• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 200
  • 59
  • Tagged with
  • 259
  • 259
  • 210
  • 153
  • 150
  • 132
  • 119
  • 112
  • 100
  • 85
  • 83
  • 81
  • 68
  • 59
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Duplicate detection of multimodal and domain-specific trouble reports when having few samples : An evaluation of models using natural language processing, machine learning, and Siamese networks pre-trained on automatically labeled data / Dublettdetektering av multimodala och domänspecifika buggrapporter med få träningsexempel : En utvärdering av modeller med naturlig språkbehandling, maskininlärning, och siamesiska nätverk förtränade på automatiskt märkt data

Karlstrand, Viktor January 2022 (has links)
Trouble and bug reports are essential in software maintenance and for identifying faults—a challenging and time-consuming task. In cases when the fault and reports are similar or identical to previous and already resolved ones, the effort can be reduced significantly making the prospect of automatically detecting duplicates very compelling. In this work, common methods and techniques in the literature are evaluated and compared on domain-specific and multimodal trouble reports from Ericsson software. The number of samples is few, which is a case not so well-studied in the area. On this basis, both traditional and more recent techniques based on deep learning are considered with the goal of accurately detecting duplicates. Firstly, the more traditional approach based on natural language processing and machine learning is evaluated using different vectorization techniques and similarity measures adapted and customized to the domain-specific trouble reports. The multimodality and many fields of the trouble reports call for a wide range of techniques, including term frequency-inverse document frequency, BM25, and latent semantic analysis. A pipeline processing each data field of the trouble reports independently and automatically weighing the importance of each data field is proposed. The best performing model achieves a recall rate of 89% for a duplicate candidate list size of 10. Further, obtaining knowledge on which types of data are most important for duplicate detection is explored through what is known as Shapley values. Results indicate that utilizing all types of data indeed improve performance, and that date and code parameters are strong indicators. Secondly, a Siamese network based on Transformer-encoders is evaluated on data fields believed to have some underlying representation of the semantic meaning or sequentially important information, which a deep model can capture. To alleviate the issues when having few samples, pre-training through automatic data labeling is studied. Results show an increase in performance compared to not pre-training the Siamese network. However, compared to the more traditional model it performs on par, indicating that traditional models may perform equally well when having few samples besides also being simpler, more robust, and faster. / Buggrapporter är kritiska för underhåll av mjukvara och för att identifiera fel — en utmanande och tidskrävande uppgift. I de fall då felet och rapporterna liknar eller är identiska med tidigare och redan lösta ärenden, kan tiden som krävs minskas avsevärt, vilket gör automatiskt detektering av dubbletter mycket önskvärd. I detta arbete utvärderas och jämförs vanliga metoder och tekniker i litteraturen på domänspecifika och multimodala buggrapporter från Ericssons mjukvara. Antalet tillgängliga träningsexempel är få, vilket inte är ett så välstuderat fall. Utifrån detta utvärderas både traditionella samt nyare tekniker baserade på djupinlärning med målet att detektera dubbletter så bra som möjligt. Först utvärderas det mer traditionella tillvägagångssättet baserat på naturlig språkbearbetning och maskininlärning med hjälp av olika vektoriseringstekniker och likhetsmått specialanpassade till buggrapporterna. Multimodaliteten och de många datafälten i buggrapporterna kräver en rad av tekniker, så som termfrekvens-invers dokumentfrekvens, BM25 och latent semantisk analys. I detta arbete föreslås en modell som behandlar varje datafält i buggrapporterna separat och automatiskt sammanväger varje datafälts betydelse. Den bäst presterande modellen uppnår en återkallningsfrekvens på 89% för en lista med 10 dubblettkandidater. Vidare undersöks vilka datafält som är mest viktiga för dubblettdetektering genom Shapley-värden. Resultaten tyder på att utnyttja alla tillgängliga datafält förbättrar prestandan, och att datum och kodparametrar är starka indikatorer. Sedan utvärderas ett siamesiskt nätverk baserat på Transformator-kodare på datafält som tros ha en underliggande representation av semantisk betydelse eller sekventiellt viktig information, vilket en djup modell kan utnyttja. För att lindra de problem som uppstår med få träningssexempel, studeras det hur den djupa modellen kan förtränas genom automatisk datamärkning. Resultaten visar på en ökning i prestanda jämfört med att inte förträna det siamesiska nätverket. Men jämfört med den mer traditionella modellen presterar den likvärdigt, vilket indikerar att mer traditionella modeller kan prestera lika bra när antalet träningsexempel är få, förutom att också vara enklare, mer robusta, och snabbare.
252

