• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 200
  • 59
  • Tagged with
  • 259
  • 259
  • 210
  • 153
  • 150
  • 132
  • 119
  • 112
  • 100
  • 85
  • 83
  • 81
  • 68
  • 59
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Röststyrning i industriella miljöer : En undersökning av ordfelsfrekvens för olika kombinationer mellan modellarkitekturer, kommandon och brusreduceringstekniker / Voice command in industrial environments : An investigation of Word Error Rate for different combinations of model architectures, commands and noise reduction techniques

Eriksson, Ulrika, Hultström, Vilma January 2024 (has links)
Röststyrning som användargränssnitt kan erbjuda flera fördelar jämfört med mer traditionella styrmetoder. Det saknas dock färdiga lösningar för specifika industriella miljöer, vilka ställer särskilda krav på att korta kommandon tolkas korrekt i olika grad av buller och med begränsad eller ingen internetuppkoppling. Detta arbete ämnade undersöka potentialen för röststyrning i industriella miljöer. Ett koncepttest genomfördes där ordfelsfrekvens (på engelska Word Error Rate eller kortare WER) användes för att utvärdera träffsäkerheten för olika kombinationer av taligenkänningsarkitekturer, brusreduceringstekniker samt kommandolängder i verkliga bullriga miljöer. Undersökningen tog dessutom hänsyn till Lombard-effekten.  Resultaten visar att det för samtliga testade miljöer finns god potential för röststyrning med avseende på träffsäkerheten. Framför allt visade DeepSpeech, en djupinlärd taligenkänningsmodell med rekurrent lagerstruktur, kompletterad med domänspecifika språkmodeller och en riktad kardioid-mikrofon en ordfelsfrekvens på noll procent i vissa scenarier och sällan över fem procent. Resultaten visar även att utformningen av kommandon påverkar ordfelsfrekvensen.  För en verklig implementation i industriell miljö behövs ytterligare studier om säkerhetslösningar, inkluderande autentisering och hantering av risker med falskt positivt tolkade kommandon. / Voice command as a user interface can offer several advantages over more traditional control methods. However, there is a lack of ready-made solutions for specific industrial environments, which place particular demands on short commands being interpreted correctly in varying degrees of noise and with limited or no internet connection. This work aimed to investigate the potential for voice command in industrial environments. A proof of concept was conducted where Word Error Rate (WER) was used to evaluate the accuracy of various combinations of speech recognition architectures, noise reduction techniques, and command lengths in authentic noisy environments. The investigation also took into account the Lombard effect.  The results indicate that for all tested environments there is good potential for voice command with regard to accuracy. In particular, DeepSpeech, a deep-learned speech recognition model with recurrent layer structure, complemented with domain-specific language models and a directional cardioid microphone, showed WER values of zero percent in certain scenarios and rarely above five percent. The results also demonstrate that the design of commands influences WER. For a real implementation in an industrial environment, further studies are needed on security solutions, including authentication and management of risks with false positive interpreted commands.
232

Evaluation of Pruning Algorithms for Activity Recognition on Embedded Machine Learning / Utvärdering av beskärningsalgoritmer för aktivitetsigenkänning på inbäddad maskininlärning

