• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study Of Oxide Breakdown, Hot Carrier And Nbti Effects On Mos Device And Circuit Reliability

Liu, Yi 01 January 2005 (has links)
As CMOS device sizes shrink, the channel electric field becomes higher and the hot carrier (HC) effect becomes more significant. When the oxide is scaled down to less than 3 nm, gate oxide breakdown (BD) often takes place. As a result, oxide trapping and interface generation cause long term performance drift and related reliability problems in devices and circuits. The RF front-end circuits include low noise amplifier (LNA), local oscillator (LO) and mixer. It is desirable for a LNA to achieve high gain with low noise figure, a LO to generate low noise signal with sufficient output power, wide tuning range, and high stability, and a mixer to up-convert or down-convert the signal with good linearity. However, the RF front-end circuit performance is very sensitive to the variation of device parameters. The experimental results show that device performance is degraded significantly subject to HC stress and BD. Therefore, RF front-end performance is degraded by HC and BD effects. With scaling and increasing chip power dissipation, operating temperatures for device have also been increasing. Another reliability concern, which is the negative bias temperature instability (NBTI) caused by the interface traps under high temperature and negative gate voltage bias, arises when the operation temperature of devices increases. NBTI has received much attention in recent year and it is found that NIT is present for all stress conditions and NOT is found to occur at high VG. Therefore, the probability of BD in pMOSFET increases with temperature since trapped charges during the NBTI process increase, thus resulting in percolation, a main cause of oxide degradation. The above effects can cause significant degradations in transistors, thus leading to the shifts of RF performance. This dissertation focuses on the following aspects: (1) RF performance degradation in nMOSFET and pMOSFET due to hot carrier and soft breakdown effects are examined experimentally and will be used for circuit application in the future. (2) A modeling method to analyze the gate oxide breakdown effects on RF nMOSFET has been proposed. The device performance drifts due to gate oxide breakdown are examined, breakdown spot resistance and total gate capacitance are extracted before and after stress for 0.16 um CMOS technology. (3) LC voltage controlled oscillator (VCO) performance degradation due to gate oxide breakdown effect is evaluated. (4) NBTI, HCI and BD combined effects on RF performance degradation are investigated. A physical picture illustrating the NBTI induced BD process is presented. A model to evaluate the time-to-failure (TTF) during NBTI is developed. DCIV method is used to extract the densities of NIT and NOT. Measurements show that there is direct correlation between the steplike increase in the gate current and the oxide-trapped charge (NOT). However, Breakdown has nothing to do with interface traps (NIT). (5) It is found that the degradation due to NSH stress is more severe than that of NS stress at high temperature. A model aiming to evaluate the stress-induced degradation is also developed.
2

Etude de la fiabilité des technologies CMOS avancées, depuis la création des défauts jusqu'à la dégradation des transistors