Estimation of Voltage Drop in Power Circuits using Machine Learning Algorithms : Investigating potential applications of machine learning methods in power circuits design / Uppskattning av spänningsfall i kraftkretsar med hjälp av maskininlärningsalgoritmer : Undersöka potentiella tillämpningar av maskininlärningsmetoder i kraftkretsdesign

Koutlis, Dimitrios January 2023 (has links)
Accurate estimation of voltage drop (IR drop), in Application-Specific Integrated Circuits (ASICs) is a critical challenge, which impacts their performance and power consumption. As technology advances and die sizes shrink, predicting IR drop fast and accurate becomes increasingly challenging. This thesis focuses on exploring the application of Machine Learning (ML) algorithms, including Extreme Gradient Boosting (XGBoost), Convolutional Neural Network (CNN) and Graph Neural Network (GNN), to address this problem. Traditional methods of estimating IR drop using commercial tools are time consuming, especially for complex designs with millions of transistors. To overcome that, ML algorithms are investigated for their ability to provide fast and accurate IR drop estimation. This thesis utilizes electrical, timing and physical features of the ASIC design as input to train the ML models. The scalability of the selected features allows for their effective application across various ASIC designs with very few adjustments. Experimental results demonstrate the advantages of ML models over commercial tools, offering significant improvements in prediction speed. Notably, GNNs, such as Graph Convolutional Network (GCN) models showed promising performance with low prediction errors in voltage drop estimation. The incorporation of graph-structures models opens new fields of research for accurate IR drop prediction. The conclusions drawn emphasize the effectiveness of ML algorithms in accurately estimating IR drop, thereby optimizing ASIC design efficiency. The application of ML models enables faster predictions and noticeably reducing calculation time. This contributes to enhancing energy efficiency and minimizing environmental impact through optimised power circuits. Future work can focus on exploring the scalability of the models by training on a smaller portion of the circuit and extrapolating predictions to the entire design seems promising for more efficient and accurate IR drop estimation in complex ASIC designs. These advantages present new opportunities in the field and extend the capabilities of ML algorithms in the task of IR drop prediction. / Noggrann uppskattning av spänningsfallet (IR-fall), i ASIC är en kritisk utmaning som påverkar deras prestanda och strömförbrukning. När tekniken går framåt och formstorlekarna krymper, blir det allt svårare att förutsäga IR-fall snabbt och exakt. Denna avhandling fokuserar på att utforska tillämpningen av ML-algoritmer, inklusive XGBoost, CNN och GNN, för att lösa detta problem. Traditionella metoder för att uppskatta IR-fall med kommersiella verktyg är tidskrävande, särskilt för komplexa konstruktioner med miljontals transistorer. För att övervinna det undersöks ML-algoritmer för deras förmåga att ge snabb och exakt IR-falluppskattning. Denna avhandling använder elektriska, timing och fysiska egenskaper hos ASIC-designen som input för att träna ML-modellerna. Skalbarheten hos de valda funktionerna möjliggör deras effektiva tillämpning över olika ASIC-designer med mycket få justeringar. Experimentella resultat visar fördelarna med ML-modeller jämfört med kommersiella verktyg, och erbjuder betydande förbättringar i förutsägelsehastighet. Noterbart är att GNNs, såsom GCN-modeller, visade lovande prestanda med låga prediktionsfel vid uppskattning av spänningsfall. Införandet av grafstrukturmodeller öppnar nya forskningsfält för exakt IRfallförutsägelse. De slutsatser som dras betonar effektiviteten hos MLalgoritmer för att noggrant uppskatta IR-fall, och därigenom optimera ASICdesigneffektiviteten. Tillämpningen av ML-modeller möjliggör snabbare förutsägelser och märkbart minskad beräkningstid. Detta bidrar till att förbättra energieffektiviteten och minimera miljöpåverkan genom optimerade kraftkretsar. Framtida arbete kan fokusera på att utforska skalbarheten hos modellerna genom att träna på en mindre del av kretsen och att extrapolera förutsägelser till hela designen verkar lovande för mer effektiv och exakt IR-falluppskattning i komplexa ASIC-designer. Dessa fördelar ger nya möjligheter inom området och utökar kapaciteten hos ML-algoritmer i uppgiften att förutsäga IR-fall.
253

