• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 36
  • 36
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Electromagnetic Manipulation of Individual Nano- and Microparticles

Kuhlicke, Alexander 17 November 2017 (has links)
Gegenstand der vorliegenden Dissertation ist die Untersuchung von einzelnen nano- und mikrometergroßen Partikeln, zum Verständnis und zur Entwicklung von neuartigen nanooptischen Elementen, wie Lichtquellen und Sensoren, sowie Strukturen zum Aufsammeln und Leiten von Licht. Neben der Charakterisierung stehen dabei verschiedene Methoden zur elektromagnetischen Manipulation im Vordergrund, die auf eine Kontrolle der Position oder der Geometrie der Partikel ausgerichtet sind. Die gezielten Manipulationen werden verwendet, um vorausgewählte Partikel zu isolieren, modifizieren und transferieren. Dadurch können Partikel zu komplexeren photonischen Systemen kombiniert werden, welche die Funktionalität der einzelnen Bestandteile übertreffen. Der Hauptteil der Arbeit behandelt Experimente mit freischwebenden Partikeln in linearen Paul-Fallen. Durch die räumliche Isolation im elektrodynamischen Quadrupolfeld können Partikel mit reduzierter Wechselwirkung untersucht werden. Neben der spektroskopischen Charakterisierung von optisch aktiven Partikeln (farbstoffdotierte Polystyrol-Nanokügelchen, Cluster aus Nanodiamanten mit Stickstoff-Fehlstellen-Zentren, Cluster aus kolloidalen Quantenpunkten) sowie optischen Resonatoren (plasmonische Silber-Nanodrähte, sphärische Siliziumdioxid-Mikroresonatoren) werden neu entwickelte Methoden zur Manipulation vorgestellt, mit denen sich individuelle Partikel freischwebend kombinieren und elektromagnetisch koppeln sowie aus der Falle auf optischen Fasern zur weiteren Untersuchung bzw. zur Funktionalisierung photonischer Strukturen ablegen lassen. In einem weiteren Teil der Arbeit wird eine Methode zur Manipulation der Geometrie von plasmonischen Nanopartikeln vorgestellt. Dabei werden einzelne Goldkugeln auf einem Deckglas mit einem fokussierten Laserstrahl zum Schmelzen gebracht und verformt. Durch die kontrollierte und reversible Veränderung der Symmetrie lassen sich die lokalisierten Oberflächenplasmonen des Partikels gezielt beeinflußen. / The topic of the present thesis is the investigation of single nano- and microsized particles for the understanding and design of novel nanooptical elements as light sources and sensors, as well as light collecting and guiding structures. In addition to particle characterization, the focus is on different methods for electromagnetic particle manipulation aimed at controlling the particle’s position or geometry. The specific manipulations are used for isolation, modification and transfer of preselected particles, enabling combination of particles into more complex photonic systems, which exceed the functionalities of the individual constituents. The main part of this work deals with experiments on levitated particles in linear Paul traps. Due to the spatial isolation in the electrodynamic quadrupole field, particles can be investigated with reduced environmental interaction. In addition to spectroscopic characterization of optically active particles (dye-doped polystyrene nanobeads, clusters of nanodiamonds with nitrogen vacancy defect centers, clusters of colloidal quantum dots) and particles with optical resonances (plasmonic silver nanowires, spherical silica microresonators) new manipulation methods are presented that enable assembly and electromagnetic coupling of individual, levitated particles as well as deposition of particles from the trap on optical fibers for further characterization or functionalization of photonic structures. In a further part of this work a method to manipulate the geometry of plasmonic nanoparticles is presented. Single gold nanospheres on a coverslip are melted and shaped with a focused laser beam. The localized surface plasmons can be influenced specifically by controlled and reversible changes of the particle symmetry.
32

Inhalátory a nebulizátory pro použití v medicíně: principy, spolehlivost a provozní parametry / Inhalers and nebulizers for medical use: their principles, reliability, and operating parameters

Mišík, Ondrej January 2019 (has links)
An issue of inhalation therapy is a complex topic, actively discussed in last decades, and its progress in various scientific fields is more than required. First part of this thesis brings a theoretical introduction into principles of aerosol therapy and into the requirements resulting from them. Commonly available technologies of inhalers and nebulisers for medical usage, parameters that determinate their effectivity are briefly described. Usage mistakes influencing the effectivity of inhalation are discussed, as well. Second part deals with experimental measurements of aerosol that selected inhalers generate. It also describes difficulties connected with the methods of these measurements, with sampling and following analyses. Gained results are compared with an available literature.
33

