• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 10
  • 10
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An extremal problem related to analytic continuation

Makhmudov, Olimdjan, Tarkhanov, Nikolai January 2013 (has links)
We show that the usual variational formulation of the problem of analytic continuation from an arc on the boundary of a plane domain does not lead to a relaxation of this overdetermined problem. To attain such a relaxation, we bound the domain of the functional, thus changing the Euler equations.
2

A Nonsmooth Nonconvex Descent Algorithm

Mankau, Jan Peter 17 January 2017 (has links) (PDF)
In many applications nonsmooth nonconvex energy functions, which are Lipschitz continuous, appear quite naturally. Contact mechanics with friction is a classic example. A second example is the 1-Laplace operator and its eigenfunctions. In this work we will give an algorithm such that for every locally Lipschitz continuous function f and every sequence produced by this algorithm it holds that every accumulation point of the sequence is a critical point of f in the sense of Clarke. Here f is defined on a reflexive Banach space X, such that X and its dual space X' are strictly convex and Clarkson's inequalities hold. (E.g. Sobolev spaces and every closed subspace equipped with the Sobolev norm satisfy these assumptions for p>1.) This algorithm is designed primarily to solve variational problems or their high dimensional discretizations, but can be applied to a variety of locally Lipschitz functions. In elastic contact mechanics the strain energy is often smooth and nonconvex on a suitable domain, while the contact and the friction energy are nonsmooth and have a support on a subspace which has a substantially smaller dimension than the strain energy, since all points in the interior of the bodies only have effect on the strain energy. For such elastic contact problems we suggest a specialization of our algorithm, which treats the smooth part with Newton like methods. In the case that the gradient of the entire energy function is semismooth close to the minimizer, we can even prove superlinear convergence of this specialization of our algorithm. We test the algorithm and its specialization with a couple of benchmark problems. Moreover, we apply the algorithm to the 1-Laplace minimization problem restricted to finitely dimensional subspaces of piecewise affine, continuous functions. The algorithm developed here uses ideas of the bundle trust region method by Schramm, and a new generalization of the concept of gradients on a set. The basic idea behind this gradients on sets is that we want to find a stable descent direction, which is a descent direction on an entire neighborhood of an iteration point. This way we avoid oscillations of the gradients and very small descent steps (in the smooth and in the nonsmooth case). It turns out, that the norm smallest element of the gradient on a set provides a stable descent direction. The algorithm we present here is the first algorithm which can treat locally Lipschitz continuous functions in this generality, up to our knowledge. In particular, large finitely dimensional Banach spaces haven't been studied for nonsmooth nonconvex functions so far. We will show that the algorithm is very robust and often faster than common