Mamy Randriamihaja, Yoann 02 November 2012 (has links)
L'étude de la fiabilité représente un enjeu majeur de la qualification des technologies de l'industrie de la microélectronique. Elle est traditionnellement étudiée en suivant la dégradation des paramètres des transistors au cours du temps, qui sert ensuite à construire des modèles physiques expliquant le vieillissement des transistors. Nous avons fait le choix dans ces travaux d'étudier la fiabilité des transistors à l'échelle microscopique, en nous intéressant aux mécanismes de ruptures de liaisons atomiques à l'origine de la création des défauts de l'oxyde de grille. Nous avons tout d'abord identifié la nature des défauts et modéliser leurs dynamiques de capture de charges afin de pouvoir reproduire leur impact sur des mesures électriques complexes. Cela nous a permis de développer une nouvelle méthodologie de localisation des défauts, le long de l'interface Si-SiO2, ainsi que dans le volume de l'oxyde. La mesure des dynamiques de créations de défauts pour des stress de type porteurs chauds et menant au claquage de l'oxyde de grille nous a permis de développer des modèles de dégradation de l'oxyde, prédisant les profils de défauts créés à l'interface et dans le volume de l'oxyde. Nous avons enfin établi un lien précis entre l'impact de la dégradation d'un transistor sur la perte de fonctionnalité d'un circuit représentatif du fonctionnement d'un produit digital.L'étude et la modélisation de la fiabilité à l'échelle microscopique permet d'avoir des modèles plus physiques, offrant ainsi une plus grande confiance dans les extrapolations de durées de vie des transistors et des produits. / Reliability study is a milestone of microelectronic industry technology qualification. It is usually studied by following the degradation of transistors parameters with time, used to build physical models explaining transistors aging. We decided in this work to study transistors reliability at a microscopic scale, by focusing on atomic-bond-breaking mechanisms, responsible of defects creation into the gate-oxide. First, we identified defects nature and modeled their charge capture dynamics in order to reproduce their impact on complex electrical measurements degradation. This has allowed us developing a new methodology of defects localization, along the Si/SiO2 interface, and in the volume of the gate-oxide. Defects creation dynamics measurement, for Hot Carrier stress and stress conditions leading to the gate-oxide breakdown, has allowed us developing gate-oxide degradation models, predicting generated defect profiles at the interface and into the volume of the gate-oxide. Finally, we established an accurate link between a transistor degradation impact on circuit functionality loss.Reliability study and modeling at a microscopic scale allows having more physical models, granting a better confidence in transistors and products lifetime extrapolation.
3

Study Of Gate Oxide Breakdown And Hot Electron Effect On Cmos Circuit Performances

Ma, Jun 01 January 2009 (has links)
In the modern semiconductor world, there is a significant scaling of the transistor dimensions--The transistor gate length and the gate oxide thickness drop down to only several nanometers. Today the semiconductor industry is already dominated by submicron devices and other material devices for the high transistor density and performance enhancement. In this case, the semiconductor reliability issues are the most important thing for commercialization. The major reliability issues caused by voltage are hot carrier effects (HCs) and gate oxide breakdown (BD) effects. These issues are recently more important to industry, due to the small size and high lateral field in short-channel of the device will cause high electrical field and other reliability issues. This dissertation primarily focuses on the study of the CMOS device gate oxide breakdown effect on different kinds of circuits performance, also some HC effects on circuit's performance are studied. The physical mechanisms for BD have been presented. A practical and accurate equivalent breakdown circuit model for the CMOS device was studied to simulate the RF performance degradation on the circuit level. The BD location effect has been evaluated. Furthermore, a methodology was developed to predict the BD effects on the circuit's performances with different kinds of BD location. It also provides guidance for the reliability considerations of the digital, analog, and RF circuit design. The BD effects on digital circuits SRAM, analog circuits Sample&Hold, and RF building blocks with the nanoscale device--low noise amplifier, LC oscillator, mixer, and power amplifier, have been investigated systematically. Finally 90 nm device will be used to study the HC effect on the circuit's performance. The contributions of this dissertation include: Providing a thorough study of the gate oxide breakdown issues caused by the voltage stress on the device--from device level to circuit level; Studying real voltage stress case--high frequency (950 MHz) dynamic stress, and comparing with the traditional DC stress; A simple, practical, and analytical method is derived to study the gate oxide breakdown effect including breakdown location effect and soft / hard breakdown on the digital, analog and RF circuits performances. A brief introduction and simulation for 90 nm device HC effect provide some useful information and helpful data for the industry. The gate oxide breakdown effect is the most common device reliability issue. The successful results of this dissertation, from device level to circuit level, provide an insight on how the BD affects the circuit's performance, and also provide some useful data for the circuit designers in their future work.
4