Namazi, Amirhossein January 2023 (has links)
With the advancement of neural networks and deep learning, the complexity and size of models have increased exponentially. On the other hand, advancements of internet of things (IoT) and sensor technology have opened for many embedded machine learning applications and projects. In many of these applications, the hardware has some constraints in terms of computational and memory resources. The always increasing popularity of these applications, require shrinking and compressing neural networks in order to satisfy the requirements. The frameworks and algorithms governing the compression of a neural network are commonly referred to as pruning algorithms. In this project several pruning frameworks are applied to different neural network architectures to better understand their effect on the performance as well as the size of the model. Through experimental evaluations and analysis, this thesis provides insights into the benefits and trade-offs of pruning algorithms in terms of size and performance, shedding light on their practicality and suitability for embedded machine learning. The findings contribute to the development of more efficient and optimized neural networks for resource constrained hardware, in real-world IoT applications such as wearable technology. / Med framstegen inom neurala nätverk och djupinlärning har modellernas komplexitet och storlek ökat exponentiellt. Samtidigt har framsteg inom Internet of Things (IoT) och sensorteknik öppnat upp för många inbyggda maskininlärningsapplikationer och projekt. I många av dessa applikationer finns det begränsningar i hårdvaran avseende beräknings- och minnesresurser. Den ständigt ökande populariteten hos dessa applikationer kräver att neurala nätverk minskas och komprimeras för att uppfylla kraven. Ramverken och algoritmerna som styr komprimeringen av ett neuralt nätverk kallas vanligtvis för beskärningsalgoritmer. I detta projekt tillämpas flera beskärningsramverk på olika neurala nätverksarkitekturer för att bättre förstå deras effekt på prestanda och modellens storlek. Genom experimentella utvärderingar och analys ger denna avhandling insikter om fördelarna och avvägningarna med beskärningsalgoritmer vad gäller storlek och prestanda, och belyser deras praktiska användbarhet och lämplighet för inbyggd maskininlärning. Resultaten bidrar till utvecklingen av mer effektiva och optimerade neurala nätverk för resursbegränsad hårdvara i verkliga IoT-applikationer, såsom bärbar teknik.
233

Delineation of vegetated water through pre-trained convolutional networks / Konturteckning av vegeterat vatten genom förtränade konvolutionella nätverk

Hansen, Johanna January 2024 (has links)
In a world under the constant impact of global warming, wetlands are decreasing in size all across the globe. As the wetlands are a vital part of preventing global warming, the ability to prevent their shrinkage through restorative measures is critical. Continuously orbiting the Earth are satellites that can be used to monitor the wetlands by collecting images of them over time. In order to determine the size of a wetland, and to register if it is shrinking or not, deep learning models can be used. Especially useful for this task is convolutional neural networks (CNNs). This project uses one type of CNN, a U-Net, to segment vegetated water in satellite data. However, this task requires labeled data, which is expensive to generate and difficult to acquire. The model used therefore needs to be able to generate reliable results even on small data sets. Therefore, pre-training of the network is used with a large-scale natural image segmentation data set called Common Objects in Context (COCO). To transfer the satellite data into RGB images to use as input for the pre-trained network, three different methods are tried. Firstly, the commonly used linear transformation method which simply moves the value of radar data into the RGB feature space. Secondly, two convolutional layers are placed before the U-Net which gradually changes the number of channels of the input data, with weights trained through backpropagation during the fine-tuning of the segmentation model. Lastly, a convolutional auto-encoder is trained in the same way as the convolutional layers. The results show that the autoencoder does not perform very well, but that the linear transformation and convolutional layers methods each can outperform the other depending on the data set. No statistical significance can be shown however between the performance of the two latter. Experimenting with including different amounts of polarizations from Sentinel-1 and bands from Sentinel-2 showed that only using radar data gave the best results. It remains to be determined whether one or both of the polarizations should be included to achieve the best result. / I en värld som ständigt påverkas av den globala uppvärmningen, minskar våtmarkerna i storlek över hela världen. Eftersom våtmarkerna är en viktig del i att förhindra global uppvärmning, är förmågan att förhindra att de krymper genom återställande åtgärder kritisk. Kontinuerligt kretsande runt jorden finns satelliter som kan användas för att övervaka våtmarkerna genom att samla in bilder av dem över tid. För att bestämma storleken på en våtmark, i syfte att registrera om den krymper eller inte, kan djupinlärningsmodeller användas. Speciellt användbar för denna uppgift är konvolutionella neurala nätverk (CNN). Detta projekt använder en typ av CNN, ett U-Net, för att segmentera vegeterat vatten i satellitdata. Denna uppgift kräver dock märkt data, vilket är dyrt att generera och svårt att få tag på. Modellen som används behöver därför kunna generera pålitliga resultat även med små datauppsättning. Därför används förträning av nätverket med en storskalig naturlig bildsegmenteringsdatauppsättning som kallas Common Objects in Context (COCO). För att överföra satellitdata till RGB-bilder som ska användas som indata för det förtränade nätverket prövas tre olika metoder. För det första, den vanliga linjära transformationsmetoden som helt enkelt flyttar värdet av radardatan till RGB-funktionsutrymmet. För det andra två konvolutionella lager placerade före U-Net:et som gradvis ändrar mängden kanaler i indatan, med vikter tränade genom bakåtpropagering under finjusteringen av segmenteringsmodellen. Slutligen tränade en konvolutionell auto encoder på samma sätt som de konvolutionella lagren. Resultaten visar att auto encodern inte fungerar särskilt bra, men att metoderna för linjär transformation och konvolutionella lager var och en kan överträffa den andra beroende på datauppsättningen. Ingen statistisk signifikans kan dock visas mellan prestationen för de två senare. Experiment med att inkludera olika mängder av polariseringar från Sentinell-1 och band från Sentinell-2 visade att endast användning av radardata gav de bästa resultaten. Om att inkludera båda polariseringarna eller bara en är den mest lämpliga återstår fortfarande att fastställa.
234