algorithms. Furthermore, we will see that with this algorithm it is possible to compute reliably the first eigenfunctions of the 1-Laplace operator up to disretization errors, for the first time. / In vielen Anwendungen tauchen nichtglatte, nichtkonvexe, Lipschitz-stetige Energie Funktionen in natuerlicher Weise auf. Ein klassische Beispiel bildet die Kontaktmechanik mit Reibung. Ein weiteres Beispiel ist der $1$-Laplace Operator und seine Eigenfunktionen. In dieser Dissertation werden wir ein Abstiegsverfahren angeben, so dass fuer jede lokal Lipschitz-stetige Funktion f jeder Haeufungspunkt einer durch dieses Verfahren erzeugten Folge ein kritischer Punkt von f im Sinne von Clarke ist. Hier ist f auf einem einem reflexiver, strikt konvexem Banachraum definierert, fuer den der Dualraum ebenfalls strikt konvex ist und die Clarkeson Ungleichungen gelten. (Z.B. Sobolevraeume und jeder abgeschlossene Unterraum mit der Sobolevnorm versehen, erfuellt diese Bedingung fuer p>1.) Dieser Algorithmus ist primaer entwickelt worden um Variationsprobleme, bzw. deren hochdimensionalen Diskretisierungen zu loesen. Er kann aber auch fuer eine Vielzahl anderer lokal Lipschitz stetige Funktionen eingesetzt werden. In der elastischen Kontaktmechanik ist die Spannungsenergie oft glatt und nichtkonvex auf einem geeignetem Definitionsbereich, waehrend der Kontakt und die Reibung durch nicht glatte Funktionen modelliert werden, deren Traeger ein Unterraum mit wesentlich kleineren Dimension ist, da alle Punkte im Inneren des Koerpers nur die Spannungsenergie beeinflussen. Fuer solche elastischen Kontaktprobleme schlagen wir eine Spezialisierung unseres Algorithmuses vor, der den glatten Teil mit Newton aehnlichen Methoden behandelt. Falls der Gradient der gesamten Energiefunktion semiglatt in der Naehe der Minimalstelle ist, koennen wir sogar beweisen, dass der Algorithmus superlinear konvergiert. Wir testen den Algorithmus und seine Spezialisierung an mehreren Benchmark Problemen. Ausserdem wenden wir den Algorithmus auf 1-Laplace Minimierungsproblem eingeschraenkt auf eine endlich dimensionalen Unterraum der stueckweise affinen, stetigen Funktionen an. Der hier entwickelte Algorithmus verwendet Ideen des Bundle-Trust-Region-Verfahrens von Schramm, und einen neu entwickelten Verallgemeinerung von Gradienten auf Mengen. Die zentrale Idee hinter den Gradienten auf Mengen ist die, dass wir stabile Abstiegsrichtungen auf einer ganzen Umgebung der Iterationspunkte finden wollen. Auf diese Weise vermeiden wir das Oszillieren der Gradienten und sehr kleine Abstiegsschritte (im glatten, wie im nichtglatten Fall.) Es stellt sich heraus, dass das normkleinste Element dieses Gradienten auf der Umgebung eine stabil Abstiegsrichtung bestimmt. So weit es uns bekannt ist, koennen die hier entwickelten Algorithmen zum ersten Mal lokal Lipschitz-stetige Funktionen in dieser Allgemeinheit behandeln. Insbesondere wurden nichtglatte, nichtkonvexe Funktionen auf derart hochdimensionale Banachraeume bis jetzt nicht behandelt. Wir werden zeigen, dass unser Algorithmus sehr robust und oft schneller als uebliche Algorithmen ist. Des Weiteren, werden wir sehen, dass es mit diesem Algorithmus das erste mal moeglich ist, zuverlaessig die erste Eigenfunktion des 1-Laplace Operators bis auf Diskretisierungsfehler zu bestimmen.
3