Class-e Cascode Power Amplifier Analysis And Design For Long Term Reliability

Kutty, Karan 01 January 2010 (has links)
This study investigated the Class-E power amplifier operating at 5.2 GHz. Since the operation of this amplifier applies a lot of stress on the switching transistor, a cascode topology was applied in order to reduce the drain-source voltage stress. Such an amplifier was designed and optimized in order to improve stability, power added efficiency, and matching. A layout for the said design was then created to be fabrication-ready using the TSMC 0.18 um technology. Post-layout simulations were performed in order to realize a more realistic circuit performance with the layout design in mind. Long-term stress effects, such as oxide breakdown, on the key transistors were modeled and simulated in order to achieve an understanding of how leakage currents affect the overall circuit performance. Simulated results were compared and contrasted against theoretical understanding using derived equations. Recommendations for future advancements were made for modification and optimization of the circuit by the application of other stress reduction strategies, variation in the class-E topology, and improvement of the driver stage.
5

Bimodal Gate Oxide Breakdown in Sub-100 nm CMOS Technology

Rezaee, Leila 08 December 2008 (has links)
In the last three decades, the electronic industry has registered a tremendous progress. The continuous and aggressive downsizing of the transistor feature sizes (CMOS scaling) has been the main driver of the astonishing growth and advancement of microelectronic industry. Currently, the CMOS scaling is almost reaching its limits. The gate oxide is now only a few atomic layers thick, and this extremely thin oxide causes a huge leakage current through the oxide. Therefore, a further reduction of the gate oxide thickness is extremely difficult and new materials with higher dielectric constant are being explored. However, the phenomena of oxide breakdown and reliability are still serious issues in these thin oxides. Oxide breakdown exhibits a soft breakdown behavior at low voltages, and this is posing as one of the most crucial reliability issues for scaling of the ultra-thin oxides. In addition, the stress-induced leakage current (SILC) due to oxide has emerged as a scaling problem for the non-volatile memory technologies. In this dissertation, a percolation modeling approach is introduced to study and understand the dramatic changes in the conductivity of a disordered medium. Two different simulation methods of percolative conduction, the site and bond percolation, are studied here. These are used in simulating the post-breakdown conduction inside the oxide. Adopting a Monte-Carlo method, oxide breakdown is modeled using a 2-D percolation theory. The breakdown statistics and post-breakdown characteristics of the oxide are computed using this model. In this work, the effects of different physical parameters, such as dimension and the applied stress are studied. The simulation results show that a thinning of oxide layer and increasing the oxide area result in softening of breakdown. It is observed that the breakdown statistics appear to follow Weibull characteristics. As revealed by simulations, the Weibull slope changes linearly with oxide thickness, while not having a significant change when the area is varied and when the amount of the applied stress is varied. It is shown that the simulation results are well correlated with the experimental data reported in the literature. In this thesis, studying the conduction through the oxide using percolation model, it was discovered that a critical or a quasi-critical phenomenon occurs depending on the oxide dimensions. The criticality of the phase-transition results in a hard breakdown while the soft breakdown occurs due to a quasi-critical nature of percolation for ultra-thin oxides. In the later part of the thesis, a quantum percolation model is studied in order to explain and model the stress induced leakage current. It is explained that due to the wave nature of electrons, the SILC can be modeled as a tunneling path through the stressed oxide with the smaller tunneling threshold compared to the virgin oxide. In addition to the percolation model, a Markov chain theory is introduced to simulate the movement of electron as a random walk inside the oxide, and the breakdown is simulated using this random-walk of electron through the accumulated traps inside the oxide. It is shown that the trapping-detrapping of electrons results in an electrical noise in the post-breakdown current having 1/f noise characteristics. Using simulation of a resistor network with Markov theory, the conductance of the oxide is computed. An analytical study of a 2-D site percolation system is conducted using recursive methods and useful closed-form expressions are derived for specialized networks.
6