Time synchronization error detection in a radio access network / Tidssynkroniseringsfel upptäckt i ett radioåtkomstnätverk

Madana, Moulika January 2023 (has links)
Time synchronization is a process of ensuring all the time difference between the clocks of network components(like base stations, boundary clocks, grandmasters, etc.) in the mobile network is zero or negligible. It is one of the important factors responsible for ensuring effective communication between two user-equipments in a mobile network. Nevertheless, the presence of asymmetries can lead to faults, making the detection of these errors indispensable, especially in technologies demanding ultra-low latency, such as 5G technology. Developing methods to ensure time-synchronized mobile networks, would not only improve the network performance, and contribute towards cost-effective telecommunication infrastructure. A rulebased simulator to simulate the mobile network was built, using the rules provided by the domain experts, in order to generate more data for further studies. The possibility of using Reinforcement Learning to perform fault detection in the mobile network was explored. In addition to the simulator dataset, an unlabelled customer dataset, which consists of time error differences between the base stations, and additional features for each of its network components was provided. Classification algorithms to label the customer dataset were designed, and a comparative analysis of each of them has been presented. Mathematical algorithm and Graph Neural Network models were built to detect error, for both the simulator and customer dataset, for the faulty node detection task. The approach of using a Mathematical algorithm and Graph Neural Network architectures provided an accuracy of 95% for potential fault node detection. The feature importance of the additional features of the network components was analyzed using the best Graph Neural Network model which was used to train for the node classification task (to classify the base stations as faulty and non-faulty). Additionally, an attempt was made to predict the individual time error value for each of the links using Graph Neural Network, however, it failed potentially due to the presence of fewer features to train from. / Tidssynkronisering är en process för att säkerställa att all tidsskillnad mellan klockorna för nätverkskomponenter (som basstationer, gränsklockor, stormästare, etc.) i mobilnätet är noll eller försumbar. Det är en av de viktiga faktorerna som är ansvariga för att säkerställa effektiv kommunikation mellan två användarutrustningar i ett mobilnät. Icke desto mindre kan närvaron av asymmetrier leda till fel, vilket gör upptäckten av dessa fel oumbärlig, särskilt i tekniker som kräver ultralåg latens, som 5G-teknik. En regelbaserad simulator för att simulera mobilnätet byggdes, med hjälp av reglerna från domänexperterna, för att generera mer data för vidare studier. Möjligheten att använda RL för att utföra feldetektering i mobilnätet undersöktes. Utöver simulatordataset tillhandahölls en omärkt kunddatauppsättning, som består av tidsfelsskillnader mellan basstationerna och ytterligare funktioner för var och en av dess nätverkskomponenter. Klassificeringsalgoritmer för att märka kunddataset utformades, och en jämförande analys av var och en av dem har presenterats. Matematisk algoritm och GNN-modeller byggdes för att upptäcka fel, för både simulatorn och kunddatauppsättningen, för uppgiften att detektera felaktig nod. Metoden att använda en matematisk algoritm och GNN-arkitekturer gav en noggrannhet på 95% för potentiell felnoddetektering. Funktionens betydelse för de ytterligare funktionerna hos nätverkskomponenterna analyserades med den bästa GNN-modellen som användes för att träna för nodklassificeringsuppgiften (för att klassificera basstationerna som felaktiga och icke-felaktiga). Dessutom gjordes ett försök att förutsäga det individuella tidsfelsvärdet för var och en av länkarna med GNN, men det misslyckades potentiellt på grund av närvaron av färre funktioner att träna från.
254

Training a Neural Network using Synthetically Generated Data / Att träna ett neuronnät med syntetisktgenererad data

