• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • Tagged with
  • 14
  • 14
  • 14
  • 14
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Unsupervised Image Enhancement Using Generative Adversarial Networks : An attempt at real-time video enhancement

Gustafsson, Fredrik January 2021 (has links)
As the world has become more connected meetings have moved online. However, since few have access to studio lighting and uses the embedded webcam the video quality can be far from good. Hence, there is an interest in using a software solution to enhance the video quality in real time. This thesis investigates the feasibility to train a machine learning model to automatically enhance the quality of images. The model must learn without using paired images, since it is difficult to capture images with the exact same content but different quality. Furthermore, the model has to process at least 30 images per second which is a common frequency for videos. Therefore, this thesis investigates the possibility to train a model without paired images and whether such a model can be used in real-time. To answer these questions several sizes of the same model was trained. These were evaluated using six different measures during in order to determine if training without paired data is possible. The models image enhancement capabilities and inference speed were investigated followed by attempts at improving the speed. Finally, different combinations of datasets were investigated to test how well the model generalised to new data. The results show that it is possible to train models for image enhancement without paired data. However, to use such a model in real time a graphics card is needed to reach above 30 images per second.
2

Readability: Man and Machine : Using readability metrics to predict results from unsupervised sentiment analysis / Läsbarhet: Människa och maskin : Användning av läsbarhetsmått för att förutsäga resultaten från oövervakad sentimentanalys

Larsson, Martin, Ljungberg, Samuel January 2021 (has links)
Readability metrics assess the ease with which human beings read and understand written texts. With the advent of machine learning techniques that allow computers to also analyse text, this provides an interesting opportunity to investigate whether readability metrics can be used to inform on the ease with which machines understand texts. To that end, the specific machine analysed in this paper uses word embeddings to conduct unsupervised sentiment analysis. This specification minimises the need for labelling and human intervention, thus relying heavily on the machine instead of the human. Across two different datasets, sentiment predictions are made using Google’s Word2Vec word embedding algorithm, and are evaluated to produce a dichotomous output variable per sentiment. This variable, representing whether a prediction is correct or not, is then used as the dependent variable in a logistic regression with 17 readability metrics as independent variables. The resulting model has high explanatory power and the effects of readability metrics on the results from the sentiment analysis are mostly statistically significant. However, metrics affect sentiment classification in the two datasets differently, indicating that the metrics are expressions of linguistic behaviour unique to the datasets. The implication of the findings is that readability metrics could be used directly in sentiment classification models to improve modelling accuracy. Moreover, the results also indicate that machines are able to pick up on information that human beings do not pick up on, for instance that certain words are associated with more positive or negative sentiments. / Läsbarhetsmått bedömer hur lätt eller svårt det är för människor att läsa och förstå skrivna texter. Eftersom nya maskininlärningstekniker har utvecklats kan datorer numera också analysera texter. Därför är en intressant infallsvinkel huruvida läsbarhetsmåtten också kan användas för att bedöma hur lätt eller svårt det är för maskiner att förstå texter. Mot denna bakgrund använder den specifika maskinen i denna uppsats ordinbäddningar i syfte att utföra oövervakad sentimentanalys. Således minimeras behovet av etikettering och mänsklig handpåläggning, vilket resulterar i en mer djupgående analys av maskinen istället för människan. I två olika dataset jämförs rätt svar mot sentimentförutsägelser från Googles ordinbäddnings-algoritm Word2Vec för att producera en binär utdatavariabel per sentiment. Denna variabel, som representerar om en förutsägelse är korrekt eller inte, används sedan som beroende variabel i en logistisk regression med 17 olika läsbarhetsmått som oberoende variabler. Den resulterande modellen har högt förklaringsvärde och effekterna av läsbarhetsmåtten på resultaten från sentimentanalysen är mestadels statistiskt signifikanta. Emellertid är effekten på klassificeringen beroende på dataset, vilket indikerar att läsbarhetsmåtten ger uttryck för olika lingvistiska beteenden som är unika till datamängderna. Implikationen av resultaten är att läsbarhetsmåtten kan användas direkt i modeller som utför sentimentanalys för att förbättra deras prediktionsförmåga. Dessutom indikerar resultaten också att maskiner kan plocka upp på information som människor inte kan, exempelvis att vissa ord är associerade med positiva eller negativa sentiment.
3