Flight search engine CPU consumption prediction

Tao, Zhaopeng January 2021 (has links)
The flight search engine is a technology used in the air travel industry. It allows the traveler to search and book for the best flight options, such as the combination of flights while keeping the best services, options, and price. The computation for a flight search query can be very intensive given its parameters and complexity. The project goal is to predict the flight search queries computation cost for a new flight search engine product when dealing with parameters change and optimizations. The problem of flight search cost prediction is a regression problem. We propose to solve the problem by delimiting the problem based on its business logic and meaning. Our problem has data defined as a graph, which is why we have chosen Graph Neural Network. We have investigated multiple pretraining strategies for the evaluation of node embedding concerning a realworld regression task, including using a line graph for the training. The embeddings are used for downstream regression tasks. Our work is based on some stateoftheart Machine Learning, Deep Learning, and Graph Neural Network methods. We conclude that for some business use cases, the predictions are suitable for production use. In addition, the prediction of tree ensemble boosting methods produces negatives predictions which further degrade the R2 score by 4% because of the business meaning. The Deep Neural Network outperformed the most performing Machine Learning methods by 8% to 12% of R2 score. The Deep Neural Network also outperformed Deep Neural Network with pretrained node embedding from the Graph Neural Network methods by 11% to 17% R2 score. The Deep Neural Network achieved 93%, 81%, and 63% R2 score for each task with increasing difficulty. The training time range from 1 hour for Machine Learning models, 2 to 10 hours for Deep Learning models, and 8 to 24 hours for Deep Learning model for tabular data trained end to end with Graph Neural Network layers. The inference time is around 15 minutes. Finally, we found that using Graph Neural Network for the node regression task does not outperform Deep Neural Network. / Flygsökmotor är en teknik som används inom flygresebranschen. Den gör det möjligt för resenären att söka och boka de bästa flygalternativen, t.ex. kombinationer av flygningar med bästa service, alternativ och pris. Beräkningen av en flygsökning kan vara mycket intensiv med tanke på dess parametrar och komplexitet. Projektets mål är att förutsäga beräkningskostnaden för flygsökfrågor för en ny produkt för flygsökmotor när parametrar ändras och optimeringar görs. Problemet med att förutsäga kostnaderna för flygsökning är ett regressionsproblem. Vi föreslår att man löser problemet genom att avgränsa det utifrån dess affärslogik och innebörd. Vårt problem har data som definieras som en graf, vilket är anledningen till att vi har valt Graph Neural Network. Vi har undersökt flera förträningsstrategier för utvärdering av nodinbäddning när det gäller en regressionsuppgift från den verkliga världen, bland annat genom att använda ett linjediagram för träningen. Inbäddningarna används för regressionsuppgifter i efterföljande led. Vårt arbete bygger på några toppmoderna metoder för maskininlärning, djupinlärning och grafiska neurala nätverk. Vi drar slutsatsen att förutsägelserna är lämpliga för produktionsanvändning i vissa Vi drar slutsatsen att förutsägelserna är lämpliga för produktionsanvändning i vissa fall. Dessutom ger förutsägelserna från trädens ensemble av boostingmetoder negativa förutsägelser som ytterligare försämrar R2poängen med 4% på grund av affärsmässiga betydelser. Deep Neural Network överträffade de mest effektiva metoderna för maskininlärning med 812% av R2poängen. Det djupa neurala nätverket överträffade också det djupa neurala nätverket med förtränad node embedding från metoderna för grafiska neurala nätverk med 11 till 17% av R2poängen. Deep Neural Network uppnådde 93, 81 och 63% R2poäng för varje uppgift med stigande svårighetsgrad. Träningstiden varierar från 1 timme för maskininlärningsmodeller, 2 till 10 timmar för djupinlärningsmodeller och 8 till 24 timmar för djupinlärningsmodeller för tabelldata som tränats från början till slut med grafiska neurala nätverkslager. Inferenstiden är cirka 15 minuter. Slutligen fann vi  att användningen av Graph Neural Network för uppgiften om regression av noder inte överträffar Deep Neural Network.
235