Diffner, Fredrik, Manjikian, Hovig January 2020 (has links)
A major challenge in training machine learning models is the gathering and labeling of a sufficiently large training data set. A common solution is the use of synthetically generated data set to expand or replace a real data set. This paper examines the performance of a machine learning model trained on synthetic data set versus the same model trained on real data. This approach was applied to the problem of character recognition using a machine learning model that implements convolutional neural networks. A synthetic data set of 1’240’000 images and two real data sets, Char74k and ICDAR 2003, were used. The result was that the model trained on the synthetic data set achieved an accuracy that was about 50% better than the accuracy of the same model trained on the real data set. / Vid utvecklandet av maskininlärningsmodeller kan avsaknaden av ett tillräckligt stort dataset för träning utgöra ett problem. En vanlig lösning är att använda syntetiskt genererad data för att antingen utöka eller helt ersätta ett dataset med verklig data. Denna uppsats undersöker prestationen av en maskininlärningsmodell tränad på syntetisk data jämfört med samma modell tränad på verklig data. Detta applicerades på problemet att använda ett konvolutionärt neuralt nätverk för att tyda tecken i bilder från ”naturliga” miljöer. Ett syntetiskt dataset bestående av 1’240’000 samt två stycken dataset med tecken från bilder, Char74K och ICDAR2003, användes. Resultatet visar att en modell tränad på det syntetiska datasetet presterade ca 50% bättre än samma modell tränad på Char74K.
255

Screw Hole Detection in Industrial Products using Neural Network based Object Detection and Image Segmentation : A Study Providing Ideas for Future Industrial Applications / Skruvhålsdetektering på Industriella Produkter med hjälp av Neurala Nätverksbaserade Objektdetektering och Bildsegmentering : En Studie som Erbjuder Ideér för Framtida Industriella Applikationer

Melki, Jakob January 2022 (has links)
This project is about screw hole detection using neural networks for automated assembly and disassembly. In a lot of industrial companies, such as Ericsson AB, there are products such as radio units or filters that have a lot of screw holes. Thus, the assembly and disassemble process is very time consuming and demanding for a human to assemble and disassemble the products. The problem statement in this project is to investigate the performance of neural networks within object detection and semantic segmentation to detect screw holes in industrial products. Different industrial models were created and synthetic data was generated in Blender. Two types of experiments were done, the first one compared an object detection algorithm (Faster R-CNN) with a semantic segmentation algorithm (SegNet) to see which area is most suitable for hole detection. The results showed that semantic segmentation outperforms object detection when it comes to detect multiple small holes. The second experiment was to further investigate about semantic segmentation algorithms by adding U-Net, PSPNet and LinkNet into the comparison. The networks U-Net and LinkNet were the most successful ones and achieved a Mean Intersection over Union (MIoU) of around 0.9, which shows that they have potential for further development. Thus, conclusions draw in this project are that segmentation algorithms are more suitable for hole detection than object detection algorithms. Furthermore, it shows that there is potential in neural networks within semantic segmentation to detect screw holes because of the results of U-Net and LinkNet. Future work that one can do is to create more advanced product models, investigate other segmentation networks and hyperparameter tuning. / Det här projektet handlar om skruvhålsdetektering genom att använda neurala nätverk för automatiserad montering och demontering. I många industriföretag, såsom Ericsson AB, finns det många produkter som radioenheter eller filter som har många skruvhål. Därmed, är monterings - och demonteringsprocessen väldigt tidsfördröjande och krävande för en människa att montera och demontera produkterna. Problemformuleringen i detta projekt är att undersöka prestationen av olika neurala nätverk inom objekt detektering och semantisk segmentering för skurvhålsdetektering på indutriella produkter. Olika indutriella modeller var skapade och syntetisk data var genererat i Blender. Två typer av experiment gjordes, den första jämförde en objekt detekterings algoritm (Faster R-CNN) med en semantisk segmenterigs algoritm för att vilket område som är mest lämplig för hål detektering. Resultaten visade att semantisk segmentering utpresterar objekt detektering när det kommer till att detektera flera små hål. Det andra experimentet handlade om att vidare undersöka semantiska segmenterings algoritmer genom att addera U-Net, PSPNet och LinkNet till jämförelsen. Nätverken U-Net och PSPNet var de mest framgångsrika och uppnåde en Mean Intersection over Union (MIoU) på cirka 0.9, vilket visar på att de har potential för vidare utveckling. Slutsatserna inom detta projekt är att semantisk segmentering är mer lämplig för hål detektering än objekt detektering. Dessutom, visade sig att det finns potential i neurala nätverk inom semantisk segmentering för att detejtera skruvhål på grund av resultaten av U-Net och LinkNet. Framtida arbete som man kan göra är att skapa flera avancerade produkt modeller, undersöka andra segmenterisk nätverk och hyperparameter tuning.
256

Deep Reinforcement Learning for Multi-Agent Path Planning in 2D Cost Map Environments : using Unity Machine Learning Agents toolkit