A Nonsmooth Nonconvex Descent Algorithm

Mankau, Jan Peter 09 December 2016 (has links)
In many applications nonsmooth nonconvex energy functions, which are Lipschitz continuous, appear quite naturally. Contact mechanics with friction is a classic example. A second example is the 1-Laplace operator and its eigenfunctions. In this work we will give an algorithm such that for every locally Lipschitz continuous function f and every sequence produced by this algorithm it holds that every accumulation point of the sequence is a critical point of f in the sense of Clarke. Here f is defined on a reflexive Banach space X, such that X and its dual space X' are strictly convex and Clarkson's inequalities hold. (E.g. Sobolev spaces and every closed subspace equipped with the Sobolev norm satisfy these assumptions for p>1.) This algorithm is designed primarily to solve variational problems or their high dimensional discretizations, but can be applied to a variety of locally Lipschitz functions. In elastic contact mechanics the strain energy is often smooth and nonconvex on a suitable domain, while the contact and the friction energy are nonsmooth and have a support on a subspace which has a substantially smaller dimension than the strain energy, since all points in the interior of the bodies only have effect on the strain energy. For such elastic contact problems we suggest a specialization of our algorithm, which treats the smooth part with Newton like methods. In the case that the gradient of the entire energy function is semismooth close to the minimizer, we can even prove superlinear convergence of this specialization of our algorithm. We test the algorithm and its specialization with a couple of benchmark problems. Moreover, we apply the algorithm to the 1-Laplace minimization problem restricted to finitely dimensional subspaces of piecewise affine, continuous functions. The algorithm developed here uses ideas of the bundle trust region method by Schramm, and a new generalization of the concept of gradients on a set. The basic idea behind this gradients on sets is that we want to find a stable descent direction, which is a descent direction on an entire neighborhood of an iteration point. This way we avoid oscillations of the gradients and very small descent steps (in the smooth and in the nonsmooth case). It turns out, that the norm smallest element of the gradient on a set provides a stable descent direction. The algorithm we present here is the first algorithm which can treat locally Lipschitz continuous functions in this generality, up to our knowledge. In particular, large finitely dimensional Banach spaces haven't been studied for nonsmooth nonconvex functions so far. We will show that the algorithm is very robust and often faster than common algorithms. Furthermore, we will see that with this algorithm it is possible to compute reliably the first eigenfunctions of the 1-Laplace operator up to disretization errors, for the first time. / In vielen Anwendungen tauchen nichtglatte, nichtkonvexe, Lipschitz-stetige Energie Funktionen in natuerlicher Weise auf. Ein klassische Beispiel bildet die Kontaktmechanik mit Reibung. Ein weiteres Beispiel ist der $1$-Laplace Operator und seine Eigenfunktionen. In dieser Dissertation werden wir ein Abstiegsverfahren angeben, so dass fuer jede lokal Lipschitz-stetige Funktion f jeder Haeufungspunkt einer durch dieses Verfahren erzeugten Folge ein kritischer Punkt von f im Sinne von Clarke ist. Hier ist f auf einem einem reflexiver, strikt konvexem Banachraum definierert, fuer den der Dualraum ebenfalls strikt konvex ist und die Clarkeson Ungleichungen gelten. (Z.B. Sobolevraeume und jeder abgeschlossene Unterraum mit der Sobolevnorm versehen, erfuellt diese Bedingung fuer p>1.) Dieser Algorithmus ist primaer entwickelt worden um Variationsprobleme, bzw. deren hochdimensionalen Diskretisierungen zu loesen. Er kann aber auch fuer eine Vielzahl anderer lokal Lipschitz stetige Funktionen eingesetzt werden. In der elastischen Kontaktmechanik ist die Spannungsenergie oft glatt und nichtkonvex auf einem geeignetem Definitionsbereich, waehrend der Kontakt und die Reibung durch nicht glatte Funktionen modelliert werden, deren Traeger ein Unterraum mit wesentlich kleineren Dimension ist, da alle Punkte im Inneren des Koerpers nur die Spannungsenergie beeinflussen. Fuer solche elastischen Kontaktprobleme schlagen wir eine Spezialisierung unseres Algorithmuses vor, der den glatten Teil mit Newton aehnlichen Methoden behandelt. Falls der Gradient der gesamten Energiefunktion semiglatt in der Naehe der Minimalstelle ist, koennen wir sogar beweisen, dass der Algorithmus superlinear konvergiert. Wir testen den Algorithmus und seine Spezialisierung an mehreren Benchmark Problemen. Ausserdem wenden wir den Algorithmus auf 1-Laplace Minimierungsproblem eingeschraenkt auf eine endlich dimensionalen Unterraum der stueckweise affinen, stetigen Funktionen an. Der hier entwickelte Algorithmus verwendet Ideen des Bundle-Trust-Region-Verfahrens von Schramm, und einen neu entwickelten Verallgemeinerung von Gradienten auf Mengen. Die zentrale Idee hinter den Gradienten auf Mengen ist die, dass wir stabile Abstiegsrichtungen auf einer ganzen Umgebung der Iterationspunkte finden wollen. Auf diese Weise vermeiden wir das Oszillieren der Gradienten und sehr kleine Abstiegsschritte (im glatten, wie im nichtglatten Fall.) Es stellt sich heraus, dass das normkleinste Element dieses Gradienten auf der Umgebung eine stabil Abstiegsrichtung bestimmt. So weit es uns bekannt ist, koennen die hier entwickelten Algorithmen zum ersten Mal lokal Lipschitz-stetige Funktionen in dieser Allgemeinheit behandeln. Insbesondere wurden nichtglatte, nichtkonvexe Funktionen auf derart hochdimensionale Banachraeume bis jetzt nicht behandelt. Wir werden zeigen, dass unser Algorithmus sehr robust und oft schneller als uebliche Algorithmen ist. Des Weiteren, werden wir sehen, dass es mit diesem Algorithmus das erste mal moeglich ist, zuverlaessig die erste Eigenfunktion des 1-Laplace Operators bis auf Diskretisierungsfehler zu bestimmen.
4

