• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 13
  • 13
  • 7
  • 7
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Micro-mechanical Modeling of Brownian Spheroids in Oscillatory Shear Flow

Bechtel, Toni M. 01 May 2018 (has links)
We calculate the stress response, or rheology, of a micro-mechanical model suspension of rigid, Brownian spheroids in a Newtonian fluid in an oscillatory shear flow. The straining and rotation components of a linear flow affects the microstructure, or particle orientation in space and time, and thus, the suspension stress. A statistical description of the microstructure is given by an orientation probability distribution function, which quantifies the likelihood of a particle possessing a particular orientation at an instance in time. The evolution of the microstructure results from the memory of the material, advection from the flow, and rotational Brownian motion. The macroscopic stress response is calculated from ensemble averages of the stresslet weighted by the orientation distribution function. First, we calculate the linear stress response of a dilute suspension of rigid, spheroidal, self-propelled particles under a small-amplitude oscillatory shear deformation using regular perturbation theory. The particle activity leads to a direct contribution to the material stress, via self-propulsion, and an indirect contribution due to correlated tumbling events. The mechanism and strength of self-propulsion and correlation between tumbling events can be determined from the linear stress response of an active suspension. Next, we develop a framework for determining the relaxation moduli of a viscoelastic material through the combination of a memory integral expansion and a multimode-frequency oscillatory shear flow. We analytically determine the first nonlinear relaxation modulus of the model suspension through a comparison of the second normal stress difference from the microstructural stress response, calculated via regular perturbation theory, and a co-rotational memory integral expansion. The stress response of the system is reconstructed for the start-up and cessation of steady simple shear and uniaxial extension. Finally, we numerically calculate the nonlinear viscoelasticity of the model system subject to a large-amplitude oscillatory shear flow. In a sufficiently strong flow with oscillation frequency comparable to the material relaxation rate, secondary overshoots in the stress response occur. We attribute the origin of secondary overshoots to particles undergoing a Jeffery orbit during a (half) cycle of the oscillation, analogous to the case of non-Brownian spheroids in steady shear flow.
2

Bismaleimide Methacrylated Polyimide-Polyester Hybrid UV-Curable Powder Coating

Hasheminasab, S. Abed 16 July 2020 (has links)
No description available.
3

NONLINEAR RHEOLOGY OF FOOD MATERIALS

Merve Yildirim (13131855) 21 July 2022 (has links)
<p> The inter/intramolecular interactions and associations between constituents determine the microstructure of food and its response to mechanical deformation and flow. The characterization of food rheology enables the design of efficient processing equipment, production of high-quality, stable end products, prediction of textural and sensorial attributes, and assurance of consumer acceptability. Foods are subjected to rapid and large deformations during processing operations and consumption. Dynamic oscillatory shear tests are carried out by subjecting food to a sinusoidal deformation (or stress) and probing the mechanical stress (or strain) and recording the response as a function of time. In the SAOS region, the mechanical response is in the form of a perfect sinusoidal curve and interpretation is straightforward as expected from a linear model. On the other hand, LAOS response requires complex mathematical relations to extract meaningful rheological parameters. In this dissertation, Fourier Transform-Chebyshev Decomposition (FTC) and Sequence of Physical Processes (SPP) methods were utilized to quantify the LAOS response of selected food materials. The objective of this study is to gain new insights into the nonlinear rheology and structural architecture of food materials. To offer insights into the microstructure–rheology relations, rheological measurements were accompanied by various techniques probing chemical interactions (FTIR), imaging (Cryo-SEM, SEM), quantitative network analysis, and molecular size (SDS-PAGE). This dissertation showed that LAOS rheology is highly correlated with the network structure of food shown by the quantitative network analysis utilizing SEM images. It is a powerful tool to detect the effect of small molecules on the nonlinear rheology of food (HMW-LMW glutenin ratio, gliadin for dough, fat content in yogurt, and amylopectin/amylose ratio of starch in a suspension). Nonlinear parameters were sensitive to structural changes occurring in dough structure during processing conditions including aging at room and elevated temperatures. Lastly, the SPP method enabling time-resolved interpretation of nonlinear rheology provided detailed transient microstructural interpretations whereas the FTC method gave static measures at specific strains in an oscillation cycle. Thus, nonlinear rheology of doughs with various gluten subfractions in MAOS and LAOS regions as well as shear thickening characteristic of starch suspensions with changing amylopectin/amylose ratio interpreted by the SPP method gave more sensitive results than the FTC method. The application of fundamental knowledge from this work can be a guide to evaluating the architecture and nonlinear rheology of food for the assurance of consumer acceptancy and the fabrication of efficient machinery by building more accurate mechanical models of complex food systems. </p>
4