Persson, Hannes January 2024 (has links)
Multi-agent path planning is applied in a wide range of applications in robotics and autonomous vehicles, including aerial vehicles such as drones and other unmanned aerial vehicles (UAVs), to solve tasks in areas like surveillance, search and rescue, and transportation. In today's rapidly evolving technology in the fields of automation and artificial intelligence, multi-agent path planning is growing increasingly more relevant. The main problems encountered in multi-agent path planning are collision avoidance with other agents, obstacle evasion, and pathfinding from a starting point to an endpoint. In this project, the objectives were to create intelligent agents capable of navigating through two-dimensional eight-agent cost map environments to a static target, while avoiding collisions with other agents and simultaneously minimizing the path cost. The method of reinforcement learning was used by utilizing the development platform Unity and the open-source ML-Agents toolkit that enables the development of intelligent agents with reinforcement learning inside Unity. Perlin Noise was used to generate the cost maps. The reinforcement learning algorithm Proximal Policy Optimization was used to train the agents. The training was structured as a curriculum with two lessons, the first lesson was designed to teach the agents to reach the target, without colliding with other agents or moving out of bounds. The second lesson was designed to teach the agents to minimize the path cost. The project successfully achieved its objectives, which could be determined from visual inspection and by comparing the final model with a baseline model. The baseline model was trained only to reach the target while avoiding collisions, without minimizing the path cost. A comparison of the models showed that the final model outperformed the baseline model, reaching an average of $27.6\%$ lower path cost. / Multi-agent-vägsökning används inom en rad olika tillämpningar inom robotik och autonoma fordon, inklusive flygfarkoster såsom drönare och andra obemannade flygfarkoster (UAV), för att lösa uppgifter inom områden som övervakning, sök- och räddningsinsatser samt transport. I dagens snabbt utvecklande teknik inom automation och artificiell intelligens blir multi-agent-vägsökning allt mer relevant. De huvudsakliga problemen som stöts på inom multi-agent-vägsökning är kollisioner med andra agenter, undvikande av hinder och vägsökning från en startpunkt till en slutpunkt. I detta projekt var målen att skapa intelligenta agenter som kan navigera genom tvådimensionella åtta-agents kostnadskartmiljöer till ett statiskt mål, samtidigt som de undviker kollisioner med andra agenter och minimerar vägkostnaden. Metoden förstärkningsinlärning användes genom att utnyttja utvecklingsplattformen Unity och Unitys open-source ML-Agents toolkit, som möjliggör utveckling av intelligenta agenter med förstärkningsinlärning inuti Unity. Perlin Brus användes för att generera kostnadskartorna. Förstärkningsinlärningsalgoritmen Proximal Policy Optimization användes för att träna agenterna. Träningen strukturerades som en läroplan med två lektioner, den första lektionen var utformad för att lära agenterna att nå målet, utan att kollidera med andra agenter eller röra sig utanför gränserna. Den andra lektionen var utformad för att lära agenterna att minimera vägkostnaden. Projektet uppnådde framgångsrikt sina mål, vilket kunde fastställas genom visuell inspektion och genom att jämföra den slutliga modellen med en basmodell. Basmodellen tränades endast för att nå målet och undvika kollisioner, utan att minimera vägen kostnaden. En jämförelse av modellerna visade att den slutliga modellen överträffade baslinjemodellen, och uppnådde en genomsnittlig $27,6\%$ lägre vägkostnad.
257

From Pixels to Predators: Wildlife Monitoring with Machine Learning / Från Pixlar till Rovdjur: Viltövervakning med Maskininlärning