Problèmes d'évolution associés au p-laplacien : comportement asymptotique et non-existence / Evolution problems associated to the p-Laplace operator : asymptotic behavior and nonexistence / Evolutionsprobleme für den p-Laplace Operator : asymptotisches Verhalten und Nichtexistenz

Hauer, Daniel 18 December 2012 (has links)
Cette thèse s'inscrit dans le cadre de l'étude de deux sujets concernant les problèmes d'évolution liés au p-laplacien. Le premier sujet concerne l'étude du comportement asymptotique des solutions bornées lorsque le temps $t\to+\infty$. Quant au deuxième sujet, il porte sur l'étude de la non existence des solutions positives non triviales. Cette thèse se répartit en trois chapitres. Le premier chapitre est consacré à une introduction générale. Le deuxième chapitre porte sur l'étude de la convergence, lorsque $t\to+\infty$, des solutions bornées d'une équation parabolique associée au p-laplacien dans un intervalle borné avec des conditions aux limites du type soit Dirichlet, Neumann ou Robin. Ce travail était l'objet d'un article \cite{hauer-convergence-2012} accepté pour publication dans « Nonlinear Differential Equations and Applications NoDea ». Le dernier chapitre concerne l'étude de la non existence des solutions positives des équations paraboliques associées au p-laplacien avec un terme de convection et un potentiel singulier. La deuxième et quatrième section du Chapitre 3 reprennent un article \cite{Hauer:2012fk} accepté pour publication dans le journal « Archiv der Mathematik ». La deuxième sous-section de la Section 4 du Chapitre 3 contient un résultat qui améliore le travail \cite{Goldstein-Rhandi-weighted-hardy-11} de G. Goldstein, J. Goldstein et A. Rhandi et le travail \cite{MR1616905} de J. P. García Azorero et I. Peral Alonso concernant la non existence des solutions positives. Ce résultat n'est pas encore publié / This thesis is dedicated to the study of two subjects in the field of evolution problems associated with the $p$-Laplace operator. The first subject is concerned with the study of long time behavior of bounded solutions and the second subject is devoted to the study of nonexistence of positive nontrivial solutions. The first chapter of this thesis is devoted to a general introduction to the p-Laplace operator and a résumé of this thesis. The first chapter is written in French. Chapter 2 is dedicated to the study of convergence as the time $t\to+\infty$ of bounded solutions of evolution problems associated with the p-Laplace operator on a bounded interval with homogeneous Dirichlet, Neumann, or Robin boundary conditions converges. The results of Chapter 2 are contained in article \cite{hauer-convergence-2012}, which was published in the journal « Nonlinear Differential Equations and Applications NoDea ». Chapter 3 is devoted to the study of nonexistence of positive nontrivial weak solutions of parabolic equations associated to the p-Laplace operator with a convection term and a singular potential. The results of Section 3.2 and Section 3.4.1 of Chapter 3 are contained in article \cite{Hauer:2012fk}, which was accepted for publication in the journal « Archiv der Mathematik ». The results of Section 3.4.2 of Chapter 3 are not yet published
5

