Spelling suggestions: "subject:"operadores diferencia""
11 |
Extensões de distribuições quase-homogêneas.Bonfante, Elaine 02 February 2007 (has links)
Made available in DSpace on 2016-06-02T20:28:21Z (GMT). No. of bitstreams: 1
DissEB.pdf: 648176 bytes, checksum: 8f2e2eaf5e283dcc58ded3a60362a47a (MD5)
Previous issue date: 2007-02-02 / In this dissertation the author proves two results of extensions for IRn of distribution solutions in IRn{0} of the operator Lλ,a = n ∑ i=1 λixi@xi − a, with λ = (λ1, . . . , λn) E Rn + and a E C. / Nesta dissertação a autora demonstra dois resultados de extensões para Rn de soluções distribucionais em Rn\{0} do operador Lλ,a = n ∑ i=1 λixi@xi − a, com λ = (λ1, . . . , λn) E Rn + e a E C.
|
12 |
Extensões de soluções homogêneas de uma classe de operadores diferenciais parciais reais de ordem um.Gabriel, Camila Pires Cremasco 04 March 2005 (has links)
Made available in DSpace on 2016-06-02T20:28:29Z (GMT). No. of bitstreams: 1
DissCPCG.pdf: 492387 bytes, checksum: 300db32f6d42bf09cbf8e4a590c0956f (MD5)
Previous issue date: 2005-03-04 / Financiadora de Estudos e Projetos / Visualizar o resumo em texto completo para download!
|
13 |
Problema de Noether não-comutativo / Noncommutative Noether´s problemSchwarz, Joao Fernando 12 February 2015 (has links)
Neste trabalho, temos o objetivo de introduzir o Problema de Noether Clássico e sua versão não- comutativa introduzida por J. Alev e F. Dumas em [AD06]. Discutiremos os principais casos co- nhecidos nos quais os problemas têm solução positiva, observando um forte paralelo entre os casos comutativo e não-comutativo. Cobriremos os tópicos preliminares necessários para entendimento dos enunciados: álgebras de Weyl, anéis de operadores diferenciais, extensões de Ore, localização em domínios não-comutativos, e corpos de Weyl. No Capítulo 5 deste trabalho, o aluno apresenta duas contribuições originais, obtidas em colaboração com seu orientador V. Futorny e F. Eshmatov: o Teorema 5.5, que é um resultado folclórico sobre invariantes de ações livres de grupos finitos no anel de operadores diferenciais de variedades afins; e o Teorema 5.6, que até onde sabemos é iné- dito, sobre invariantes dos Corpos de Weyl sob a ação de grupos de pseudo-reflexão. Todo material algébrico preliminar para a demonstração destes dois teoremas é incluído no texto da dissertação: um básico de teoria de invariantes, vários resultados da teoria de grupos de pseudo-reflexão, alguns conceitos básicos de geometria algébrica e álgebra comutativa, e uma discussão detalhada do quo- ciente de variedades afins sob ação de grupos finitos. / In this work we aim to introduce the Classical Noether´s Problem, and its noncommutative version introduced by J. Alev and F. Dumas in [AD06]. We discuss the most well known cases of positive solution of these problems, pointing out a strong similarity between the cases of positive solution for the classical and noncommutative versions of the Problem. We cover the preliminary topics to understand the statement and solutions of these problems: Weyl algebras, differential operators rings, Ore extensions, noncommutative localization, and Weyl Skew-Fields. In the Chapter 5 of this dissertation, the student shows two original contributions, obtained in collaboration with his advisor V. Futorny and F. Eshmatov: Theorem 5.5, a result belonging to the folklore of the area of differential operators, describing its invariants under the free action of a finite group on an affine variety; and Theorem 5.6, about the invariants of the Weyl skew-fields under the action of pseudo-reflection groups. As far as we know, this result is new. All preliminary algebraic facts to prove these two facts are included in the body of this text. It includes some basic facts on invariant theory, many results about pseudo-reflection groups, some basic concepts of algebraic geometry and commutative algebra, and a detailed discussion of the quotient of an affine variety under the action of a finite group.