Understanding people movement and detecting anomalies using probabilistic generative models / Att förstå personförflyttningar och upptäcka anomalier genom att använda probabilistiska generativa modeller

Hansson, Agnes January 2020 (has links)
As intelligent access solutions begin to dominate the world, the statistical learning methods to answer for the behavior of these needs attention, as there is no clear answer to how an algorithm could learn and predict exactly how people move. This project aims at investigating if, with the help of unsupervised learning methods, it is possible to distinguish anomalies from normal events in an access system, and if the most probable choice of cylinder to be unlocked by a user can be calculated.Given to do this is a data set of the previous events in an access system, together with the access configurations - and the algorithms that were used consisted of an auto-encoder and a probabilistic generative model.The auto-encoder managed to, with success, encode the high-dimensional data set into one of significantly lower dimension, and the probabilistic generative model, which was chosen to be a Gaussian mixture model, identified clusters in the data and assigned a measure of unexpectedness to the events.Lastly, the probabilistic generative model was used to compute the conditional probability of which the user, given all the details except which cylinder that was chosen during an event, would choose a certain cylinder. The result of this was a correct guess in 65.7 % of the cases, which can be seen as a satisfactory number for something originating from an unsupervised problem. / Allt eftersom att intelligenta åtkomstlösningar tar över i samhället, så är det nödvändigt att ägna de statistiska inlärnings-metoderna bakom dessa tillräckligt med uppmärksamhet, eftersom det inte finns något självklart svar på hur en algoritm ska kunna lära sig och förutspå människors exakta rörelsemönster.Det här projektet har som mål att, med hjälp av oövervakad inlärning, undersöka huruvida det är möjligt att urskilja anomalier från normala iakttagelser, och om den låscylinder med högst sannolikhet att en användare väljer att försöka låsa upp går att beräknda.Givet för att genomföra detta projekt är en datamängd där händelser från ett åtkomstsystem finns, tillsammans med tillhörande åtkomstkonfig-urationer. Algoritmerna som användes i projektet har bestått av en auto-encoder och en probabilistisk generativ modell.Auto-encodern lyckades, med tillfredsställande resultat, att koda det hög-dimensionella datat till ett annat med betydligt lägre dimension, och den probabilistiska generativa modellen, som valdes till en Gaussisk mixtur-modell, lyckades identifiera kluster i datat och med att tilldela varje observation ett mått på dess otrolighet.Till slut så användes den probabilistiska generativa modellen för att beräkna en villkorad sannolikhet, för vilken användaren, given alla attribut för en händelse utom just vilken låscylinder som denna försökte öppna, skulle välja.Resultatet av dessa var en korrekt gissning i 65,7 % av fallen, vilket kan ses som en tillfredställande siffra för något som härrör från ett oövervakat problem.
4

Unsupervised Machine Learning Based Anomaly Detection in Stockholm Road Traffic / Oövervakad Maskininlärning baserad Anomali Detektion i Stockholms Trafikdata

Hellström, Vilma January 2023 (has links)
This thesis is a study of anomaly detection in vehicle traffic data in central Stockholm. Anomaly detection is an important tool in the analysis of traffic data for improved urban planing. Two unsupervised machine learning models are used, the DBSCAN clustering model and the LSTM deep learning neural network. A modified version of the models is also employed, incorporating adaptations that exploit diurnal traffic variations to improve the quality of the results. Subsequently, the model performance is analysed and compared. For evaluating the models, we employed two types of synthetic anomalies: a straightforward one and a more complex variant. The results indicate that all models show some ability to detect both anomalies. The models show better performance on the simpler anomaly, with both LSTM and DBSCAN giving comparable results. In contrast, LSTM outperforms DBSCAN on the more complex anomaly. Notably, the modified versions of both models consistently show enhanced performance. This suggest that LSTM outperforms DBSCAN as anomalies become more complex, presumably owing to LSTM’s proficiency in identifying intricate patterns. However, this relationship warrants further investigation in future research. / Denna examensuppsats behandlar anomalidetektering i fordonstrafikdata i centrala Stockholm. Anomalidetektering är ett viktigt verktyg vid analys av trafikdata för förbättrad stadsplanering. Två oövervakade maskininlärningsmodeller används, klustringsmodellen DBSCAN och djupinlärande neurala nätverket LSTM. En modifierad version av modellerna appliceras även, denna modifikation innebär anpassningar som utnyttjar dagliga traffikvariationer för att förbättra kvaliteten på resultatet. Modellerna analyseras och dess prestanda jämförs. För att utvärdera modellerna användes två typer av syntetiska anomalier: en enkel och en mer komplex anomali. Resultaten visar på en förmåga hos modellerna att upptäcka båda anomalierna. Modellerna uppvisar en bättre prestanda på den enklare anomalin, där LSTM och DBSCAN ger jämförbara resultat. För den mer komplexa anomalin så ger LSTM bättre resultat än DBSCAN. De modifierade versionerna av båda modellerna genererade konsekvent bättre resultat än den mer konventionella tillämpningen. Resultatet tyder på att LSTM överträffar DBSCAN när anomalierna blir mer komplexa, detta på grund av LSTMs skicklighet i att identifiera icke triviala mönster. Detta kräver dock ytterligare undersökningar i framtida forskning.
5

