• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 1
  • Tagged with
  • 15
  • 7
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Matériaux « uniques » pour cellules solaires organiques mono-composant / « Unique » materials for single-component organic solar cells

Labrunie, Antoine 18 December 2017 (has links)
Au cours des dernières années, le développement des cellules organiques à réseaux interpénétrés a permis d’améliorer les rendements de conversion photovoltaïque (PV). Ces dispositifs incorporent une couche active constituée d’un mélange d’un matériau donneur d’électron (D) et d’un matériau accepteur d’électron (A). La réalisation de ces cellules requiert une optimisation minutieuse de ce mélange et de la morphologie de cette couche photo-active qui en résulte. Cette dernière peut cependant évoluer spontanément vers une ségrégation de phase, généralement délétère pour les performances PV. Une solution possible, et relativement peu étudiée, consiste à lier chimiquement le donneur D et l’accepteur A par un espaceur non-conjugué. Les travaux décrits dans ce manuscrit portent sur la synthèse et la caractérisation d’assemblages moléculaires de type D-σ-A ainsi que leur utilisation comme matériau dit « unique » pour la fabrication de cellules solaires organiques mono composant. Une première famille de dyades et triades à base d’un bloc donneur de type quaterthiophène a été étudiée. Cette partie décrit la méthodologie générale d’assemblage des blocs D et A via une réaction de cycloaddition de type Huisgen. Au cours des chapitres suivant, plusieurs dyades basées sur un bloc donneur « push-pull » ont été synthétisées puis caractérisées. Les performances PV de ces composés ont été évaluées au sein de cellules solaires mono-composant et les meilleurs rendements de conversion, atteignant 1.4 %, rivalisent avec l’état de l’art. / Over the last few years, the development of bulk heterojunction organic solar cells (BHJ OSCs) led to significant increase in photovoltaic (PV) efficiency. Such devices are based on interpenetrated networks of an electron-donor material (D) and an electron-acceptor material (A) constituting the active layer. Nevertheless a careful optimization of the morphology is required to reach high power conversion efficiency. Furthermore, this optimized morphology can evolve towards spontaneous phase segregation which can be detrimental for the PV performances. To circumvent these limitations, a relatively unexplored approach relies on the use of a material where the donor and the acceptor moieties are covalently linked to each other through a nonconjugated π-connector. In this context, the work reported herein describes the synthesis and characterization of various molecular D-σ-A assemblies, as well as their preliminary evaluation as “unique” material for the realisation of single component organic solar cells (SC-OSCs). A first family of dyads and triads, based on quaterthiophene moieties as donor block, was studied. A general methodology to assemble the two D and A blocks via a Huisgen-type click-chemistry is described. Then, in the next chapters, several dyads based on a “push-pull” donor block have been synthesized and characterized. The PV performances of these compounds have been evaluated in SC-OSCs leading to power conversion efficiency up to 1.4 %, a value close to the state of the art.