|
14 |
Invariantes de anéis de operadores diferenciais: racionalidade de Gellfand-Kirillov, categorias de módulos, aplicações / Invariants of rings of differential operators: Gelfand-Kirillov rationality, categories of modules, aplicationsSchwarz, João Fernando 13 November 2018 (has links)
Esta tese aborda, como a despeito da rigidez da álgebra de Weyl An(k), suas subálgebras de invariantes possuem uma rica teoria de invariantes: do ponto de vista de estrutura, se fizermos um estudo de equivalência birracional dentro da filosofia de Gelfand-Kirillov, temos o Problema de Noether Não-Comutativo, sobre o qual obtemos vários novos resultados (Capítulo 4). Do ponto de vista de representações, obtemos que suas subálgebras de invariantes, em vários casos, herdam de maneira natural a estrutura de módulos de Gelfand-Tsetlin da álgebra de Weyl (Capítulo 5), assim como uma noção natural de módulos holonômicos (Capítulo 6). Analisaremos resultados similares para outras álgebras semelhantes a Álgebra de Weyl, como anéis de operadores diferenciais no toro e álgebras de Weyl generalizadas (Capítulos 2, 4 e 5). Como aplicações, temos uma Conjectura de Gelfand-Kirillov para subálgebras esféricas de Cherednik (Capítulo 4); para a Conjectura de Gelfand-Kirillov para várias álgebras de Galois (Capítulos 5 e 7); e o problema de realizar U(L), em que L é uma algebra de Lie simples de tipo B,C,D, como uma ordem de Galois generalizando o caso de gln (Capítulo 5). Um Capítulo sobre o Problema de Noether Quântico e um resumo do artigo de Futorny e Schwarz, \"Quantum Linear Galois Algebras\", encerram a tese. / This thesis discussess how, given the rigidity results on the Weyl Algebra An(k), its invariant subrings can nonetheless have an interesting invariant theory: from the structural point of view, a birrational equivalence study under the Gelfand-Kirillov philosophy gives us the Noncommutative Noether Problem, of which we obtain many new results (Chapter 4). From the point of view of representations, we obtain that their invariant rings, in many cases, have a natural theory of Gelfand-Tsetlin modules just like the Weyl Algebra (Chapter 5), and a natural notion of holonomic modules (Chapter 6). We discuss analogues results for algebras which are similar to the Weyl Algebra, such as the ring of differential operators on the torus and the generalized Weyl algebras (Chapters 2,4,5). As applications, we have a Gelfand-Kirillov Conjecture for spherical subalgebras of Cherednik (Chapter 4); for the Gelfand-Kirillov Conjecture of many Galois algebras (Chapter 5 and 7); and the problem to give a Galois structure to the algebra U(L), where L is a simple Lie algebra of type B,C,D -generalizing the case A (Chapter 5). A chapter about the Quantum Noether Problem and a resume of the article Quantum Linear Galois Algebras\" ends the thesis.
|
15 |
Unicidade de hipersuperfÃcies tipo-espaÃo com curvatura mÃdia de ordem superior constante em espaÃo-tempo de Robertson-Walker generalizado. / Uniqueness of spacelike hypersurfaces with constant higher order curvature in generalized Robertson-Walker spacetimesJonatan Floriano da Silva 26 March 2007 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Estudaremos, de acordo com Alias e Colares em [11], o problema de unicidade para hipersuperfÃcies tipo-espaÃo com curvatura mÃdia de ordem superior constante em um
espaÃo-tempo de Robertson-Walker generalizado (GRW). Em particular, consideraremos a seguinte pergunta: Sob quais condiÃÃes deve uma hipersuperfÃcie tipo-espaÃo compacta
com curvatura mÃdia de ordem superior constante em um espaÃo-tempo GRW espacialmente fechado ser uma fatia tipo-espaÃo? Provaremos que isto ocorre, essencialmente,
sob a entÃo chamada condiÃÃo de convergÃncia nula. Nossa abordagem à baseada no uso das transformaÃÃes de Newton (e seus operadores diferenciais associados) e nas fÃrmulas
de Minkowski para hipersuperfÃcies tipo-espaÃo.
