations consultées concernant la production de l’élève et pouvons inférer ses micro-décisions.Ce dispositif nous a permis d’observer les décisions didactiques d’un enseignant d’une classe de CE1 pendant une année scolaire et d’affiner ainsi notre modèle des micro-décisions de l’enseignant. / This thesis work deals with micro-decisions (Comiti, Grenier & Margolinas, 1995), namely teachers’ decisions in class in relation to the subject they have to teach. Our aim is to contribute to the development of a TEL (Technology Enhanced Learning) that can guide teachers in their decisions.These decisions are analyzed through a specific field: decimal number system in cycle 2 (Tempier, 2013). For the description of this field we have chosen the Anthropological Theory of Didactics (Chevallard, 1998), more specifically an implementable version: T4TEL (Chaachoua, Ferraton, & Desmoulins, 2013), (Chaachoua & Bessot, 2016).Margolinas’s model about structuring the environment (2004) is used to take into account different learning activities during a teaching session. So, teachers’ micro-decisions are studied in relation to their teaching project, their observations of pupils’ activities, their knowledge of epistemic and didactic history type.Our research method is a didactical engineering whose specificity is to involve teachers in the analysis and design stages. In this engineering we have designed (1) a simulation of counting material “counting rods”: “SimBûchettes” ; (2) a bank of exercises for “SimBûchettes” and (3) an experimental device. This device is composed of, a simulation tool whose fundations are didactic – “Simbûchettes” -, on the pupils’ side, and on the teachers’side a classroom orchestration tool which allow teachers to consult and organize pupils’ activities in real time – Chao Framework’s instantiation (Wang, 2016) for “Simbûchettes”.Via our device we have access to teachers’ actions, and we can know what information has been consulted in pupils’ work. Then we can infer the micro-decisions teachers have made.This device has allowed us to observe teachers’ decisions in a primary class (CE1, 7 years-olds) during one school year and refine our teachers’ micro-decisions model.
|
Page generated in 0.0785 seconds