12

Excited State Properties in Dicyanovinyl-Oligothiophene Donor Materials for Small Molecule Organic Solar Cells

Ziehlke, Hannah 11 April 2012 (has links) (PDF)
Key issues in improving small molecule organic solar cells (SMOSC) are the need for new absorber materials and optimized active layer morphology. This thesis deals with the improvement of SMOSC on the donor material side. Promising donor materials (D) are provided by dicyanovinyl endcapped oligothiophenes DCV2-nT (n = 3, . . . , 6) synthesized in the group of Prof. Bäuerle at the University of Ulm. Here, DCV2-nT (n = 3, 5) with different alkyl side chains are characterized. Side chain variations mainly influence the aggregation of molecules in pristine films as well as in blend films with the commonly used acceptor (A) fullerene C60. With changes in the layer morphology, important physical properties in thin film like absorption spectra, energy levels, as well as excited state properties are changed. The focus of this work are excited state properties accessed by photoinduced absorption spectroscopy (PIA). PIA probes the long living excited states in pristine and blend films, i. e. triplet excitons, anions, and cations. For a series of four dicyanovinyl-terthiophenes DCV2-3T (without side chains, with two methyl, two butyl, and four butyl side chains) a systematic study of the effect of alkyl side chains on the aggregation in neat and blend film is discussed. In consequence the efficiency of the energy transfer mechanism between DCV2-3T and C60 is affected. It turns out that in solution spectra and cyclic voltammetry (CV) measurements, the variation of alkyl side chains has almost no influence. However, in thin film there is strong impact on the molecular arrangement confirmed by strongly varying absorption spectra, ionization potentials, and surface roughnesses. Furthermore, PIA measurements reveal that the energy transfer efficiency between D and A in general decreases with increasing side chain length, but is most efficient for a compound with methyl side chains. For blends of dicyanovinyl-quinquethiophenes (DCV2-5T) with C60, the layer morphology is influenced by two different methods. On one hand substrate heating is applied while deposition of the active layer, on the other hand DCV2-5Ts with different alkyl side chains (four methyl and four butyl side chains) are used. Deposition on a heated substrate (80°C) results in an improved solar cell performance, assigned to the formation of a sufficient phase separation of D and A phase in the active layer. This leads to reduced recombination losses and closed percolation paths. The morphological change can be correlated to an increased lifetime of cations. In blends deposited on a heated substrate, the donor cation lifetime increases by almost one order of magnitude from around 10 μs to ≈ 80 μs. This increase of carrier lifetime is both detected optically by PIA as well as electrically by impedance spectroscopy. The increase in lifetime is consequently assigned to a better spatial separation of positive and negative charges induced by the phase separation. Comparing DCV2-5T with methyl and butyl side chains results in a similar effect: The dicyanovinyl-quinquethiophene with methyl side chains leads to an improved solar cell device performance compared to devices comprising the compound with butyl side chains as donor. The improved device performance is again accompanied by an increase in cation lifetime detected by PIA. / Die Entwicklung neuer Absorber-Materialien sowie die Morphologie der photo- aktiven Schicht sind zentrale Themen hinsichtlich der Optimierung organischer Solarzellen aus kleinen Molekülen. In der vorliegenden Arbeit werden diese beiden Aspekte von Seiten des Donor-Materials (D) her behandelt. Die Material- klasse der Dicyanovinyl-Oligothiophene DCV2-nT(n=3,...,6) (synthetisiert in der Arbeitsgruppe von Prof. Bäuerle an der Universität Ulm) dient dabei als Ausgangspunkt. Insbesondere werden DCV2-nT-Moleküle (n = 3, 5) mit verschiedenen Alkyl-Seitenketten charakterisiert. Die Variation der Seitenketten beeinflusst in erster Linie die Anordnung der Moleküle in Einzel- sowie in Mischschichten mit dem typischerweise verwendeten Akzeptor-Material Fulleren C60 (A). Als Folge der Schichtmorphologie ändern sich physikalische