|
16 |
Invariantes de anéis de operadores diferenciais: racionalidade de Gellfand-Kirillov, categorias de módulos, aplicações / Invariants of rings of differential operators: Gelfand-Kirillov rationality, categories of modules, aplicationsJoão Fernando Schwarz 13 November 2018 (has links)
Esta tese aborda, como a despeito da rigidez da álgebra de Weyl An(k), suas subálgebras de invariantes possuem uma rica teoria de invariantes: do ponto de vista de estrutura, se fizermos um estudo de equivalência birracional dentro da filosofia de Gelfand-Kirillov, temos o Problema de Noether Não-Comutativo, sobre o qual obtemos vários novos resultados (Capítulo 4). Do ponto de vista de representações, obtemos que suas subálgebras de invariantes, em vários casos, herdam de maneira natural a estrutura de módulos de Gelfand-Tsetlin da álgebra de Weyl (Capítulo 5), assim como uma noção natural de módulos holonômicos (Capítulo 6). Analisaremos resultados similares para outras álgebras semelhantes a Álgebra de Weyl, como anéis de operadores diferenciais no toro e álgebras de Weyl generalizadas (Capítulos 2, 4 e 5). Como aplicações, temos uma Conjectura de Gelfand-Kirillov para subálgebras esféricas de Cherednik (Capítulo 4); para a Conjectura de Gelfand-Kirillov para várias álgebras de Galois (Capítulos 5 e 7); e o problema de realizar U(L), em que L é uma algebra de Lie simples de tipo B,C,D, como uma ordem de Galois generalizando o caso de gln (Capítulo 5). Um Capítulo sobre o Problema de Noether Quântico e um resumo do artigo de Futorny e Schwarz, \"Quantum Linear Galois Algebras\", encerram a tese. / This thesis discussess how, given the rigidity results on the Weyl Algebra An(k), its invariant subrings can nonetheless have an interesting invariant theory: from the structural point of view, a birrational equivalence study under the Gelfand-Kirillov philosophy gives us the Noncommutative Noether Problem, of which we obtain many new results (Chapter 4). From the point of view of representations, we obtain that their invariant rings, in many cases, have a natural theory of Gelfand-Tsetlin modules just like the Weyl Algebra (Chapter 5), and a natural notion of holonomic modules (Chapter 6). We discuss analogues results for algebras which are similar to the Weyl Algebra, such as the ring of differential operators on the torus and the generalized Weyl algebras (Chapters 2,4,5). As applications, we have a Gelfand-Kirillov Conjecture for spherical subalgebras of Cherednik (Chapter 4); for the Gelfand-Kirillov Conjecture of many Galois algebras (Chapter 5 and 7); and the problem to give a Galois structure to the algebra U(L), where L is a simple Lie algebra of type B,C,D -generalizing the case A (Chapter 5). A chapter about the Quantum Noether Problem and a resume of the article Quantum Linear Galois Algebras\" ends the thesis.