Modeling High Temperature Deposition in Gas Turbines

Plewacki, Nicholas 06 October 2020 (has links)
No description available.
34

Evaluation of a stochastic model of coherent turbulent structures for atmospheric particle deposition applications

Eriksson, Andreas January 2022 (has links)
In this thesis, we have evaluated a stochastic Lagrangian model for computing particle deposition rates with prospects to use for atmospheric deposition applications.  The model is one-dimensional and models the particle dynamics in the boundary layers near walls and obstacles by simulating the coherent turbulent structures and Brownian motion governing the wall-normal transport. The deposition model is used with a hybrid deterministic/stochastic particle dispersion model governing the dynamics in the turbulent bulk flow. We used a steady-state RANS k-ϵ turbulence model to simulate the turbulent fluid flow in a neutral atmospheric boundary layer (ABL) using the with inflow boundary conditions by Richards & Hoxey (1993). The turbulence model is solved with the SIMPLE algorithm using the OpenFOAM software. The mean-field characteristic of the turbulent flow in the computational domain is exported and used for the particle model. The particle model is a Lagrangian Langevin-type model, consisting of a system of stochastic differential equations. The particle model was solved using a weakly first order a-stable scheme. We evaluated the deposition model by computing the deposition rate for a range of particle sizes and compared our results with collected experimental wind tunnel data. The numerical experiment was done in a computational domain based on the ABL model by Hargreaves & Wright (2007), a rectangular domain with a logarithmic wind profile. We used a particle source near the inflow boundary with an instantaneously release at the initial time. Results showed disagreement with the experimental data and was only valid for medium sized particles. However, time restrictions led to the analysis being cut short and only a single simulation was conducted. A definite conclusion on the suitability of the method could not be made based solely on this single results. Some uncertainties were identified and discussed for further potential work on the evaluation of the method. However, one conclusion was drawn on the performance of the method. The computational cost was concluded to be too high with the first order particle scheme used and higher order schemes is required for any practical use of the method for atmospheric deposition applications.
35

Experimentelle Bestimmung der Depositionsgeschwindigkeit luftgetragener Partikel mit Hilfe der Eddy-Kovarianzmethode über einem Fichtenaltbestand im Solling / Determination of dry deposition of airborne particles to a spruce forest by eddy-correlation

Bleyl, Matthias 30 January 2001 (has links)
No description available.
36

Analysis of dispersion and propagation of fine and ultra fine particle aerosols from a busy road

Gramotnev, Galina January 2007 (has links)
Nano-particle aerosols are one of the major types of air pollutants in the urban indoor and outdoor environments. Therefore, determination of mechanisms of formation, dispersion, evolution, and transformation of combustion aerosols near the major source of this type of air pollution - busy roads and road networks - is one of the most essential and urgent goals. This Thesis addresses this particular direction of research by filling in gaps in the existing physical understanding of aerosol behaviour and evolution. The applicability of the Gaussian plume model to combustion aerosols near busy roads is discussed and used for the numerical analysis of aerosol dispersion. New methods of determination of emission factors from the average fleet on a road and from different types of vehicles are developed. Strong and fast evolution processes in combustion aerosols near busy roads are discovered experimentally, interpreted, modelled, and statistically analysed. A new major mechanism of aerosol evolution based on the intensive thermal fragmentation of nano-particles is proposed, discussed and modelled. A comprehensive interpretation of mutual transformations of particle modes, a strong maximum of the total number concentration at an optimal distance from the road, increase of the proportion of small nano-particles far from the road is suggested. Modelling of the new mechanism is developed on the basis of the theory of turbulent diffusion, kinetic equations, and theory of stochastic evaporation/degradation processes. Several new powerful statistical methods of analysis are developed for comprehensive data analysis in the presence of strong turbulent mixing and stochastic fluctuations of environmental factors and parameters. These methods are based upon the moving average approach, multi-variate and canonical correlation analyses. As a result, an important new physical insight into the relationships/interactions between particle modes, atmospheric parameters and traffic conditions is presented. In particular, a new definition of particle modes as groups of particles with similar diameters, characterised by strong mutual correlations, is introduced. Likely sources of different particle modes near a busy road are identified and investigated. Strong anti-correlations between some of the particle modes are discovered and interpreted using the derived fragmentation theorem. The results obtained in this thesis will be important for accurate prediction of aerosol pollution levels in the outdoor and indoor environments, for the reliable determination of human exposure and impact of transport emissions on the environment on local and possibly global scales. This work will also be important for the development of reliable and scientifically-based national and international standards for nano-particle emissions.

Page generated in 0.0982 seconds