Reaction-diffusion equations and dynamics of population facing a climate change / Équations de réaction-diffusion et dynamique de populations face à un changement climatique

Vo, Hoang Hung 02 July 2014 (has links)
Cette thèse traite de différents modèles issus de l'étude de la dynamique des populations devant faire face à un changement climatique. Notre but est d’atteindre deux objectifs ; le premier est d'étendre les travaux initiaux de Berestycki, Diekmann, Nagelkerke, Zegeling [5], ainsi que leurs développements ultérieurs (Berestycki et Rossi [18, 19]) ; le second est de dévoiler les aspects mathématiques profonds de ce modèle, en considérant de nouveaux problèmes, faisant intervenir une diffusion non-locale et non-linéaire. Le Chapitre 1 traite du cas d’un domaine cylindrique infini, dans l'espace entier, lorsque le terme de réaction est indépendant (resp. périodiquement dépendant) du temps. La nouveauté de ce travail est d’exprimer une condition globale dans le cadre de la théorie spectrale, afin de pouvoir supposer que l'environnement de la population est globalement défavorable à l'infini (au lieu de ponctuellement défavorable au voisinage de l'infini) comme dans [5, 18, 19]. Nous poursuivons l’étude de la concentration des espèces dans le domaine cylindrique lorsque le domaine extérieur est rendu extrêmement défavorable. Dans le Chapitre 2, nous nous concentrons sur les hypothèses permettant d’établir l'existence (vs l'inexistence) et l'unicité de la solution positive de l'équation elliptique semi-linéaire complète. Lorsque la divergence du terme de dérive est nulle, l'existence d'une solution positive peut être caractérisée à partir de l'amplitude du terme de dérive (sous des hypothèses adéquates de vitesse d’accroissement). L’étude du comportement pour des temps longs de l'équation parabolique nous amène à traiter le cas de coefficients éventuellement non bornés. Le Chapitre 3 étend les critères d'existence, d'inexistence et d'unicité explicités dans le deuxième chapitre aux équations quasi-linéaires impliquant un opérateur p-Laplacien. La principale difficulté rencontrée est que le principe du maximum fort semble difficile à appliquer ; nous devons alors utiliser une approche variationnelle pour obtenir un important principe de comparaison. Dans le Chapitre 4, nous étudions trois notions de valeurs propres principales généralisées pour les opérateurs non locaux sur des domaines bornés et non bornés (éventuellement ). Si le noyau est à support compact, nous pouvons également démontrer l'équivalence de ces valeurs propres sur domaine non borné. Nous étudions les limites des valeurs propres de l'opérateur de mise à l'échelle induit par la diffusion. Les résultats sont très dépendants du taux de mise à l'échelle. Dans le Chapitre 5, à la lumière des résultats obtenus dans le Chapitre 4, nous considérons l'équation d'évolution non locale et démontrons que la solution de l'équation d'évolution converge vers l’unique solution stationnaire, dont l'existence est directement conditionnée par le signe de la valeur propre principale généralisée. Cette convergence a lieu dans L1 (RN) et Lp (RN), p> 0. Dans la deuxième partie de ce chapitre, nous examinons les limites singulières de l'unique solution positive des équations de remise à l’échelle. Nous montrons que l'unique solution de l'équation non locale approche – soit l'unique solution de l'équation locale de type KPP, soit une solution (qui peut ne pas être unique) de l’équation de réaction. / The thesis is concerned with various models arising from the study of the dynamics of the population facing a climate change. We aim at achieving two following goals: The first one is to extend original work of Berestycki, Diekmann, Nagelkerke, Zegeling [5] and later developments of Berestycki and Rossi [18,19] the second one is to investigate the deeper mathematical aspects of this model and deal with the new problems where nonlocal and nonlinear diffusion are considered. The Chapter 1 deals with the problem in an infinite cylindrical domain and in the whole space where the reaction term is (resp.) independent or periodically dependent on time. The novelty of this work is that we consider a global condition in term of the spectral theory to assume that the environment of the population is globally unfavorable at infinity instead of pointwise unfavorable near infinity as in [5,18,19]. We further study the concentration of the species in the cylindrical domain when the exterior domain is changed to be extremely unfavorable. In the Chapter 2, we focus on conditioning the a sharp criterion for the existence, nonexistence and uniqueness of positive solution of fully semilinear elliptic equation. When the divergence of the drift term is zero, the existence of positive solution can be characterized by the amplitude of the drift term under some fair assumptions on the growth rate. The large time behavior of associated parabolic equation is considered, where we have to deal with the case of possibly unbounded coefficients. The Chapter 3 extends the existence, nonexistence and uniqueness in the second chapter for a quasilinear equation involving p-laplacian operator. The main difficulty is that it seems hard to apply the strong maximum principle and thus we make use a variational approach to attain an important comparison principle. In Chapter 4, we investigate three notion of generalized principal eigenvalues for nonlocal operators in bounded and unbounded domains (eventually $\R^N$). If the kernel is compactly supported, we can also prove the equivalence of these eigenvalues in unbounded domain. We consider the limits of the eigenvalues of the rescaling operator with respect to the diffusion. The results are very different depending on the rate of rescaling. In Chapter 5, by the help of the results in Chapter 4, we consider the nonlocal evolution equation and prove that the solution of evolution equation converges to the unique stationary solution, whose existence is directly conditioned by the sign of the generalized principal eigenvalue. The convergences holds in $L^\infty(\R^N)$ and $L^p(\R^N)$, $p>0$. In the second part of this chapter, we further investigate the singular limits of the unique positive solution of the rescaling equations. We show that the unique solution of nonlocal equation either approximates the unique solution of local KPP type equation or approximates a solution of reaction-equation, which may not be unique.
6