|
17 |
Problema de Noether não-comutativo / Noncommutative Noether´s problemJoao Fernando Schwarz 12 February 2015 (has links)
Neste trabalho, temos o objetivo de introduzir o Problema de Noether Clássico e sua versão não- comutativa introduzida por J. Alev e F. Dumas em [AD06]. Discutiremos os principais casos co- nhecidos nos quais os problemas têm solução positiva, observando um forte paralelo entre os casos comutativo e não-comutativo. Cobriremos os tópicos preliminares necessários para entendimento dos enunciados: álgebras de Weyl, anéis de operadores diferenciais, extensões de Ore, localização em domínios não-comutativos, e corpos de Weyl. No Capítulo 5 deste trabalho, o aluno apresenta duas contribuições originais, obtidas em colaboração com seu orientador V. Futorny e F. Eshmatov: o Teorema 5.5, que é um resultado folclórico sobre invariantes de ações livres de grupos finitos no anel de operadores diferenciais de variedades afins; e o Teorema 5.6, que até onde sabemos é iné- dito, sobre invariantes dos Corpos de Weyl sob a ação de grupos de pseudo-reflexão. Todo material algébrico preliminar para a demonstração destes dois teoremas é incluído no texto da dissertação: um básico de teoria de invariantes, vários resultados da teoria de grupos de pseudo-reflexão, alguns conceitos básicos de geometria algébrica e álgebra comutativa, e uma discussão detalhada do quo- ciente de variedades afins sob ação de grupos finitos. / In this work we aim to introduce the Classical Noether´s Problem, and its noncommutative version introduced by J. Alev and F. Dumas in [AD06]. We discuss the most well known cases of positive solution of these problems, pointing out a strong similarity between the cases of positive solution for the classical and noncommutative versions of the Problem. We cover the preliminary topics to understand the statement and solutions of these problems: Weyl algebras, differential operators rings, Ore extensions, noncommutative localization, and Weyl Skew-Fields. In the Chapter 5 of this dissertation, the student shows two original contributions, obtained in collaboration with his advisor V. Futorny and F. Eshmatov: Theorem 5.5, a result belonging to the folklore of the area of differential operators, describing its invariants under the free action of a finite group on an affine variety; and Theorem 5.6, about the invariants of the Weyl skew-fields under the action of pseudo-reflection groups. As far as we know, this result is new. All preliminary algebraic facts to prove these two facts are included in the body of this text. It includes some basic facts on invariant theory, many results about pseudo-reflection groups, some basic concepts of algebraic geometry and commutative algebra, and a detailed discussion of the quotient of an affine variety under the action of a finite group.
|
18 |
[en] ANALYTICAL SOLUTION OF EIGENVALUE EQUATIONS BY GENETIC PROGRAMMING, WITH APPLICATION IN THE ANALYSIS OF ELECTROMAGNETIC PROPAGATION IN PRODUCTION PIPES OF OIL, PARAMETERIZED BY THE RADIUS AND THE PERCENTAGE OF INCRUSTATIONS / [pt] MÉTODO DE SOLUÇÃO ANALÍTICA DE EQUAÇÕES DE AUTOVALORES DE OPERADORES DIFERENCIAIS POR PROGRAMAÇÃO GENÉTICA, COM APLICAÇÃO NA ANÁLISE DE PROPAGAÇÃO ELETROMAGNÉTICA EM COLUNAS DE PRODUÇÃO DE ÓLEO PARAMETRIZADA PELO RAIO E O PERCENTUAL DE INCRUSTAÇÕESALEXANDRE ASHADE LASSANCE CUNHA 19 February 2019 (has links)
[pt] Este trabalho apresenta uma abordagem inovadora para calcular autopares de operadores diferenciais (OD), utilizando programação genética (PG) e computação simbólica. Na literatura atual, o Método dos Elementos Finitos (MEF) e o Método das Diferenças Finitas (MDF) são os mais utilizados. Tais métodos usam discretização para converter o OD em uma matriz finita e, por isso, apresentam limitações como perda de acurácia e presença de soluções espúrias. Além disso, se o domínio do OD fosse alterado, os autopares precisariam ser calculados novamente, pois a representação matricial do operador depende dos parâmetros do problema. Nesse contexto, este trabalho propõe evoluir autofunções analiticamente usando PG, sem discretização do domínio. Com isso, é possível incorporar parâmetros, o que torna a solução obtida válida para uma classe de problemas. Este texto descreve o modelo para OD normais, aplicando conceitos de indivíduos multi-árvore e diferenciação simbólica. O modelo evolui auto-funções e, a partir delas, calcula os autovalores empregando a razão de Rayleigh. Experimentos baseados em aplicações da Física mostram que a técnica proposta é capaz de encontrar as autofunções analíticas com a acurácia igual ou melhor que as técnicas numéricas supracitadas. Finalmente, a técnica proposta é aplicada ao problema de propagação de ondas eletromagnéticas em poços de petróleo em ULF e UHF. As soluções analíticas são dadas em função do diâmetro e do percentual de incrustações no poço. Os resultados mostram que, para um conjunto suficientemente grande de valores distintos dos parâmetros, a técnica apresenta tempo de execução inferior às técnicas clássicas, mantendo a acurácia destas. / [en] This work presents an innovative approach to calculate the eigenpairs of linear differential operators (LDO), employing genetic programming (GP)