Eriksson, Max January 2024 (has links)
This master’s thesis investigates the application of advanced machine learning models for the identification and classification of Swedish predators using camera trap images. With the growing threats to biodiversity, there is an urgent need for innovative and non-intrusive monitoring techniques. This study focuses on the development and evaluation of object detection models, including YOLOv5, YOLOv8, YOLOv9, and Faster R-CNN, aiming to enhance the surveillance capabilities of Swedish predatory species such as bears, wolves, lynxes, foxes, and wolverines. The research leverages a dataset from the NINA database, applying data preprocessing and augmentation techniques to ensure robust model training. The models were trained and evaluated using various dataset sizes and conditions, including day and night images. Notably, YOLOv8 and YOLOv9 underwent extended training for 300 epochs, leading to significant improvements in performance metrics. The performance of the models was evaluated using metrics such as mean Average Precision (mAP), precision, recall, and F1-score. YOLOv9, with its innovative Programmable Gradient Information (PGI) and GELAN architecture, demonstrated superior accuracy and reliability, achieving an F1-score of 0.98 on the expanded dataset. The research found that training models on images captured during both day and night jointly versus separately resulted in only minor differences in performance. However, models trained exclusively on daytime images showed slightly better performance due to more consistent and favorable lighting conditions. The study also revealed a positive correlation between the size of the training dataset and model performance, with larger datasets yielding better results across all metrics. However, the marginal gains decreased as the dataset size increased, suggesting diminishing returns. Among the species studied, foxes were the least challenging for the models to detect and identify, while wolves presented more significant challenges, likely due to their complex fur patterns and coloration blending with the background.
258

Applied Machine Learning Predicts the Postmortem Interval from the Metabolomic Fingerprint

Arpe, Jenny January 2024 (has links)
In forensic autopsies, accurately estimating the postmortem interval (PMI) is crucial. Traditional methods, relying on physical parameters and police data, often lack precision, particularly after approximately two days have passed since the person's death. New methods are increasingly focusing on analyzing postmortem metabolomics in biological systems, acting as a 'fingerprint' of ongoing processes influenced by internal and external molecules. By carefully analyzing these metabolomic profiles, which span a diverse range of information from events preceding death to postmortem changes, there is potential to provide more accurate estimates of the PMI. The limitation of available real human data has hindered comprehensive investigation until recently. Large-scale metabolomic data collected by the National Board of Forensic Medicine (RMV, Rättsmedicinalverket) presents a unique opportunity for predictive analysis in forensic science, enabling innovative approaches for improving  PMI estimation. However, the metabolomic data appears to be large, complex, and potentially nonlinear, making it difficult to interpret. This underscores the importance of effectively employing machine learning algorithms to manage metabolomic data for the purpose of PMI predictions, the primary focus of this project.  In this study, a dataset consisting of 4,866 human samples and 2,304 metabolites from the RMV was utilized to train a model capable of predicting the PMI. Random Forest (RF) and Artificial Neural Network (ANN) models were then employed for PMI prediction. Furthermore, feature selection and incorporating sex and age into the model were explored to improve the neural network's performance.  This master's thesis shows that ANN consistently outperforms RF in PMI estimation, achieving an R2 of 0.68 and an MAE of 1.51 days compared to RF's R2 of 0.43 and MAE of 2.0 days across the entire PMI-interval. Additionally, feature selection indicates that only 35% of total metabolites are necessary for comparable results with maintained predictive accuracy. Furthermore, Principal Component Analysis (PCA) reveals that these informative metabolites are primarily located within a specific cluster on the first and second principal components (PC), suggesting a need for further research into the biological context of these metabolites.  In conclusion, the dataset has proven valuable for predicting PMI. This indicates significant potential for employing machine learning models in PMI estimation, thereby assisting forensic pathologists in determining the time of death. Notably, the model shows promise in surpassing current methods and filling crucial gaps in the field, representing an important step towards achieving accurate PMI estimations in forensic practice. This project suggests that machine learning will play a central role in assisting with determining time since death in the future.
259

Revision of an artificial neural network enabling industrial sorting

Malmgren, Henrik January 2019 (has links)
Convolutional artificial neural networks can be applied for image-based object classification to inform automated actions, such as handling of objects on a production line. The present thesis describes theoretical background for creating a classifier and explores the effects of introducing a set of relatively recent techniques to an existing ensemble of classifiers in use for an industrial sorting system.The findings indicate that it's important to use spatial variety dropout regularization for high resolution image inputs, and use an optimizer configuration with good convergence properties. The findings also demonstrate examples of ensemble classifiers being effectively consolidated into unified models using the distillation technique. An analogue arrangement with optimization against multiple output targets, incorporating additional information, showed accuracy gains comparable to ensembling. For use of the classifier on test data with statistics different than those of the dataset, results indicate that augmentation of the input data during classifier creation helps performance, but would, in the current case, likely need to be guided by information about the distribution shift to have sufficiently positive impact to enable a practical application. I suggest, for future development, updated architectures, automated hyperparameter search and leveraging the bountiful unlabeled data potentially available from production lines.

Page generated in 0.0612 seconds