Eigenschaften wie u. a. Absorptions- spektren, Energieniveaus sowie die Eigenschaften angeregter Zustände. Angeregte Zustände, wie Triplett-Exzitonen, Anionen und Kationen werden in dieser Arbeit mittels photoinduzierter Absorptionsspektroskopie (PIA) charakterisiert. Anhand einer Serie von vier Dicyanovinyl-Tertiophenen DCV2-3T (ohne Seiten- ketten, mit zwei Methyl-, zwei Butyl-, und vier Butyl-Seitenketten) werden systematisch Einflüsse der Seitenketten auf die Aggregation der Moleküle in Einzel- und Mischschichten untersucht. Besonderes Augenmerk liegt dabei auf dem Effekt der Seitenketten auf den Energie-Transfer-Mechanismus zwischen D und A. In Lösungsmittelspektren und Cyclovoltammetrie-Messungen ist fast keine Änderung durch die Seitenketten erkennbar. Im Dünnfilm hingegen besteht ein starker Einfluss auf die molekulare Anordnung, erkennbar in einer starken Variation der Absorptionsspektren, Ionisationspotentiale und Oberflächen-Topographie. PIA- Messungen zeigen weiterhin, dass im Allgemeinen die Effizienz des Energie-Transfer- Mechanismus mit zunehmender Länge der Alkyl-Ketten abnimmt. Der effizienteste Transfer besteht jedoch für die Verbindung mit Methyl-Seitenketten. In Mischschichten aus Dicyanovinyl-Quinquethiophenen (DCV2-5T) und C60 werden hier zwei Methoden zur Beeinflussung der Schichtmorphologie verfolgt. Zum einen wird die aktive Schicht auf einem geheizten Substrat abgeschieden, zum anderen werden DCV2-5T-Moleküle mit Methyl- und Butyl-Seitenketten als Donor verwendet. Das Abscheiden der aktiven Schicht auf einem geheizten Substrat (80 °C) führt zu einer verbesserten Solarzellenleistung, was auf die Bildung einer hin- reichenden Phasenseparation von D- und A-Phasen in der aktiven Schicht zurückzuführen ist. Die Phasenseparation bewirkt eine Reduktion von Rekombinationsverlusten und die Bildung geschlossener Perkolationspfade. Die morphologische Änderung korreliert mit einem Anstieg der Ladungsträger-Lebensdauer um fast eine Größenordnung von etwa 10 μs auf ≈ 80 μs. Der Anstieg kann sowohl optisch durch PIA, als auch elektrisch mittels Impedanz-Spektroskopie detektiert werden. Eine höhere Lebensdauer der Ladungsträger kann letztlich auf eine größere räumlichen Separation der positiven und negativen Ladungsträger zurückgeführt werden, induziert durch die Phasenseparation. Ein Vergleich von DCV2-5T-Molekülen mit Methyl- und Butyl-Seitenketten führt zu ähnlichen Resultaten: Solarzellen mit DCV2-5T substituiert mit Methyl- Seitenketten sind effizienter als die der butyl-substituierten Moleküle. Dies korreliert wiederum mit einer signifikant erhöhten Lebensdauer der Ladungsträger in Mischschichten der methyl-substituierten Verbindung.
13

Self-Assembly and Electronic Properties of π-expanded Macrocycles

Cojal Gonzalez, Jose David 06 July 2018 (has links)
In der vorliegenden Dissertation werden das Selbstaggregationsverhalten und die elektronischen Eigenschaften von vier expandierten pi-konjugierten Makrozyklen in geordnete supramolekulare Architekturen mit Hilfe von Rastertunnelmikroskopie (STM) und Tunnelspektroskopie (STS) an Fest-Flüssig-Grenzflächen zwischen organischen Moleküllösungen und der Basalfläche von Graphit untersucht. Zwei Makrozyklen sind die Fotoisomere Z,Z–8T6A und E,E–8T6A, in denen sechs Ethynylengruppen und zwei cis- bzw. trans-Ethylen erhalten sind. STM-Bilder zeigen 2-dimensionale hexagonale Gitter. Strom-Spannungs-Kennlinien bestätigten den erwarteten donor-artigen Charakter der Makrozyklen. Das Schalten von Z,Z–8T6A zu E,E–8T6A wird durch STS zyklische Messungen angezeigt, nachdem die stabilste kationische Spezies ausgebildet wurde. Diese Ergebnisse stellen das erste elektrochemische Schalten unter Standard STM Bedingungen dar. Außerdem wurden die Photoisomerisierungen zwischen Z,Z-8T6A und E,E-8T6A an der Fest-Flüssig-Grenzfläche beobachtet. Eine selbstorganisierte Monoschicht aus Wasserstoffbrücken-gebundenen Trimesinsäuren an der Fest-Flüssig-Grenzfläche bildet Wirtsstellen für die epitaktische Anordnung von Fullerenen mit E,E–8T6A Komplexen in Mono- und Doppelschichten aus. Mit Hilfe der STM-Tomographie wird die Bildung der Templatschicht überprüft. Die Konformationsstabilität und die Adsorptionsstellen der Monoschichten werden mit der Hilfe von Molekulardynamik-Simulation bestätigt. Die STS-Experimente