Unsupervised multiple object tracking on video with no ego motion / Oövervakad spårning av flera objekt på video utan egorörelse

Wu, Shuai January 2022 (has links)
Multiple-object tracking is a task within the field of computer vision. As the name stated, the task consists of tracking multiple objects in the video, an algorithm that completes such task are called trackers. Many of the existing trackers require supervision, meaning that the location and identity of each object which appears in the training data must be labeled. The procedure of generating these labels, usually through manual annotation of video material, is highly resource-consuming. On the other hand, different from well-known labeled Multiple-object tracking datasets, there exist a massive amount of unlabeled video with different objects, environments, and video specifications. Using such unlabeled video can therefore contribute to cheaper and more diverse datasets. There have been numerous attempts on unsupervised object tracking, but most rely on evaluating the tracker performance on a labeled dataset. The reason behind this is the lack of an evaluation method for unlabeled datasets. This project explores unsupervised pedestrian tracking on video taken from a stationary camera over a long duration. On top of a simple baseline tracker, two methods are proposed to extend the baseline to increase its performance. We then propose an evaluation method that works for unlabeled video, which we use to evaluate the proposed methods. The evaluation method consists of the trajectory completion rate and the number of ID switches. The trajectory completion rate is a novel metric proposed for pedestrian tracking. Pedestrians generally enter and exit the scene for video taken by a stationary camera in specific locations. We define a complete trajectory as a trajectory that goes from one area to another. The completion rate is calculated by the number of complete trajectories over all trajectories. Results showed that the two proposed methods had increased the trajectory completion rate on top of the original baseline performance. Moreover, both proposed methods did so without significantly increasing the number of ID switches. / Spårning av flera objekt är en uppgift inom området datorseende. Som namnet angav består uppgiften av att spåra flera objekt i videon, en algoritm som slutför en sådan uppgift kallas trackers. Många av de befintliga spårarna kräver övervakning, vilket innebär att platsen och identiteten för varje objekt som visas i träningsdata måste märkas. Proceduren för att generera dessa etiketter, vanligtvis genom manuell anteckning av videomaterial, är mycket resurskrävande. Å andra sidan, till skillnad från välkända märkta uppsättningar för spårning av flera objekt, finns det en enorm mängd omärkt video med olika objekt, miljöer och videospecifikationer. Att använda sådan omärkt video kan därför bidra till billigare och mer varierande datauppsättningar. Det har gjorts många försök med oövervakad objektspårning, men de flesta förlitar sig på att utvärdera spårningsprestandan på en märkt dataset. Anledningen till detta är avsaknaden av en utvärderingsmetod för omärkta datamängder. Detta projekt utforskar oövervakad fotgängarspårning på video som tagits från en stillastående kamera under lång tid. Utöver en enkel baslinjespårare föreslås två metoder för att utöka baslinjen för att öka dess prestanda. Vi föreslår sedan en utvärderingsmetod som fungerar för omärkt video, som vi använder för att utvärdera de föreslagna metoderna. Utvärderingsmetoden består av banans slutförandegrad och antalet ID-växlar. Banans slutförandegrad är ett nytt mått som föreslås för spårning av fotgängare. Fotgängare går vanligtvis in och lämnar scenen för video tagna med en stillastående kamera på specifika platser. Vi definierar en komplett bana som en bana som går från ett område till ett annat. Färdigställandegraden beräknas av antalet kompletta banor över alla banor. Resultaten visade att de två föreslagna metoderna hade ökat graden av fullbordande av banan utöver den ursprungliga baslinjeprestandan. Dessutom gjorde båda de föreslagna metoderna det utan att nämnvärt öka antalet ID-växlar.
6