Sequence-to-sequence learning of financial time series in algorithmic trading / Sekvens-till-sekvens-inlärning av finansiella tidsserier inom algoritmiskhandel

Arvidsson, Philip, Ånhed, Tobias January 2017 (has links)
Predicting the behavior of financial markets is largely an unsolved problem. The problem hasbeen approached with many different methods ranging from binary logic, statisticalcalculations and genetic algorithms. In this thesis, the problem is approached with a machinelearning method, namely the Long Short-Term Memory (LSTM) variant of Recurrent NeuralNetworks (RNNs). Recurrent neural networks are artificial neural networks (ANNs)—amachine learning algorithm mimicking the neural processing of the mammalian nervoussystem—specifically designed for time series sequences. The thesis investigates the capabilityof the LSTM in modeling financial market behavior as well as compare it to the traditionalRNN, evaluating their performances using various measures. / Prediktion av den finansiella marknadens beteende är i stort ett olöst problem. Problemet hartagits an på flera sätt med olika metoder så som binär logik, statistiska uträkningar ochgenetiska algoritmer. I den här uppsatsen kommer problemet undersökas medmaskininlärning, mer specifikt Long Short-Term Memory (LSTM), en variant av rekurrentaneurala nätverk (RNN). Rekurrenta neurala nätverk är en typ av artificiellt neuralt nätverk(ANN), en maskininlärningsalgoritm som ska efterlikna de neurala processerna hos däggdjursnervsystem, specifikt utformat för tidsserier. I uppsatsen undersöks kapaciteten hos ett LSTMatt modellera finansmarknadens beteenden och jämförs den mot ett traditionellt RNN, merspecifikt mäts deras effektivitet på olika vis.
236

Towards word alignment and dataset creation for shorthand documents and transcripts

