• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 56
  • 29
  • 9
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 201
  • 43
  • 18
  • 16
  • 16
  • 15
  • 14
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Mechanism of orthotic therapy for the painful cavus foot deformity

Najafi, Bijan, Wrobel, James, Burns, Joshua January 2014 (has links)
BACKGROUND:People who have extremely high arched feet or pes cavus often suffer from substantial foot pain. Custom-made foot orthoses (CFO) have been shown to be an effective treatment option, but their specificity is unclear. It is generally thought that one of the primary functions of CFO is redistributing abnormal plantar pressures. This study sought to identify variables associated with pain relief after CFO intervention.METHODS:Plantar pressure data from a randomized controlled trial of 154 participants with painful pes cavus were retrospectively re-analyzed at baseline and three month post CFO intervention. The participants were randomized to a treatment group given CFO or a control group given sham orthoses.RESULTS:No relationship between change in pressure magnitude and change in symptoms was found in either group. However, redistribution of plantar pressure, measured with the Dynamic Plantar Loading Index, had a significant effect on pain relief (p=0.001). Our final model predicted 73% of the variance in pain relief from CFO and consisted of initial pain level, BMI, foot alignment, and changes in both Dynamic Plantar Loading Index and pressure-time integral.CONCLUSION:Our data suggest that a primary function of effective orthotic therapy with CFO is redistribution of abnormal plantar pressures. Results of this study add to the growing body of literature providing mechanistic support for CFO providing pain relief in painful foot conditions. The proposed model may assist in better designing and assessing orthotic therapy for pain relief in patients suffering painful cavus foot deformity.TRIAL REGISTRATION:Randomized controlled trial: ISRCTN84913516
122

Nové trendy využití psa při práci s dětskými klienty / New trends in use of dog at work with child clients

Mejstříková, Renata January 2011 (has links)
Graduation thesis New trends in use of dog at work with child clients. The essential part of the thesis is focused on dog-assisted therapy, respectively on factual opportunities of practicing canistherapy considering the client's needs. Final part of the thesis holds an example of canistherapeutic activities realized as part of the project Not Only People Help in Motol University hospital.
123

Člověk a jeho pes, pes a jeho člověk / The man and his dog, the dog and its man

Černá, Klára January 2013 (has links)
Klára Černá: Man and his Dog, Dog and its Man Charles University in Prague, Faculty of Arts, Department of Sociology Theses, 76 pages, 2013 Work, focused on the role of dog in human relationships. The first part provides an introduction to the problem and its historical, ethological, cultural a biopsychological consequences to human beings. The second part - research, used grounded theory. Focused is on young adults in Prague. The aim is to reveal the basic forms of implications of cohabitation with dog on interpersonal relationships. Keywords Human-animal studie; dog; grouded theory; interpersonal relationships; animal and society
124

Elaboration et caractérisation de couches ultra-minces de silicate de baryum en tant qu'oxyde de grille alternatif

Genevès, Thomas 10 October 2008 (has links) (PDF)
La miniaturisation des dispositifs élémentaires de la technologie CMOS impose le remplacement de l'oxyde de silicium pour l'élaboration de l'oxyde de grille. Par l'identification des conditions de formation du silicate de baryum au contact direct du substrat de silicium, cette étude a révélé un candidat potentiel. En premier lieu, la réaction entre Ba et SiO2 aboutissant à la formation d'un silicate de baryum a été mise en évidence in-situ par XPS et SR-PES. Dans un second temps, des films de silicate de baryum ont été élaborés par co-déposition de baryum et d'oxygène à une température de 580 °C. Des traitements thermiques sous vide ont montré que le silicate de baryum est stable jusqu'à 900 °C. Des analyses ex-situ par SIMS et MET ont révélé une interface abrupte avec le substrat. Enfin, un dispositif dédié à la réalisation de croissances par MOCVD a été développé. Il a permis de montrer la possibilité de former un silicate de baryum. La réaction est favorisée lorsque le dépôt se déroule à température élevée, sous une pression partielle d'oxygène.
125