Automated Multimodal Emotion Recognition / Automatiserad multimodal känsloigenkänning

Fernández Carbonell, Marcos January 2020 (has links)
Being able to read and interpret affective states plays a significant role in human society. However, this is difficult in some situations, especially when information is limited to either vocal or visual cues. Many researchers have investigated the so-called basic emotions in a supervised way. This thesis holds the results of a multimodal supervised and unsupervised study of a more realistic number of emotions. To that end, audio and video features are extracted from the GEMEP dataset employing openSMILE and OpenFace, respectively. The supervised approach includes the comparison of multiple solutions and proves that multimodal pipelines can outperform unimodal ones, even with a higher number of affective states. The unsupervised approach embraces a traditional and an exploratory method to find meaningful patterns in the multimodal dataset. It also contains an innovative procedure to better understand the output of clustering techniques. / Att kunna läsa och tolka affektiva tillstånd spelar en viktig roll i det mänskliga samhället. Detta är emellertid svårt i vissa situationer, särskilt när information är begränsad till antingen vokala eller visuella signaler. Många forskare har undersökt de så kallade grundläggande känslorna på ett övervakat sätt. Det här examensarbetet innehåller resultaten från en multimodal övervakad och oövervakad studie av ett mer realistiskt antal känslor. För detta ändamål extraheras ljud- och videoegenskaper från GEMEP-data med openSMILE respektive OpenFace. Det övervakade tillvägagångssättet inkluderar jämförelse av flera lösningar och visar att multimodala pipelines kan överträffa unimodala sådana, även med ett större antal affektiva tillstånd. Den oövervakade metoden omfattar en konservativ och en utforskande metod för att hitta meningsfulla mönster i det multimodala datat. Den innehåller också ett innovativt förfarande för att bättre förstå resultatet av klustringstekniker.
7

Grouping Similar Bug Reports from Crash Dumps with Unsupervised Learning / Gruppering av liknande felrapporter med oövervakat lärande av kraschdumpar

Vestergren, Sara January 2021 (has links)
Quality software usually means high reliability, which in turn has two main components; the software should provide correctness, which means it should perform the specified task, and robustness in the sense that it should be able to manage unexpected situations. In other words, reliable systems are systems without bugs. Because of this, testing and debugging are recurrent and resource expensive tasks in software development, notably in large software systems. This thesis investigate the potential of using unsupervised machine learning on Ericsson bug reports to avoid unnecessary debugging by identifying duplicate bug reports. The bug report data that is considered are crash dumps from software crashes. The data is clustered using the clustering algorithms k-modes, k-prototypes and expectation maximization where-after the generated clusters are used to assign new incoming bug reports to the previously generated clusters, thus indicating whether an old bug report is similar to the newly submitted one. Due to the dataset only being partially labeled both internal and external validity indices are applied to evaluate the clustering. The results indicate that many, small clusters can be identified using the applied method. However, for the results to have high validity the methods could be applied on a larger data set. / Mjukvara av hög kvalitet innebär ofta hög tillförlitlighet, vilket i sin tur har två huvudkomponenter; mjukvaran bör vara korrekt, den ska alltså uppfylla dom specifierade kraven, och dessutom robust vilket innebär att den ska kunna hantera oväntade situationer. Med andra ord, tillförlitliga system är system utan buggar. På grund av detta är testning och felsökning återkommande och resurskrävande uppgifter inom mjukvaruutveckling, i synnerhet för stora mjukvarusystem. Detta arbete utforskar vilken potential oövervakad maskininlärning på Ericssons felrapporter har för att undvika onödig felsökning genom att identifiera felrapporter som är dubletter. Felrapporterna som används i detta arbete innehåller data som sparats i minnet vid en mjukvarukrasch. Data klustras sedan med klustringsalgoritmerna k-modes, k-prototypes och expectation maximization varpå dom genererade klustren används för att tilldela nya inkommande felrapporter till de tidigare generade klustren, för att på så sätt kunna identifiera om en gammal felrapport är lik en ny felrapport. Då de felrapporter som behandlas endast till viss del redan är märkta som dubletter används både externa och interna valideringsmått för att utvärdera klustringen. Resultaten tyder på att många, små kluster kunde identifieras med de använda metoderna. Dock skulle metoderna behöva appliceras på ett dataset med större antal felrapporter för att resultaten ska få hög validitet.
8