Ryan, Elisabeth January 2021 (has links)
Analysing handwritten texts and creating labelled data sets can facilitate novel research on languages and advanced computerized analysis of authors works. However, few handwritten works have word wise labelling or data sets associated with them. More often a transcription of the text is available, but without any exact coupling between words in the transcript and word representations in the document images. Can an algorithm be created that will take only an image of handwritten text and a corresponding transcript and return a partial alignment and data set? An algorithm is developed in this thesis that explores the use of a convolutional neural network trained on English handwritten text to be able to align some words on pages and create a data set given a handwritten page image and a transcript. This algorithm is tested on handwritten English text. The algorithm is also tested on Swedish shorthand, which was the inspiration for the development of the algorithm in this work. In testing on several pages of handwritten English text, the algorithm reaches an overall average classification of 68% of words on one page with 0% miss-classification of those words. On a sequence of pages, the algorithm reaches 84% correctly classified words on 10 pages and produces a data set of 551 correctly labelled word images. This after being shown 10 pages with an average of 70.6 words on each page, with0% miss-classification. / Analys av handskrivna texter och skapande av dataset kan främja ny forskning inom språk och avancerad datoranalys av olika författares verk. Det finns dock få handskrivna verk med information om vad varje handskrivet ord betecknar eller dataset relaterade till texten. Oftare finns en transkribering av texten, utan någon exakt koppling mellan de transkriberade orden och handskrivna ord i bilden av ett dokument. Genom att skapa en algoritm som kan ta tillvara handskrivna texter och motsvarande transkription kan potentiellt fler verk datoranalyseras. Kan en algoritm skapas som bara tar in en bild av ett handskrivet dokument och en motsvarande transkription och som returnerar en partiell placering av ord till ordbilder och ett dataset? En algoritm skapas i detta arbete som utforskar möjligheten att använda ett djupt neuralt nätverk tränat på engelsk handskriven text för att koppla ord i ett dokumentet till en transkription, och använda dessa för att skapa ett dataset. Denna algoritm är testad på engelsk handskriven text. Algoritmen testas också på svensk stenografi, vilket är inspirationen till skapandet av algoritmen. Algoritmen testades på ett antal sidor handskriven engelsk text. Där kunde algoritmen klassificera i genomsnitt 68% av orden på en handskriven sida med 0% av dessa ord felklassificerade. På en serie sidor når algoritmen en genomsnittlig klassificering av 84% klassificerade ord, och producerar ett dataset av 551 korrekt klassificerade ordbilder. Detta är efter att ha visat algoritmen 10 sidor med i snitt 70.6 ord per sida. I dessa test nåddes också en felklassificering på 0%.
237

Software quality studies using analytical metric analysis

Rodríguez Martínez, Cecilia January 2013 (has links)
Today engineering companies expend a large amount of resources on the detection and correction of the bugs (defects) in their software. These bugs are usually due to errors and mistakes made by programmers while writing the code or writing the specifications. No tool is able to detect all of these bugs. Some of these bugs remain undetected despite testing of the code. For these reasons, many researchers have tried to find indicators in the software’s source codes that can be used to predict the presence of bugs. Every bug in the source code is a potentially failure of the program to perform as expected. Therefore, programs are tested with many different cases in an attempt to cover all the possible paths through the program to detect all of these bugs. Early prediction of bugs informs the programmers about the location of the bugs in the code. Thus, programmers can more carefully test the more error prone files, and thus save a lot of time by not testing error free files. This thesis project created a tool that is able to predict error prone source code written in C++. In order to achieve this, we have utilized one predictor which has been extremely well studied: software metrics. Many studies