A Kačanov Type Iteration for the p-Poisson Problem

Wank, Maximilian 16 March 2017 (has links)
In this theses, an iterativ linear solver for the non-linear p-Poisson problem is introduced. After the theoretical convergence results some numerical examples of a fully adaptive solver are presented.
7

Propriedades de simetria para soluções de equações elípticas quase lineares em modelos riemannianos

Costa, Ricardo Pinheiro da 25 July 2014 (has links)
Made available in DSpace on 2015-05-15T11:46:20Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1326144 bytes, checksum: 8caf7598b3ff31900cccda592a06981f (MD5) Previous issue date: 2014-07-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we investigate monotonicity and symmetry properties of of solutions to equations involving the p-Laplace-Beltrami operator in hyperbolic space and sphere. The main tools used to obtain the result is a variant of the method of moving planes and a careful use of the maximum and comparison principles / Neste trabalho investigamos propriedades de simetria e monotonicidade de soluções para equações envolvendo o operador de p-Laplace-Beltrami no espaço hiperbólico e na esfera. As principais ferramentas empregadas para obtenção do resultado é uma variante do método dos planos móveis e um cuidadoso uso de princípios do máximo e de comparação
8

Generalizations of a Laplacian-Type Equation in the Heisenberg Group and a Class of Grushin-Type Spaces

Childers, Kristen Snyder 01 January 2011 (has links)
In [2], Beals, Gaveau and Greiner find the fundamental solution to a 2-Laplace-type equation in a class of sub-Riemannian spaces. This fundamental solution is based on the well-known fundamental solution to the p-Laplace equation in Grushin-type spaces [4] and the Heisenberg group [6]. In this thesis, we look to generalize the work in [2] for a p-Laplace-type equation. After discovering that the "natural" generalization fails, we find two generalizations whose solutions are based on the fundamental solution to the p-Laplace equation.
9