Bimodal Gate Oxide Breakdown in Sub-100 nm CMOS Technology

Rezaee, Leila 08 December 2008 (has links)
In the last three decades, the electronic industry has registered a tremendous progress. The continuous and aggressive downsizing of the transistor feature sizes (CMOS scaling) has been the main driver of the astonishing growth and advancement of microelectronic industry. Currently, the CMOS scaling is almost reaching its limits. The gate oxide is now only a few atomic layers thick, and this extremely thin oxide causes a huge leakage current through the oxide. Therefore, a further reduction of the gate oxide thickness is extremely difficult and new materials with higher dielectric constant are being explored. However, the phenomena of oxide breakdown and reliability are still serious issues in these thin oxides. Oxide breakdown exhibits a soft breakdown behavior at low voltages, and this is posing as one of the most crucial reliability issues for scaling of the ultra-thin oxides. In addition, the stress-induced leakage current (SILC) due to oxide has emerged as a scaling problem for the non-volatile memory technologies. In this dissertation, a percolation modeling approach is introduced to study and understand the dramatic changes in the conductivity of a disordered medium. Two different simulation methods of percolative conduction, the site and bond percolation, are studied here. These are used in simulating the post-breakdown conduction inside the oxide. Adopting a Monte-Carlo method, oxide breakdown is modeled using a 2-D percolation theory. The breakdown statistics and post-breakdown characteristics of the oxide are computed using this model. In this work, the effects of different physical parameters, such as dimension and the applied stress are studied. The simulation results show that a thinning of oxide layer and increasing the oxide area result in softening of breakdown. It is observed that the breakdown statistics appear to follow Weibull characteristics. As revealed by simulations, the Weibull slope changes linearly with oxide thickness, while not having a significant change when the area is varied and when the amount of the applied stress is varied. It is shown that the simulation results are well correlated with the experimental data reported in the literature. In this thesis, studying the conduction through the oxide using percolation model, it was discovered that a critical or a quasi-critical phenomenon occurs depending on the oxide dimensions. The criticality of the phase-transition results in a hard breakdown while the soft breakdown occurs due to a quasi-critical nature of percolation for ultra-thin oxides. In the later part of the thesis, a quantum percolation model is studied in order to explain and model the stress induced leakage current. It is explained that due to the wave nature of electrons, the SILC can be modeled as a tunneling path through the stressed oxide with the smaller tunneling threshold compared to the virgin oxide. In addition to the percolation model, a Markov chain theory is introduced to simulate the movement of electron as a random walk inside the oxide, and the breakdown is simulated using this random-walk of electron through the accumulated traps inside the oxide. It is shown that the trapping-detrapping of electrons results in an electrical noise in the post-breakdown current having 1/f noise characteristics. Using simulation of a resistor network with Markov theory, the conductance of the oxide is computed. An analytical study of a 2-D site percolation system is conducted using recursive methods and useful closed-form expressions are derived for specialized networks.
7

System-level modeling and reliability analysis of microprocessor systems

Chen, Chang-Chih 12 January 2015 (has links)
Frontend and backend wearout mechanisms are major reliability concerns for modern microprocessors. In this research, a framework which contains modules for negative bias temperature instability (NBTI), positive bias temperature instability (PBTI), hot carrier injection (HCI), gate-oxide breakdown (GOBD), backend time-dependent dielectric breakdown (BTDDB), electromigration (EM), and stress-induced voiding (SIV) is proposed to analyze the impact of each wearout mechanism on state-of-art microprocessors and to accurately estimate microprocessor lifetimes due to each wearout mechanism. Taking into account the detailed thermal profiles, electrical stress profiles and a variety of use scenarios, composed of a fraction of time in operation, a fraction of time in standby, and a fraction of time when the system is off, this work provides insight into lifetime-limiting wearout mechanisms, along with the reliability-critical microprocessor functional units for a system. This enables circuit designers to know if their designs will achieve an adequate lifetime and further make any updates in the designs to enhance reliability prior to committing the designs to manufacture.

Page generated in 0.0664 seconds