have demonstrated that there is a relationship between software metrics and the presence of bugs. In this project a Neuro-Fuzzy hybrid model based on Fuzzy c-means and Radial Basis Neural Network has been used. The efficiency of the model has been tested in a software project at Ericsson. Testing of this model proved that the program does not achieve high accuracy due to the lack of independent samples in the data set. However, experiments did show that classification models provide better predictions than regression models. The thesis concluded by suggesting future work that could improve the performance of this program. / Idag spenderar ingenjörsföretag en stor mängd resurser på att upptäcka och korrigera buggar (fel) i sin mjukvara. Det är oftast programmerare som inför dessa buggar på grund av fel och misstag som uppkommer när de skriver koden eller specifikationerna. Inget verktyg kan detektera alla dessa buggar. Några av buggarna förblir oupptäckta trots testning av koden. Av dessa skäl har många forskare försökt hitta indikatorer i programvarans källkod som kan användas för att förutsäga förekomsten av buggar. Varje fel i källkoden är ett potentiellt misslyckande som gör att applikationen inte fungerar som förväntat. För att hitta buggarna testas koden med många olika testfall för att försöka täcka alla möjliga kombinationer och fall. Förutsägelse av buggar informerar programmerarna om var i koden buggarna finns. Således kan programmerarna mer noggrant testa felbenägna filer och därmed spara mycket tid genom att inte behöva testa felfria filer. Detta examensarbete har skapat ett verktyg som kan förutsäga felbenägen källkod skriven i C ++. För att uppnå detta har vi utnyttjat en välkänd metod som heter Software Metrics. Många studier har visat att det finns ett samband mellan Software Metrics och förekomsten av buggar. I detta projekt har en Neuro-Fuzzy hybridmodell baserad på Fuzzy c-means och Radial Basis Neural Network använts. Effektiviteten av modellen har testats i ett mjukvaruprojekt på Ericsson. Testning av denna modell visade att programmet inte Uppnå hög noggrannhet på grund av bristen av oberoende urval i datauppsättningen. Men gjordt experiment visade att klassificering modeller ger bättre förutsägelser än regressionsmodeller. Exjobbet avslutade genom att föreslå framtida arbetet som skulle kunna förbättra detta program. / Actualmente las empresas de ingeniería derivan una gran cantidad de recursos a la detección y corrección de errores en sus códigos software. Estos errores se deben generalmente a los errores cometidos por los desarrolladores cuando escriben el código o sus especificaciones.  No hay ninguna herramienta capaz de detectar todos estos errores y algunos de ellos pasan desapercibidos tras el proceso de pruebas. Por esta razón, numerosas investigaciones han intentado encontrar indicadores en los códigos fuente del software que puedan ser utilizados para detectar la presencia de errores. Cada error en un código fuente es un error potencial en el funcionamiento del programa, por ello los programas son sometidos a exhaustivas pruebas que cubren (o intentan cubrir) todos los posibles caminos del programa para detectar todos sus errores. La temprana localización de errores informa a los programadores dedicados a la realización de estas pruebas sobre la ubicación de estos errores en el código. Así, los programadores pueden probar con más cuidado los archivos más propensos a tener errores dejando a un lado los archivos libres de error. En este proyecto se ha creado una herramienta capaz de predecir código software propenso a errores escrito en C++. Para ello, en este proyecto se ha utilizado un indicador que ha sido cuidadosamente estudiado y ha demostrado su relación con la presencia de errores: las métricas del software. En este proyecto un modelo híbrido neuro-disfuso basado en Fuzzy c-means y en redes neuronales de función de base radial ha sido utilizado. La eficacia de este modelo ha sido probada en un proyecto software de Ericsson. Como resultado se ha comprobado que el modelo no alcanza una alta precisión debido a la falta de muestras independientes en el conjunto de datos y los experimentos han mostrado que los modelos de clasificación proporcionan mejores predicciones que los modelos de regresión. El proyecto concluye sugiriendo trabajo que mejoraría el funcionamiento del programa en el futuro.
238