Automatic Segmentation of Swedish Medical Words with Greek and Latin Morphemes : A Computational Morphological Analysis

Lindström, Mathias January 2015 (has links)
Raw text data online has increased the need for designing artificial systems capable of processing raw data efficiently and at a low cost in the field of natural language processing (NLP). A well-developed morphological analysis is an important cornerstone of NLP, in particular when word look-up is an important stage of processing. Morphological analysis has many advantages, including reducing the number of word forms to be stored computationally, as well as being cost-efficient and time-efficient. NLP is relevant in the field of medicine, especially in automatic text analysis, which is a relatively young field in Swedish medical texts. Much of the stored information is highly unstructured and disorganized. Using raw corpora, this paper aims to contribute to automatic morphological segmentation by experimenting with state-of-art-tools for unsupervised and semi-supervised word segmentation of Swedish words in medical texts. The results show that a reasonable segmentation is more dependent on a high number of word types, rather than a special type of corpora. The results also show that semi-supervised word segmentation in the form of annotated training data greatly increases the performance. / Rå textdata online har ökat behovet för artificiella system som klarar av att processa rå data effektivt och till en låg kostnad inom språkteknologi (NLP). En välutvecklad morfologisk analys är en viktig hörnsten inom NLP, speciellt när ordprocessning är ett viktigt steg. Morfologisk analys har många fördelar, bland annat reducerar den antalet ordformer som ska lagras teknologiskt, samt så är det kostnadseffektivt och tidseffektivt. NLP är av relevans för det medicinska ämnet, speciellt inom textanalys som är ett relativt ungt område inom svenska medicinska texter. Mycket av den lagrade informationen är väldigt ostrukturerat och oorganiserat. Genom att använda råa korpusar ämnar denna uppsats att bidra till automatisk morfologisk segmentering genom att experimentera med de för närvarande bästa verktygen för oövervakad och semi-övervakad ordsegmentering av svenska ord i medicinska texter. Resultaten visar att en acceptabel segmentering beror mer på ett högt antal ordtyper, och inte en speciell sorts korpus. Resultaten visar också att semi-övervakad ordsegmentering, dvs. annoterad träningsdata, ökar prestandan markant.
9

Unsupervised Domain Adaptation for Regressive Annotation : Using Domain-Adversarial Training on Eye Image Data for Pupil Detection / Oövervakad domänadaptering för regressionsannotering : Användning av domänmotstående träning på ögonbilder för pupilldetektion