The Oscillatory Shear Index: Quantifications for Valve Tissue Engineering and a Novel Interpretation for Calcification

Williams, Alex 29 June 2018 (has links)
Heart valve tissue engineering (HVTE) stands as a potential intervention that could reduce the prevalence of congenital heart valve disease in juvenile patients. Prior studies in our laboratory have utilized mechanobiological testing to quantify the forces involved in the development of heart valve tissue, utilizing a Flow-Stretch-Flexure (FSF) bioreactor to condition bone marrow stem cells (BMSCs)-derived valve tissue. Simulations have demonstrated that certain sets of flow conditions can introduce specific levels of oscillatory shear stress (OSS)-induced stimuli, augmenting the growth of engineered valves as well as influencing collagen formation, extracellular matrix (ECM) composition and gene expression. The computational findings discussed in this thesis outline the methods in which flow conditions, when physiologically relevant, induce specific oscillatory shear stresses which could not only lead to an optimized valve tissue phenotype (at 0.18≤ OSI≤ 0.23), but could identify native valve tissue remodeling indicative of aortic valve disease.
5

Large deformation shear and elongation rheology of polymers for electrospinning and other Industrial Processes / Rhéologie des polymères en grandes déformations de cisaillement et d'élongation : application à l'electrospinning et aux procédés industriels

Ahirwal, Deepak 17 December 2013 (has links)
Les objectifs de cette thèse concernent la caractérisation des polymères à l’état fondu via la rhéologie non linéaire dans les modes de cisaillement ou en élongationnel et les procédés faisant intervenir de fortes élongations tel que l’électrospinning en voie solvant et en voie fondue. Pour atteindre le premier objectif, nous nous sommes concentrés sur la caractérisation des polymères fondus enchevêtrés dans les régimes viscoélastiques linéaires et non linéaires. L'influence de la masse moléculaire, Mw et de sa distribution MWD, la présence de longues chaînes branchées (LCB) ou encore l'addition de nanoparticules dans la matrice de polymère à l'état fondu ont été étudiées en utilisant des techniques rhéologiques en cisaillement et en élongationnel. Dans le cas des écoulements de cisaillement oscillatoires à grandes amplitudes (LAOS), nous avons proposé de nouveaux paramètres mécaniques qui ont permis de définir les relations structure-propriétés des différents systèmes étudiés. / The goals of this thesis are the characterization of polymer melts using mainly non-linear shear and extensional rheological techniques. The fabrication of scaffolds with excellent physical and mechanical properties using solution electrospinning technology for tissue engineering applications and the development of melt electrospinning equipment to facilitate the fabrication of solvent free scaffolds. To achieve the first goal, we focused on the characterization of entangled polymer melts in the linear and nonlinear viscoelastic regimes. The influence of molecular weight, Mw, molecular weight distribution (MWD), long-chain branching (LCB) and addition of particles to the polymer matrix on polymer melt properties were investigated using shear and extensional rheological techniques. The resulting structure-property relationships were established using newly introduced mechanical parameters under large amplitude oscillatory shear (LAOS) flow.
6

Cellular Events Under Flow States Pertinent to Heart Valve Function

Castellanos, Glenda L 12 November 2015 (has links)
Heart valve disease (HVD) or a damaged valve can severely compromise the heart's ability to pump efficiently. Balloon valvuloplasty is preferred on neonates with aortic valve stenosis. Even though this procedure decreases the gradient pressure across the aortic valve, restenosis is observed soon after balloon intervention. Tissue engineering heart valves (TEHV), using bone marrow stem cells (BMSCs) and biodegradable scaffolds, have been investigated as an alternative to current non-viable prosthesis. By observing the changes in hemodynamics following balloon aortic valvuloplasty, we could uncover a potential cause for rapid restenosis after balloon intervention. Subsequently, a tissue engineering treatment strategy based on BMSC mechanobiology could be defined. Understanding and identifying the mechanisms by which cytoskeletal changes may lead to cellular differentiation of a valvular phenotype is a first critical step in enhancing the promotion of a robust valvular phenotype from BMSCs.
7