Nanotubes for Battery Applications

Nordlinder, Sara January 2005 (has links)
<p>Nanomaterials have attracted great interest in recent years, and are now also being considered for battery applications. Reducing the particle size of some electrode materials can increase battery performance considerably, especially with regard to capacity, power and rate capability. This thesis presents a study focused on the performance of such a material, vanadium oxide nanotubes, as cathode material for rechargeable lithium batteries.</p><p>These nanotubes were synthesized by a sol-gel process followed by hydrothermal treatment. They consist of vanadium oxide layers separated by structure-directing agents, normally amines or metal ions, e.g., Na<sup>+</sup>, Ca<sup>2+</sup>, Mn<sup>2+</sup> and Cu<sup>2+</sup>. The layers are arranged in a scroll-like manner, allowing the interlayer structure to expand and contract, depending on the size of the embedded guest. This tubular form of vanadium oxide was able to insert lithium ions reversibly, making it a candidate cathode material. The structural and electrochemical response to lithium ion insertion was carefully studied to define optimal performance criteria and probe the lithium insertion mechanism. This was done using several characterization techniques, including X-ray diffraction, a variety of spectroscopic methods and electrochemical testing. Galvanostatic measurements show that the material can be charged and discharged reversibly for >100 cycles with a capacity of 150-200 mAh/g. The electrochemical performance is, however, dependent on the electrode film preparation technique, the choice of salt in the electrolyte and the nature of the embedded guest. Results from photoelectron spectroscopy, and soft X-ray emission and absorption spectroscopy confirm that vanadium is reduced during lithium insertion and that three oxidation states (V<sup>5+</sup>, V<sup>4+ </sup>and V<sup>3+</sup>) co-exist at potentials below 2.0 V. <i>In situ</i> X-ray diffraction, performed during potential stepping, identifies two separate processes during lithium insertion: a fast decrease of the interlayer distance followed by a slow two-dimensional relaxation of the vanadium oxide layers. </p>
126

Nanotubes for Battery Applications

Nordlinder, Sara January 2005 (has links)
Nanomaterials have attracted great interest in recent years, and are now also being considered for battery applications. Reducing the particle size of some electrode materials can increase battery performance considerably, especially with regard to capacity, power and rate capability. This thesis presents a study focused on the performance of such a material, vanadium oxide nanotubes, as cathode material for rechargeable lithium batteries. These nanotubes were synthesized by a sol-gel process followed by hydrothermal treatment. They consist of vanadium oxide layers separated by structure-directing agents, normally amines or metal ions, e.g., Na+, Ca2+, Mn2+ and Cu2+. The layers are arranged in a scroll-like manner, allowing the interlayer structure to expand and contract, depending on the size of the embedded guest. This tubular form of vanadium oxide was able to insert lithium ions reversibly, making it a candidate cathode material. The structural and electrochemical response to lithium ion insertion was carefully studied to define optimal performance criteria and probe the lithium insertion mechanism. This was done using several characterization techniques, including X-ray diffraction, a variety of spectroscopic methods and electrochemical testing. Galvanostatic measurements show that the material can be charged and discharged reversibly for &gt;100 cycles with a capacity of 150-200 mAh/g. The electrochemical performance is, however, dependent on the electrode film preparation technique, the choice of salt in the electrolyte and the nature of the embedded guest. Results from photoelectron spectroscopy, and soft X-ray emission and absorption spectroscopy confirm that vanadium is reduced during lithium insertion and that three oxidation states (V5+, V4+ and V3+) co-exist at potentials below 2.0 V. In situ X-ray diffraction, performed during potential stepping, identifies two separate processes during lithium insertion: a fast decrease of the interlayer distance followed by a slow two-dimensional relaxation of the vanadium oxide layers.
127

Characterization and Functionalization of 2D Overlayers Adsorbed on Transition Metals

Ng, May Ling January 2010 (has links)
Two-dimensional layered materials, namely monolayer hexagonal boron nitride and graphene were grown by CVD on various transition metals. The physical and chemical properties of these systems were characterized systematically using synchrotron-based spectroscopic techniques, scanning tunneling microscopy and low energy electron diffraction. It is learned that the overlayer–substrate interaction is caused by the overlayer π–substrate d band hybridization. The physical properties of these overlayers depend on the strength of interaction and the degree of lattice matching at the interface. The strength of interaction between the boron nitride and graphene overlayers and the transition metal substrates is increasing from Pt(111)–Ir(111)–Rh(111)–Ru(0001). For overlayers adsorbed on Rh and Ru, the interplay between these two parameters can result in corrugation of the overlayer, i.e. a surface with bonding and non-bonding areas. The amplitude of corrugation is increasing with the strength of interfacial interaction. The corrugated BN overlayer (BN nanomesh) was used as a template for the growth of two-dimensional and highly dispersive Au nanoparticles. In addition, the inert BN nanomesh was used as a substrate for the deposition of pentacene molecules that conform to the corrugated surface while preserving the herringbone crystal structure. The coadsorption of oxygen and Co clusters on the nanomesh was investigated. Oxygen was utilized to lower the Co surface energy, i.e. to prevent Co agglomeration. It is observed that the smaller Co clusters intercalate through the BN overlayer upon soft annealing. Beside the surface structure, the substrate induced surface reactivity of the MG overlayer was employed to promote the hydrogenation of graphene on Pt, Ir and Ni. The graphene layer adsorbed on Pt and Ir shows higher H uptake than MG/Ni. Furthermore the uptake increases with the size of the bonded graphene. The small H uptake for MG/Ni was attributed to the electron localization in the C-Ni bonds.
128