Boundary Behavior of p-Laplace Type Equations

Avelin, Benny January 2013 (has links)
This thesis consists of six scientific papers, an introduction and a summary. All six papers concern the boundary behavior of non-negative solutions to partial differential equations. Paper I concerns solutions to certain p-Laplace type operators with variable coefficients. Suppose that u is a non-negative solution that vanishes on a part Γ of an Ahlfors regular NTA-domain. We prove among other things that the gradient Du of u has non-tangential limits almost everywhere on the boundary piece Γ, and that log|Du| is a BMO function on the boundary.  Furthermore, for Ahlfors regular NTA-domains that are uniformly (N,δ,r0)-approximable by Lipschitz graph domains we prove a boundary Harnack inequality provided that δ is small enough.  Paper II concerns solutions to a p-Laplace type operator with lower order terms in δ-Reifenberg flat domains. We prove that the ratio of two non-negative solutions vanishing on a part of the boundary is Hölder continuous provided that δ is small enough. Furthermore we solve the Martin boundary problem provided δ is small enough. In Paper III we prove that the boundary type Riesz measure associated to an A-capacitary function in a Reifenberg flat domain with vanishing constant is asymptotically optimal doubling. Paper IV concerns the boundary behavior of solutions to certain parabolic equations of p-Laplace type in Lipschitz cylinders. Among other things, we prove an intrinsic Carleson type estimate for the degenerate case and a weak intrinsic Carleson type estimate in the singular supercritical case. In Paper V we are concerned with equations of p-Laplace type structured on Hörmander vector fields. We prove that the boundary type Riesz measure associated to a non-negative solution that vanishes on a part Γ of an X-NTA-domain, is doubling on Γ. Paper VI concerns a one-phase free boundary problem for linear elliptic equations of non-divergence type. Assume that we know that the positivity set is an NTA-domain and that the free boundary is a graph. Furthermore assume that our solution is monotone in the graph direction and that the coefficients of the equation are constant in the graph direction. We prove that the graph giving the free boundary is Lipschitz continuous.
10

Comparaison de valeurs propres de Laplaciens et inégalités de Sobolev sur des variétés riemanniennes à densité / Eigenvalue comparison for Laplacians and Sobolev inequalities on weighed Riemannian manifolds

Shouman, Abdolhakim 03 July 2017 (has links)
Le but de cette thèse est triple : INÉGALITÉS DE SOBOLEV AVEC DES CONSTANTES EXPLICITES SUR DES VARIÉTÉS RIEMANNIENNES À DENSITÉ ET À BORD CONVEXE : On obtient des inégalités de Sobolev à densité, avec des constantes géométriques explicites pour des variétés à courbure de m-Bakry-Émery Ricci minorée par une constante positive et à bord convexe. Ceci permet de généraliser de nombreux résultats connus dans le cas riemannien aux variétés avec densité. Nous montrons aussi comment déduire des inégalités de Sobolev obtenues, un résultat d’isolement pour les applications f -harmoniques. Nous présenterons également une nouvelle et très simple méthode pour la preuve de l’inégalité de Moser-Trudinger-Onofri [Onofri, 1982] dans le cas du disque euclidien. / The purpose of this thesis is threefold: SOBOLEV INEQUALITIES WITH EXPLICIT CONSTANTS ON A WEIGHTED RIEMANNIAN MANIFOLD OF CONVEX BOUNDARY: We obtain weighted Sobolev inequalities with explicit geometric constants for weighted Riemannian manifolds of positive m-Bakry-Emery Ricci curvature and convex boundary. As a first application, we generalize several results of Riemannian manifolds to the weighted setting. Another application is a new isolation result for the f -harmonic maps. We also give a new and elemantry proof of the well-known Moser-Trudinger-Onofri [Onofri, 1982] inequality for the Euclidean disk.

Page generated in 0.0502 seconds