zeigen die Modifikation der gleichrichtenden Eigenschaften der Makrozyklen durch die Bildung von Donor-Akzeptor-Komplexen in einer dicht gepackten, selbstorganisierten supramolekularen Nanostruktur. Die Kombination von Wirt-Gast-Komplexen mit der Schaltfähigkeit und den elektronischen Transporteigenschafte von makrozyklischen Oligothiophenen prädestinieren diese als Kandidaten für Anwendungen in supramolekular konstruierten Systemen mit gewünschten (opto)elektronischen Eigenschaften. / The present thesis concerns to the self-assembly and the electronic properties of four pi-expanded macrocycles into ordered supramolecular architectures, investigated by means of scanning tunneling microscopy (STM) and spectroscopy (STS) at the solid-liquid interface between organic solutions and the basal plane of graphite. Two macrocycles are the photoisomers Z,Z–8T6A and E,E–8T6A, which contain six ethynylenes and two cis- and trans-ethylenes in opposite positions of the ring, respectively. STM images reveal hexagonally ordered 2D-networks. Current–voltage characteristics confirm the expected donor-like character of the macrocycles. Cyclic STS measurements indicate that Z,Z–8T6A switches to E,E–8T6A after formation of a most stable cationic species. This result represents the first reported electrochemical switching experiment under standard STM conditions. Additionally, the reversible photoisomerization between Z,Z-8T6A and E,E-8T6A upon irradiation was recognized at the solid-liquid interface. Moreover, a self-assembled monolayer of hydrogen-bonded trimesic acid at the solid-liquid interface provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with E,E–8T6A macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layer, while molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. STS measurements reveal the modification of the rectifying properties of the macrocycles by the formation of donor-acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure. The combination of host-guest complexation and the switching capabilities and electronics transport characteristics of cyclic oligothiophenes render them candidates for applications in the study of supramolecular engineered systems with desirable (opto)electronic properties.
14

Precious Metal-free Dye-sensitized Solar Cells

Anwar, Hafeez 29 November 2013 (has links)
Exploring new technologies that can meet the world’s energy demands in an efficient and clean manner is critically important due to the depletion of natural resources and environmental concerns. Dye-sensitized solar cells (DSSCs) are low-cost and clean technology options that use solar energy efficiently and are being intensively studied. How to further reduce the cost of this technology while enhancing device performance is one of the demanding issues for large scale application and commercialization of DSSCs. In this research dissertation, four main contributions are made in this regard with the motivation to reduce further cost of DSSC technology. Firstly, ~10% efficiencies were achieved after developing understanding of key concepts and procedures involved in DSSCs fabrication. These efficiencies were achieved after step-by-step modifications in the DSSC design. Secondly, carbon nanotubes (CNTs) were successfully employed as an alternative to Pt in the counter electrodes of DSSCs. DSSCs fabricated with CNTs were ~86% as efficient as Pt-based cells. Non-aligned CNTs were successfully grown using four different CVD methods and finally, multi-walled vertically aligned CNTs (MW-VACNTs) were synthesized using water-assisted chemical vapor deposition (WA-CVD). Thirdly, carbon derived from pyrolysis of nanocrystalline cellulose (NCC) was successfully employed in counter electrodes of DSSCs instead of Pt. DSSCs with NCC were ~58% as efficient as Pt-based DSSCs. Fourthly, novel organic metal-free dyes were designed and employed instead of commonly used Ru-based dyes. DSSCs with these novel sensitizers were ~62% as efficient as those using the conventional Ru-based dyes. Characterization techniques including current-voltage measurements, scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetery (CV), thermogravimetric analysis (TGA), small angle x-ray scattering (SAXS), atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS) were used.