Adding temporal plasticity to a self-organizing incremental neural network using temporal activity diffusion / Om att utöka ett självorganiserande inkrementellt neuralt nätverk med temporal plasticitet genom temporal aktivitetsdiffusion

Lundberg, Emil January 2015 (has links)
Vector Quantization (VQ) is a classic optimization problem and a simple approach to pattern recognition. Applications include lossy data compression, clustering and speech and speaker recognition. Although VQ has largely been replaced by time-aware techniques like Hidden Markov Models (HMMs) and Dynamic Time Warping (DTW) in some applications, such as speech and speaker recognition, VQ still retains some significance due to its much lower computational cost — especially for embedded systems. A recent study also demonstrates a multi-section VQ system which achieves performance rivaling that of DTW in an application to handwritten signature recognition, at a much lower computational cost. Adding sensitivity to temporal patterns to a VQ algorithm could help improve such results further. SOTPAR2 is such an extension of Neural Gas, an Artificial Neural Network algorithm for VQ. SOTPAR2 uses a conceptually simple approach, based on adding lateral connections between network nodes and creating “temporal activity” that diffuses through adjacent nodes. The activity in turn makes the nearest-neighbor classifier biased toward network nodes with high activity, and the SOTPAR2 authors report improvements over Neural Gas in an application to time series prediction. This report presents an investigation of how this same extension affects quantization and prediction performance of the self-organizing incremental neural network (SOINN) algorithm. SOINN is a VQ algorithm which automatically chooses a suitable codebook size and can also be used for clustering with arbitrary cluster shapes. This extension is found to not improve the performance of SOINN, in fact it makes performance worse in all experiments attempted. A discussion of this result is provided, along with a discussion of the impact of the algorithm parameters, and possible future work to improve the results is suggested. / Vektorkvantisering (VQ; eng: Vector Quantization) är ett klassiskt problem och en enkel metod för mönsterigenkänning. Bland tillämpningar finns förstörande datakompression, klustring och igenkänning av tal och talare. Även om VQ i stort har ersatts av tidsmedvetna tekniker såsom dolda Markovmodeller (HMM, eng: Hidden Markov Models) och dynamisk tidskrökning (DTW, eng: Dynamic Time Warping) i vissa tillämpningar, som tal- och talarigenkänning, har VQ ännu viss relevans tack vare sin mycket lägre beräkningsmässiga kostnad — särskilt för exempelvis inbyggda system. En ny studie demonstrerar också ett VQ-system med flera sektioner som åstadkommer prestanda i klass med DTW i en tillämpning på igenkänning av handskrivna signaturer, men till en mycket lägre beräkningsmässig kostnad. Att dra nytta av temporala mönster i en VQ-algoritm skulle kunna hjälpa till att förbättra sådana resultat ytterligare. SOTPAR2 är en sådan utökning av Neural Gas, en artificiell neural nätverk-algorithm för VQ. SOTPAR2 använder en konceptuellt enkel idé, baserad på att lägga till sidleds anslutningar mellan nätverksnoder och skapa “temporal aktivitet” som diffunderar genom anslutna noder. Aktiviteten gör sedan så att närmaste-granne-klassificeraren föredrar noder med hög aktivitet, och författarna till SOTPAR2 rapporterar förbättrade resultat jämfört med Neural Gas i en tillämpning på förutsägning av en tidsserie. I denna rapport undersöks hur samma utökning påverkar kvantiserings- och förutsägningsprestanda hos algoritmen självorganiserande inkrementellt neuralt nätverk (SOINN, eng: self-organizing incremental neural network). SOINN är en VQ-algorithm som automatiskt väljer en lämplig kodboksstorlek och också kan användas för klustring med godtyckliga klusterformer. Experimentella resultat visar att denna utökning inte förbättrar prestandan hos SOINN, istället försämrades prestandan i alla experiment som genomfördes. Detta resultat diskuteras, liksom inverkan av parametervärden på prestandan, och möjligt framtida arbete för att förbättra resultaten föreslås.
239

Modeling the intronic regulation of Alternative Splicing using Deep Convolutional Neural Nets / En metod baserad på djupa neurala nätverk för att modellera regleringen av Alternativ Splicing

Linder, Johannes January 2015 (has links)
This paper investigates the use of deep Convolutional Neural Networks for modeling the intronic regulation of Alternative Splicing on the basis of DNA sequence. By training the CNN on massively parallel synthetic DNA libraries of Alternative 5'-splicing and Alternatively Skipped exon events, the model is capable of predicting the relative abundance of alternatively spliced mRNA isoforms on held-out library data to a very high accuracy (R2 = 0.77 for Alt. 5'-splicing). Furthermore, the CNN is shown to generalize alternative splicing across cell lines efficiently. The Convolutional Neural Net is tested against a Logistic regression model and the results show that while prediction accuracy on the synthetic library is notably higher compared to the LR model, the CNN is worse at generalizing to new intronic contexts. Tests on non-synthetic human SNP genes suggest the CNN is dependent on the relative position of the intronic region it was trained for, a problem which is alleviated with LR. The increased library prediction accuracy of the CNN compared to Logistic regression is concluded to come from the non-linearity introduced by the deep layer architecture. It adds the capacity to model complex regulatory interactions and combinatorial RBP effects which studies have shown largely affect alternative splicing. However, the architecture makes interpreting the CNN hard, as the regulatory interactions are encoded deep within the layers. Nevertheless, high-performance modeling of alternative splicing using CNNs may still prove useful in numerous Synthetic biology applications, for example to model differentially spliced genes as is done in this paper. / Den här uppsatsen undersöker hur djupa neurala nätverk baserade på faltning ("Convolutions") kan användas för att modellera den introniska regleringen av Alternativ Splicing med endast DNA-sekvensen som indata. Nätverket tränas på ett massivt parallelt bibliotek av syntetiskt DNA innehållandes Alternativa Splicing-event där delar av de introniska regionerna har randomiserats. Uppsatsen visar att nätverksarkitekturen kan förutspå den relativa mängden alternativt splicat RNA till en mycket hög noggrannhet inom det syntetiska biblioteket. Modellen generaliserar även alternativ splicing mellan mänskliga celltyper väl. Hursomhelst, tester på icke-syntetiska mänskliga gener med SNP-mutationer visar att nätverkets prestanda försämras när den introniska region som används som indata flyttas i jämförelse till den relativa position som modellen tränats på. Uppsatsen jämför modellen med Logistic regression och drar slutsatsen att nätverkets förbättrade prestanda grundar sig i dess förmåga att modellera icke-linjära beroenden i datan. Detta medför dock svårigheter i att tolka vad modellen faktiskt lärt sig, eftersom interaktionen mellan reglerande element är inbäddat i nätverkslagren. Trots det kan högpresterande modellering av alternativ splicing med hjälp av neurala nät vara användbart, exempelvis inom Syntetisk biologi där modellen kan användas för att kontrollera regleringen av splicing när man konstruerar syntetiska gener.
240