Zetterström, Erik January 2023 (has links)
Machine learning has seen a rapid progress the last couple of decades, with more and more powerful neural network models continuously being presented. These neural networks require large amounts of data to train them. Labelled data is especially in great demand, but due to the time consuming and costly nature of data labelling, there exists a scarcity for labelled data, whereas there usually is an abundance of unlabelled data. In some cases, data from a certain distribution, or domain, is labelled, whereas the data we actually want to optimise our model on is unlabelled and from another domain. This falls under the umbrella of domain adaptation and the purpose of this thesis is to train a network using domain-adversarial training on eye image datasets consisting of a labelled source domain and an unlabelled target domain, with the goal of performing well on target data, i.e., overcoming the domain gap. This was done on two different datasets: a proprietary dataset from Tobii with real images and the public U2Eyes dataset with synthetic data. When comparing domain-adversarial training to a baseline model trained conventionally on source data and a oracle model trained conventionally on target data, the proposed DAT-ResNet model outperformed the baseline on both datasets. For the Tobii dataset, DAT-ResNet improved the Huber loss by 22.9% and the Intersection over Union (IoU) by 7.6%, and for the U2Eyes dataset, DAT-ResNet improved the Huber loss by 67.4% and the IoU by 37.6%. Furthermore, the IoU measures were extended to also include the portion of predicted ellipsis with no intersection with the corresponding ground truth ellipsis – referred to as zero-IoUs. By this metric, the proposed model improves the percentage of zero-IoUs by 34.9% on the Tobii dataset and by 90.7% on the U2Eyes dataset. / Maskininlärning har sett en snabb utveckling de senaste decennierna med mer och mer kraftfulla neurala nätverk-modeller presenterades kontinuerligt. Dessa neurala nätverk kräver stora mängder data för att tränas. Data med etiketter är det framförallt stor efterfrågan på, men på grund av det är tidskrävande och kostsamt att etikettera data så finns det en brist på sådan data medan det ofta finns ett överflöd av data utan etiketter. I vissa fall så är data från en viss fördelning, eller domän, etiketterad, medan datan som vi faktiskt vill optimera vår modell efter saknar etiketter och är från en annan domän. Det här faller under området domänadaptering och målet med det här arbetet är att träna ett nätverk genom att använda domänmoststående träning på dataset med ögonbilder som har en källdomän med etiketter och en måldomän utan etiketter, där målet är att prestera bra på data från måldomänen, i.e., att lösa ett domänadapteringsproblem. Det här gjordes på två olika dataset: ett dataset som ägs av Tobii med riktiga ögonbilder och det offentliga datasetet U2Eyes med syntetiska bilder. När domänadapteringsmodellen jämförs med en basmodell tränad konventionellt på källdata och en orakelmodell tränad konventionellt på måldata, så utklassar den presenterade DAT-ResNet-modellen basmodellen på båda dataseten. På Tobii-datasetet så förbättrade DAT-ResNet förlusten med 22.9% och Intersection over Union (IoU):n med 7.6%, och på U2Eyes-datasetet, förbättrade DAT-ResNet förlusten med 67.4% och IoU:n med 37.6%. Dessutom så utökades IoU-måtten till att också innefatta andelen av förutspådda ellipser utan något överlapp med tillhörande grundsanningsellipser – refererat till som noll-IoU:er. Enligt detta mått så förbättrar den föreslagna modellen noll-IoU:erna med 34.9% på Tobii-datasetet och 90.7% på U2Eyes-datasetet.
10

Intelligence Extraction Using Machine Learning for Threat Identification Purposes : An Overview / Inhämtande av underrättelseinformation genom maskininlärning för identifikation av hot

Lindgren, Jonatan January 2022 (has links)
Radar is an invaluable tool for detecting and assessing threats on land, on the seas and in the air. To properly evaluate threats, radar operators construct threat libraries where the signal characteristics of emitters are stored and mapped to specific types of platforms. In this project, methods for constructing these threat detection libraries from data obtained during real-life scenarios are investigated. A number of machine learning approaches are investigated and validated using general and method specific scoring methods. Using density based clustering methods and non-linear data transformation it is shown that Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) and spatial consistency metrics can be used to deinterleave and group signals to radar trace emitting platforms, from which suitable library parameters can be extracted. The results show that traditional metrics for evaluating cluster methods are not suited for evaluating data containing spatial information. / Radar är ett ovärderligt verktyg för att upptäcka och identifiera hot på land, till havs och i luften. För att kunna utvärdera olika former av hot använder sig radaroperatörer av hotbibliotek, vilka består av olika radarplattformers signalparametrar. I det här projektet undersöks olika metoder för att bygga hotbibliotek med hjälp av verkliga data insamlat under flygningar i Sverige. Olika maskininlärningsmetoder undersöks och utvärderas med hjälp av både generella och specifika utvärderingsmetoder. Genom att använda sig av densitets- baserade klustringsmetoder och olinjära metoder för att transformera data så visas att hierarkisk densitetsbaserad spatial klustring för tillämningar med störningar (HDBSCAN) och utvärderingsmetoder som baseras på spatial karaktäristik kan användas för att separera och gruppera radarkällor, vilka kan användas för att finna parametrar för att bygga hotbibliotek. Det visas även att traditionella metoder för att utvärdera klustringsresultat inte lämpar sig för att utvärdera spatiala data.

Page generated in 0.0852 seconds