La sinistralitat viària a Catalunya: la percepció socials dels canvis en l'entorn viari

Sauret, Jordi 15 December 2004 (has links)
A partir de l'observació de desenes de punts d'especial sinistralitat d'arreu de Catalunya i l'anàlisi de centenars de sinistres ocorreguts en aquests punts, va permetre arribar a sistematitzar que, segons sigui la decodificació del tram viari a partir de les senyals que arriben de l'entorn, senyals de tot tipus, l'usuari adapta el seu patró de conducció en aquell tipus de tram en funció de la seva experiència; el problema rau però, quan apareix de forma "sobtada" un factor "no previst" en aquell tipus de tram i per aquella forma "normal" de circular-hi, o, quan el tram canvia de categoria en pocs segons, i per tant, en pocs instants cal canviar i adaptar el patró de conducta a un entorn canviant, que no sempre les senyals de trànsit poden preveure, o en altres casos, aquestes senyals han perdut credibilitat i hom condueix "al marge" dels inputs oficials. L'adaptació, l'adaptació lenta o simplement, la no adaptació als canvis sobtats de l'entorn estaria en la base de la immensa majoria dels sinistres analitzats.
129

Titania Nanoscale Films and Surfaces : Surface Science Investigation of Structure and Properties

Ragazzon, Davide January 2014 (has links)
This thesis presents surface science studies, investigating several aspects of titanium dioxide at the atomic scale. The greater part of this work is devoted to the preparation by chemical vapor deposition (CVD) of titanium(IV) tetraisopropoxide (TTIP) of ultrathin TiO2 or TiOx films on Au(111). Four ordered structures were growth and characterized. It was also demonstrated how the morphology of the film (wetting film vs island) can be tailored. The acquired knowledge about the CVD process was exploited to load nano porous gold with titania, enhancing its catalytic activity. The reactivity towards water adsorption of the titania structures on Au(111) was also investigated. Finally, part of this work concerned the studying of the behavior of water on the stoichiometric rutile TiO2(110) surface, combining the experiments with density-functional theory (DFT) calculations and (kinetic) Monte Carlo simulations. The main experimental techniques used in this work are low-energy electron diffraction (LEED), scanning tunneling microscopy (STM) and photoelectron spectroscopy (PES).
130

The Complex Nature of the Electrode/Electrolyte Interfaces in Li-ion Batteries : Towards Understanding the Role of Electrolytes and Additives Using Photoelectron Spectroscopy

Ciosek Högström, Katarzyna January 2014 (has links)
The stability of electrode/electrolyte interfaces in Li-ion batteries is crucial to the performance, lifetime and safety of the entire battery system. In this work, interface processes have been studied in LiFePO4/graphite Li-ion battery cells.  The first part has focused on improving photoelectron spectroscopy (PES) methodology for making post-mortem battery analyses. Exposure of cycled electrodes to air was shown to influence the surface chemistry of the graphite. A combination of synchrotron and in-house PES has facilitated non-destructive interface depth profiling from the outermost surfaces into the electrode bulk. A better understanding of the chemistry taking place at the anode and cathode interfaces has been achieved. The solid electrolyte interphase (SEI) on a graphite anode was found to be thicker and more inhomogeneous than films formed on cathodes. Dynamic changes in the SEI on cycling and accumulation of lithium close to the carbon surface have been observed.    Two electrolyte additives have also been studied: a film-forming additive propargyl methanesulfonate (PMS) and a flame retardant triphenyl phosphate (TPP). A detailed study was made at ambient and elevated temperature (21 and 60 °C) of interface aging for anodes and cathodes cycled with and without the PMS additive. PMS improved cell capacity retention at both temperatures. Higher SEI stability, relatively constant thickness and lower loss of cyclable lithium are suggested as the main reasons for better cell performance. PMS was also shown to influence the chemical composition on the cathode surface. The TPP flame retardant was shown to be unsuitable for high power applications. Low TPP concentrations had only a minor impact on electrolyte flammability, while larger amounts led to a significant increase in cell polarization. TPP was also shown to influence the interface chemistry at both electrodes. Although the additives studied here may not be the final solution for improved lifetime and safety of commercial batteries, increased understanding has been achieved of the degradation mechanisms in Li-ion cells. A better understanding of interface processes is of vital importance for the future development of safer and more reliable Li-ion batteries.

Page generated in 0.0976 seconds