Telecommunications Trouble Ticket Resolution Time Modelling with Machine Learning / Modellering av lösningstid för felanmälningar i telenät med maskininlärning

Björling, Axel January 2021 (has links)
This report explores whether machine learning methods such as regression and classification can be used with the goal of estimating the resolution time of trouble tickets in a telecommunications network. Historical trouble ticket data from Telenor were used to train different machine learning models. Three different machine learning classifiers were built: a support vector classifier, a logistic regression classifier and a deep neural network classifier. Three different machine learning regressors were also built: a support vector regressor, a gradient boosted trees regressor and a deep neural network regressor. The results from the different models were compared to determine what machine learning models were suitable for the problem. The most important features for estimating the trouble ticket resolution time were also investigated. Two different prediction scenarios were investigated in this report. The first scenario uses the information available at the time of ticket creation to make a prediction. The second scenario uses the information available after it has been decided whether a technician will be sent to the affected site or not. The conclusion of the work is that it is easier to make a better resolution time estimation in the second scenario compared to the first scenario. The differences in results between the different machine learning models were small. Future work can include more information and data about the underlying root cause of the trouble tickets, more weather data and power outage information in order to make better predictions. A standardised way of recording and logging ticket data is proposed to make a future trouble ticket time estimation easier and reduce the problem of missing data. / Den här rapporten undersöker om maskininlärningsmetoder som regression och klassificering kan användas för att uppskatta hur lång tid det tar att lösa en felanmälan i ett telenät. Data från tidigare felanmälningar användes för att träna olika maskininlärningsmodeller. Tre olika klassificerare byggdes: en support vector-klassificerare, en logistic regression-klassificerare och ett neuralt nätverk-klassificerare. Tre olika regressionsmodeller byggdes också: en support vector-regressor, en gradient boosted trees-regressor och ett neuralt nätverk-regressor. Resultaten från de olika modellerna jämfördes för att se vilken modell som är lämpligast för problemet. En undersökning om vilken information och vilka datavariabler som är viktigast för att uppskatta tiden det tar att lösa felanmälan utfördes också. Två olika scenarion för att uppskatta tiden har undersökts i rapporten. Det första scenariot använder informationen som är tillgänglig när en felanmälan skapas. Det andra scenariot använder informationen som finns tillgänglig efter det har bestämts om en tekniker ska skickas till den påverkade platsen. Slutsatsen av arbetet är att det är lättare att göra en bra tidsuppskattning i det andra scenariot jämfört med det första scenariot. Skillnaden i resultat mellan de olika maskininlärningsmodellerna var små. Framtida arbete inom ämnet kan använda information och data om de bakomliggande orsakerna till felanmälningarna, mer väderdata och information om elavbrott. En standardiserad metod för att samla in och logga data för varje felanmälan föreslås också för att göra framtida tidsuppskattningar bättre och undvika problemet med datapunkter som saknas.

Page generated in 0.0897 seconds