Studies of Stented Arteries and Left Ventricular Diastolic Dysfunction Using Experimental and Clinical Analysis with Data Augmentation

Charonko, John James 04 May 2009 (has links)
Cardiovascular diseases are among the leading causes of deaths worldwide, but the fluid mechanics of many of these conditions and the devices used to treat them are only partially understood. This goal of this dissertation was to develop new experimental techniques that would enable translational research into two of these conditions. The first set of experiments examined <i>in-vitro</i> the changes in Wall Shear Stress (WSS) and Oscillatory Shear Index (OSI) caused by the implantation of coronary stents into the arteries of the heart using Particle Image Velocimetry. These experiments featured one-to-one scaling, commercial stents, and realistic flow and pressure waveforms, and are believed to be the most physiologically accurate stent experiments to date. This work revealed distinct differences in WSS and OSI between the different stent designs tested, and showed that changes in implantation configuration also affected these hemodynamic parameters. Also, the production of vortices near the stent struts during flow reversal was noted, and an inverse correlation between WSS and OSI was described. The second set of experiments investigated Left Ventricular Diastolic Dysfunction (LVDD) using phase contrast magnetic resonance imaging (pcMRI). Using this technique, ten patients with and without LVDD were scanned and a 2D portrait of blood flow through their heart was obtained. To augment this data, pressure fields were calculated from the velocity data using an omni-directional pressure integration scheme coupled with a proper-orthogonal decomposition-based smoothing. This technique was selected from a variety of methods from the literature based on an extensive error analysis and comparison. With this coupled information, it was observed that healthy patients exhibited different flow patterns than diseased patients, and had stronger pressure differences during early filling. In particular, the ratio of early filling pressure to late filling pressure was a statistically significant predictor of diastolic dysfunction. Based on these observations, a novel hypothesis was presented that related the motion of the heart walls to the observed flow patterns and pressure gradients, which may explain the differences observed clinically between healthy and diseased patients. / Ph. D.
8

<b>CHARACTERIZATION OF DENSE GRANULAR FLOWS USING A CONTINUOUS CHUTE FLOW RHEOMETER</b>

Kayli Lynn Henry (19180435) 20 July 2024 (has links)
<p dir="ltr">The ability to predict and manipulate how a particulate material will flow in a process is challenging for industry and researchers alike. This dissertation presents the results of a model-directed, experimental approach using a concentric cylinder rheometer titled along an axis to enable continuous chute flow of granular media. Experiments were performed using draining flows for constant and oscillatory applied shear rates. Multiple flow and stress sensors were used to investigate the interaction of mass holdup, shear rate, specific torque, particle velocity, discharge mass flow rate, and wall pressure. Depending on the flow configuration, linear ranges were observed wherein the specific torque remained steady during draining. This finding enabled systematic testing of flow behavior as a function of dimensionless shear rates. Results suggest changes in the specific torque, wall slip, and outflow variance occur with the transition from the quasi-static to dense-inertial flow regimes. A pump-curve analogy was also identified for the relationship between the outlet mass flow rate and the specific power relationship for the constant shear rate experiments. Oscillatory shear rate experiments show a significant influence of the phase shift between the applied shear rate and the specific torque. Adding an asperity to the rotor revealed rate-dependent patterns in bulk flow and force chain dynamics. Overall, the study offers valuable insights into the effects of shear rate and boundary conditions on dense granular flows. The effects of particle characteristics (e.g., size and shape distributions, friction, cohesivity) and material properties (e.g., density, modulus) remain topics for future work. </p>
9

Large deformation shear and elongation rheology of polymers for electrospinning and other Industrial Processes