15

Excited State Properties in Dicyanovinyl-Oligothiophene Donor Materials for Small Molecule Organic Solar Cells

Ziehlke, Hannah 27 February 2012 (has links)
Key issues in improving small molecule organic solar cells (SMOSC) are the need for new absorber materials and optimized active layer morphology. This thesis deals with the improvement of SMOSC on the donor material side. Promising donor materials (D) are provided by dicyanovinyl endcapped oligothiophenes DCV2-nT (n = 3, . . . , 6) synthesized in the group of Prof. Bäuerle at the University of Ulm. Here, DCV2-nT (n = 3, 5) with different alkyl side chains are characterized. Side chain variations mainly influence the aggregation of molecules in pristine films as well as in blend films with the commonly used acceptor (A) fullerene C60. With changes in the layer morphology, important physical properties in thin film like absorption spectra, energy levels, as well as excited state properties are changed. The focus of this work are excited state properties accessed by photoinduced absorption spectroscopy (PIA). PIA probes the long living excited states in pristine and blend films, i. e. triplet excitons, anions, and cations. For a series of four dicyanovinyl-terthiophenes DCV2-3T (without side chains, with two methyl, two butyl, and four butyl side chains) a systematic study of the effect of alkyl side chains on the aggregation in neat and blend film is discussed. In consequence the efficiency of the energy transfer mechanism between DCV2-3T and C60 is affected. It turns out that in solution spectra and cyclic voltammetry (CV) measurements, the variation of alkyl side chains has almost no influence. However, in thin film there is strong impact on the molecular arrangement confirmed by strongly varying absorption spectra, ionization potentials, and surface roughnesses. Furthermore, PIA measurements reveal that the energy transfer efficiency between D and A in general decreases with increasing side chain length, but is most efficient for a compound with methyl side chains. For blends of dicyanovinyl-quinquethiophenes (DCV2-5T) with C60, the layer morphology is influenced by two different methods. On one hand substrate heating is applied while deposition of the active layer, on the other hand DCV2-5Ts with different alkyl side chains (four methyl and four butyl side chains) are used. Deposition on a heated substrate (80°C) results in an improved solar cell performance, assigned to the formation of a sufficient phase separation of D and A phase in the active layer. This leads to reduced recombination losses and closed percolation paths. The morphological change can be correlated to an increased lifetime of cations. In blends deposited on a heated substrate, the donor cation lifetime increases by almost one order of magnitude from around 10 μs to ≈ 80 μs. This increase of carrier lifetime is both detected optically by PIA as well as electrically by impedance spectroscopy. The increase in lifetime is consequently assigned to a better spatial separation of positive and negative charges induced by the phase separation. Comparing DCV2-5T with methyl and butyl side chains results in a similar effect: The dicyanovinyl-quinquethiophene with methyl side chains leads to an improved solar cell device performance compared to devices comprising the compound with butyl side chains as donor. The improved device performance is again accompanied by an increase in cation lifetime detected by PIA.:Contents Publications 1. Introduction 2. Organic semiconductors 2.1. Introduction 2.2. Optical excitations in organic semiconductors 2.2.1. Energy levels: single molecules to molecular solids 2.2.2. Absorption and emission spectra 2.3. Transport in organic semiconductors 2.3.1. Exciton motion 2.3.2. Charge transport 2.3.3. Amorphous organic semiconductors 3. Organic photovoltaics 3.1. Introduction 3.2. Solarenergyconversion 3.2.1. Quasi Fermi levels 3.2.2. p-n junction 3.3. Organic solar cells 3.3.1. Charge generation mechanisms 4. Experimental