and symbolic computation. In the current literature, the Finite Element Method (FEM) and the Finite Difference Method (FDM) are more commonly
used. Such methods use discretization to convert the LDO to a finite matrix, therefore causing loss of accuracy and presence of spurious solutions. Additionally, if the domain of the LDO was changed, the eigenpairs would need to be recalculated, since the matrix representation of the LDO depends on the parameters of the problem. In this context, this work proposes to evolve eigenfunctions analytically using GP, without domain discretization. Hence, it is possible to incorporate the parameter, which makes a obtained solution valid for a class of problems. This text describes the model for normal LDO, applying concepts of multi-tree individuals and symbolic differentiation. The presented model evolves eigenfunctions and, then, calculates the eigenvalues using the Rayleigh quotient. Experiments based on Physics problems show that the proposed technique is able to find the analytical eigenfunctions with the same accuracy of the numerical techniques mentioned above. Finally, the proposed technique is applied to the problem of propagation of electromagnetic waves in oil wells in ULF and UHF. The analytical solutions are given as a function of the diameter and percentage of CaCO in the well. The results show that, for a sufficiently large set of distinct values of the parameters, the technique presents execution time inferior to the FEM, while maintaining its accuracy.
|
19 |
Modelos de spins geometricamente frustrados: transição de fase e estruturas de platoresLitaiff, Fabian Cardoso 08 April 2013 (has links)
Made available in DSpace on 2016-06-02T20:15:29Z (GMT). No. of bitstreams: 1
5202.pdf: 3904832 bytes, checksum: c623a581c3cdb03d9cc81fc16ecef935 (MD5)
Previous issue date: 2013-04-08 / Universidade Federal de Minas Gerais / This thesis presents a study of the magnetization plateau and the phenomenon of geometrical frustration in spin systems applied to lattices with triangular structure, as well as the results achieved by applying the differential operator technique of the Ising and Heisenberg models with external magnetic field applied to the easy magnetization axis z, their phase diagrams, behavior plateaus observed and analyzed according to the Haldane conjecture and appearance of plateaus presented by Oshikawa, Yamanaka and Affleck, and also to study the behavior of the magnetic susceptibility in order to verify the behavior of frustrated systems using the frustration factor f= θWC/TN to verify frustration encountered at various stages of the study models / Este trabalho apresenta um estudo da magnetização de platô e do fenômeno de frustração geométrica em sistemas de spins, aplicados às redes com estrutura triangular, bem como os resultados alcançados aplicando-se a técnica do operador diferencial a modelos de Ising e Heisenberg com campo magnético externo aplicado sobre o eixo fácil de magnetização z, seus diagramas de fases e comportamento de platôs observados e analisados segundo a conjectura de Haldane e a condição de aparecimento de platôs apresentada por Oshikawa, Yamanaka e Affleck, e ainda, o estudo do comportamento da susceptibilidade magnética com o objetivo de verificar o comportamento dos sistemas frustrados utilizando-se o fator de frustração f= θWC/TN para verificar a frustração nas diversas fases encontradas ao longo do estudo dos modelos.
|
20 |
Sobre singularidades analíticas de soluções de uma classe de campos vetoriais no Toro / On analytic singularities of a class of vector fields on the torusLeonardo Avila 11 August 2009 (has links)
O objetivo principal deste trabalho é o estudo da regularidade anallítica global de certos operadores diferenciais definidos no toro. Uma ferramenta fundamental utilizada neste estudo são as séries parciais de Fourier, que nos permitem caracterizar tanto as distribuições periódicas quanto as funções anallíticas reais periódicas através do comportamento assintótico de seus coeficientes parciais de Fourier. Neste sentido, apresentamos também um estudo detalhado das relações destes objetos com seus coeficientes parciais de Fourier / The main goal of this work is to study global analytic regularity properties of certain differential operators acting in the torus. A main tool that will be used to achieve our goals are the partial Fourier series, which allow us to characterize objects such as periodic distributions or periodic real analytic functions in terms of the growth of their partial Fourier coefficients
|
Page generated in 0.0734 seconds