Ahirwal, Deepak 17 December 2013 (has links) (PDF)
The goals of this thesis are the characterization of polymer melts using mainly non-linear shear and extensional rheological techniques. The fabrication of scaffolds with excellent physical and mechanical properties using solution electrospinning technology for tissue engineering applications and the development of melt electrospinning equipment to facilitate the fabrication of solvent free scaffolds. To achieve the first goal, we focused on the characterization of entangled polymer melts in the linear and nonlinear viscoelastic regimes. The influence of molecular weight, Mw, molecular weight distribution (MWD), long-chain branching (LCB) and addition of particles to the polymer matrix on polymer melt properties were investigated using shear and extensional rheological techniques. The resulting structure-property relationships were established using newly introduced mechanical parameters under large amplitude oscillatory shear (LAOS) flow.
10

A Study of the Structure and Dynamics of Smectic 8CB Under Mesoscale Confinement

Benson, James January 2012 (has links)
The structure and dynamics of the smectic-A liquid crystal 8CB (4 cyano-4 octylbiphenyl) when sheared and confined to mesoscale gaps (with crossed cylindrical geometry and mica confining surfaces) were studied using a Surface Forces Apparatus (SFA). Triangular shear patterns with frequencies of 0.01, 0.1, 1.0 and 10 Hz, and amplitudes of 62.5 nm, 625 nm and 6.25 m were applied to samples at gap sizes of 0.5 and 5.0 m. The study was performed at room temperature (20.5C) and at two higher temperatures (22C and 27C). In order to minimize the thermal fluctuations within the test chamber and hence to allow for the rapid re-initialization of test runs, the SFA was modified to allow for quick, precise and remote control of the confining surfaces. The procedure maximized the number of tests that could be undertaken with a single pair of surfaces so that a single gap geometry could be maintained for the duration of the test run. In order to run the SFA remotely, scripts written with a commercial software package, LabVIEW, were used to control of the SFA components, its FECO-monitoring camera and all its peripheral electronic equipment as well. Samples were agitated to disrupt any shear-induced liquid crystal domain alignment from previous testing following each shear test, and methodologies were developed to ascertain the extent of confinement quickly and remotely following agitation. Separate methods were developed for gap sizes at each extreme of the mesoscale regime, where the transition from bulklike structure and dynamics to nano-confinement occurs (between 1 and 10 microns for smectic-A 8CB). The results revealed that the greater amplitude-gap aspect ratio and surface-to-domain contact associated with smaller gaps facilitated reorientation of the domains in the shear direction. Evidence was also presented of domains at the higher end or outside of the mesoscale regime that, while straining and accreting, were unable to reorient and thereby led to an overall increase of viscoelastic response. The effective viscosity was found to obey a simple power law with respect to shear rate, , and the flow behaviour indices, n, slightly in excess of unity indicate shear thickening occurs with large enough shear amplitude, and that the viscosity reached a plateau near unity over shear rates of 0.005 to 500 s-1 within the mesoscale regime. Different K and n values were observed depending on the shear amplitude used. Unlike bulk smectic 8CB, whose domains do not align well in the shear direction with large shear-strain amplitude, at mesoscale levels of confinement large amplitude shearing (up to 12.5 shear strain amplitude) was found to be very effective at aligning domains. In general domain reorientation is found to be much more rapid within the mesoscale regime than has been reported in bulk. Aggressive shearing was found to result in a complete drop in viscoelastic response within seconds, while gentler shearing is found to produce a very gradual increase that persists for more than six hours, with individual shear periods exhibiting frequent and significant deviations from the expected smooth shear path that may be a product of discrete domain reorientations. From these findings, certain traits of the smectic 8CB domain structures under mesoscale confinement were deduced, including how they respond to shear depending on the level of confinement, and how their reorientation due to shear varies not only with shear rate but also independently with shear amplitude. An equation describing the viscosity change as a function of both shear rate and shear amplitude is proposed. The shear amplitude dependence introduces the notion of shearing beyond the proposed smectic 8CB “viscoelastic limit”, which was shown to exhibit behaviour in accordance with Large Amplitude Oscillatory Shear (LAOS) techniques developed for Fourier Transform rheology. The findings provided an understanding of the behavioural changes that occur as one reduces the level of confinement of smectic materials from bulk to nanoconfinement.

Page generated in 0.0578 seconds