methods 4.1. Sample preparation 4.2. Photoinduced absorption spectroscopy 4.2.1. PIA setup 4.2.2. Recombination dynamics 4.3. Solar cell characterization 4.3.1. External quantum efficiency 4.3.2. J-V characteristics 4.4. Absorption and emission spectroscopy 4.5. Determination of energy levels 4.5.1. Ultraviolet photo electron emission spectroscopy 4.5.2. Cyclic voltammetry 4.6. Atomic force microscopy 4.7. Density functional theory calculations 4.8. Impedance spectroscopy 5. Dicyanovinyl-oligothiophenes 5.1. Introduction 5.2. The DCV2-nT:C60 interface 5.3. Processability 6. Side chain variations on DCV2-3T 6.1. Introduction 6.2. Density functional theory calculations 6.2.1. Excited state transitions 6.3. Absorption and Emission in solution and thin film 6.3.1. Blend layer absorption spectra 6.3.2. Photoluminescence spectra of neat and blend films 6.4. Energy levels of the DCV2-3T series 6.5. Atomic force microscopy 6.6. Photoinduced absorption spectroscopy 6.6.1. PIA signatures of charged states 6.6.2. Recombination dynamics 6.6.3. Efficiency of the ping pong effect 6.7. Conclusion 7. Influencing the morphology of DCV2-5T:C60 blend layers 7.1. Introduction 7.2. Properties of the DCV2-5T:C60 interface 7.2.1. Analysis of the DCV2-5T triplet transition 7.2.2. Analysis of the DCV2-5T cation transitions 7.2.3. Suggested energy level scheme for neat and blend layer 7.3. Temperature evolution of excited state properties 7.4. Effect of substrate heating on excited state lifetime and generation rate 7.4.1. Solar cell devices 7.4.2. Photoinduced absorption 7.4.3. Impedance spectroscopy 7.5. Conclusion 8. Side chain variations on DCV2-5T 8.1. Introduction 8.2. Atomic force microscopy 8.3. Energy levels 8.4. Mip solar cells 8.4.1. Flat heterojunctions 8.4.2. Bulk heterojunctions 8.4.3. Discussion of Voc 8.5. Photoinduced absorption 8.5.1. Comparison at room temperature 8.6. Conclusion 9. Conclusion and Outlook 9.1. Conclusion 9.2. Outlook A. Appendix Bibliography / Die Entwicklung neuer Absorber-Materialien sowie die Morphologie der photo- aktiven Schicht sind zentrale Themen hinsichtlich der Optimierung organischer Solarzellen aus kleinen Molekülen. In der vorliegenden Arbeit werden diese beiden Aspekte von Seiten des Donor-Materials (D) her behandelt. Die Material- klasse der Dicyanovinyl-Oligothiophene DCV2-nT(n=3,...,6) (synthetisiert in der Arbeitsgruppe von Prof. Bäuerle an der Universität Ulm) dient dabei als Ausgangspunkt. Insbesondere werden DCV2-nT-Moleküle (n = 3, 5) mit verschiedenen Alkyl-Seitenketten charakterisiert. Die Variation der Seitenketten beeinflusst in erster Linie die Anordnung der Moleküle in Einzel- sowie in Mischschichten mit dem typischerweise verwendeten Akzeptor-Material Fulleren C60 (A). Als Folge der Schichtmorphologie ändern sich physikalische Eigenschaften wie u. a. Absorptions- spektren, Energieniveaus sowie die Eigenschaften angeregter Zustände. Angeregte Zustände, wie Triplett-Exzitonen, Anionen und Kationen werden in dieser Arbeit mittels photoinduzierter Absorptionsspektroskopie (PIA) charakterisiert. Anhand einer Serie von vier Dicyanovinyl-Tertiophenen DCV2-3T (ohne Seiten- ketten, mit zwei Methyl-, zwei Butyl-, und vier Butyl-Seitenketten) werden systematisch Einflüsse der Seitenketten auf die Aggregation der Moleküle in Einzel- und Mischschichten untersucht. Besonderes Augenmerk liegt dabei auf dem Effekt der Seitenketten auf den Energie-Transfer-Mechanismus zwischen D und A. In Lösungsmittelspektren und Cyclovoltammetrie-Messungen ist fast keine Änderung durch die Seitenketten erkennbar. Im Dünnfilm hingegen besteht ein starker Einfluss auf die molekulare Anordnung, erkennbar in einer starken Variation der Absorptionsspektren, Ionisationspotentiale und Oberflächen-Topographie. PIA- Messungen zeigen weiterhin, dass im Allgemeinen die Effizienz des Energie-Transfer- Mechanismus mit zunehmender Länge der Alkyl-Ketten abnimmt. Der effizienteste Transfer besteht jedoch für die Verbindung mit Methyl-Seitenketten. In Mischschichten aus Dicyanovinyl-Quinquethiophenen (DCV2-5T) und C60 werden hier zwei Methoden zur Beeinflussung der Schichtmorphologie verfolgt. Zum einen wird die aktive Schicht auf einem geheizten Substrat abgeschieden, zum anderen werden DCV2-5T-Moleküle mit Methyl- und Butyl-Seitenketten als Donor verwendet. Das Abscheiden der aktiven Schicht auf einem geheizten Substrat (80 °C) führt zu einer verbesserten Solarzellenleistung, was auf die Bildung einer hin- reichenden Phasenseparation von D- und A-Phasen in der aktiven Schicht zurückzuführen ist. Die Phasenseparation bewirkt eine Reduktion von Rekombinationsverlusten und die Bildung geschlossener Perkolationspfade. Die morphologische Änderung korreliert mit einem Anstieg der Ladungsträger-Lebensdauer um fast eine Größenordnung von etwa 10 μs auf ≈ 80 μs. Der Anstieg kann sowohl optisch durch PIA, als auch elektrisch mittels Impedanz-Spektroskopie detektiert werden. Eine höhere Lebensdauer der Ladungsträger kann letztlich auf eine größere räumlichen Separation der positiven und negativen Ladungsträger zurückgeführt werden, induziert durch die Phasenseparation. Ein Vergleich von DCV2-5T-Molekülen mit Methyl- und Butyl-Seitenketten führt zu ähnlichen Resultaten: Solarzellen mit DCV2-5T substituiert mit Methyl- Seitenketten sind effizienter als die der butyl-substituierten Moleküle. Dies korreliert wiederum mit einer signifikant erhöhten Lebensdauer der Ladungsträger in Mischschichten der methyl-substituierten Verbindung.:Contents Publications 1. Introduction 2. Organic semiconductors 2.1. Introduction 2.2. Optical excitations in organic semiconductors 2.2.1. Energy levels: single molecules to molecular solids 2.2.2. Absorption and emission spectra 2.3. Transport in organic semiconductors 2.3.1. Exciton motion 2.3.2. Charge transport 2.3.3. Amorphous organic semiconductors 3. Organic photovoltaics 3.1. Introduction 3.2. Solarenergyconversion 3.2.1. Quasi Fermi levels 3.2.2. p-n junction 3.3. Organic solar cells 3.3.1. Charge generation mechanisms 4. Experimental methods 4.1. Sample preparation 4.2. Photoinduced absorption spectroscopy 4.2.1. PIA setup 4.2.2. Recombination dynamics 4.3. Solar cell characterization 4.3.1. External quantum efficiency 4.3.2. J-V characteristics 4.4. Absorption and emission spectroscopy 4.5. Determination of energy levels 4.5.1. Ultraviolet photo electron emission spectroscopy 4.5.2. Cyclic voltammetry 4.6. Atomic force microscopy 4.7. Density functional theory calculations 4.8. Impedance spectroscopy 5. Dicyanovinyl-oligothiophenes 5.1. Introduction 5.2. The DCV2-nT:C60 interface 5.3. Processability 6. Side chain variations on DCV2-3T 6.1. Introduction 6.2. Density functional theory calculations 6.2.1. Excited state transitions 6.3. Absorption and Emission in solution and thin film 6.3.1. Blend layer absorption spectra 6.3.2. Photoluminescence spectra of neat and blend films 6.4. Energy levels of the DCV2-3T series 6.5. Atomic force microscopy 6.6. Photoinduced absorption spectroscopy 6.6.1. PIA signatures of charged states 6.6.2. Recombination dynamics 6.6.3. Efficiency of the ping pong effect 6.7. Conclusion 7. Influencing the morphology of DCV2-5T:C60 blend layers 7.1. Introduction 7.2. Properties of the DCV2-5T:C60 interface 7.2.1. Analysis of the DCV2-5T triplet transition 7.2.2. Analysis of the DCV2-5T cation transitions 7.2.3. Suggested energy level scheme for neat and blend layer 7.3. Temperature evolution of excited state properties 7.4. Effect of substrate heating on excited state lifetime and generation rate 7.4.1. Solar cell devices 7.4.2. Photoinduced absorption 7.4.3. Impedance spectroscopy 7.5. Conclusion 8. Side chain variations on DCV2-5T 8.1. Introduction 8.2. Atomic force microscopy 8.3. Energy levels 8.4. Mip solar cells 8.4.1. Flat heterojunctions 8.4.2. Bulk heterojunctions 8.4.3. Discussion of Voc 8.5. Photoinduced absorption 8.5.1. Comparison at room temperature 8.6. Conclusion 9. Conclusion and Outlook 9.1. Conclusion 9.2. Outlook A. Appendix Bibliography

Page generated in 0.0457 seconds