141 |
Micro-CT based finite element models for mechanical strength assessment of glass ceramic scaffolds obtained through the robocasting technique / Mikro-CT baserade finita-element modeller för styrke-utvärdering av glas-keramiska stödstrukturerThessén, Gustav January 2022 (has links)
In this thesis, micro computed tomography (μ−CT) scans of a bio-glass scaffold produced by the robocasting technique was used to create finite element method (FEM) models with the purpose of determining its mechanical strength. Prior to this, a Matlab script was used to create several simplified geometries of the scaffold in an effort to determine the importance of scaffold design parameters (such as the fiber compenetration between two adjacent printing planes) on the strength of the scaffold. Furthermore, to assess the influence of micro-structural defects such as voids and micro-cracks that are intrinsic to the robocasting manufacturing process, the total number of voids and their respective volume was calculated using the μ-CT scan imagery and fitted to a statistical distribution. The distribution of voids was then used to create several scaffold models in Matlab with either spherical or ellipsoidal voids present. In the final two models, one scaled-down and one scaled-up FEM based on μ-CT scans were investigated.To model the crack initiation, propagation and final failure, the phase-field method was used. The method was implemented by the use of a publicly available Fortran user subroutine and was edited to account for asymmetric tension/compression energy degradation. The resulting strength of the produced models have been presented as non-dimensional values. The finite element analysis (FEA) of the Matlab produced scaffolds showed that the fiber shifting between two adjacent layers, porosity, and voids of ellipsoidal shape that were perpendicular to the loading direction had the highest effect on the strength of the scaffold. The resulting normalized strength values obtained from the μ-CT models was partially validated through a comparison with the literature available.The different failure modes and overall architectural arrangement of cracks also showed promising results. / I den här uppsatsen så användes mikrotomografi (μ-CT) skanning av en bio-glas stödstruktur tillverkad av robocasting tekniken för att skapa finita element modeller med syftet att bestämma dess mekaniska styrka. Innan detta så användes ett Matlab-skript för att skapa flera förenklade geometrier av stödstrukturen i ett försök att fastställa betydelsen av viktiga designparametrar (som t.ex fiberpenetrering mellan två intilliggande plan) på stödstrukturens styrka. Vidare, för att bedöma påverkan av mikrostrukturella defekter som tomrum och mikrosprickor som är naturligt förekommande i robocasting-tillverkningsprocessen så uppmättes det totala antal hålrum och deras respektive volym med hjälp av μ-CT-skannade bilder. Denna data blev anpassad till en statistisk fördelning. Fördelningen av tomrum och mikcrosprickor användes sedan för att skapa flera modeller av stödstrukturerna i Matlab med antingen sfäriska eller ellipsoida hålrum närvarande. I de sista två modellerna undersöktes en en nedskalad och en uppskalad finita elementmodell baserad på μ-CT-skanning.För att modellera sprickinitiering, sprickpropagering och slutligen brott användes fasfältsmetoden. Fasfältsmetoden implementerades med hjälp av en för allmänheten tillgänglig Fortran användarrutin som redigerades för att ta hänsyn till en asymmetrisk energidegradering i drag-och tryck. Den resulterande styrkan hos alla modeller har presenterats som icke-dimensionella värden. Finita elementanalysen av Matlab modellerna visade att fiberskiftningen mellan två intilliggande plan, porositet och hålrum med ellipsoid form som var vinkelräta mot belastningsriktningen hade störst effekt på stödstrukturens styrka. De resulterande normaliserade styrkevärdena erhållna från μ-CTmodeller validerades delvis genom en jämförelse med tillgänglig litteratur. Dom olika felmoderna och övergripande strukturella fördelningen av sprickor visade också lovande resultat.
|
142 |
Near-surface Microstructure of Cast Aluminum and Magnesium AlloysAmoorezaei, Morteza 04 1900 (has links)
<p>Crystal growth has been recognized as a paradigm for non-equilibrium pattern formation for decades. Scientific interest in this field has focused on the growth rates and curvature of branches in snow flake-like structures patterned after a solid's crystallographic orientations. Similar patterns have been extensively identified in solidification of metals and organic metal analogues and are known as dendrites, which is originated from a Greek word "dendron" meaning tree.</p> <p>Dendritic spacing and morphology established during casting often sets the final microstructure and second phase formation that develops during manufacturing of alloys. This is particularly true in emerging technologies such as twin belt casting of aluminum alloys, where a reduced amount of thermomechanical processing reduced the possibility of modifying microstructure from that determined at the time of solidification. Predicting and controlling these microstructure of cast alloys has thus been a driving force behind various studies on solidification of materials.</p> <p>Mg-based alloys are another class of materials gaining importance due to the high demand for weight reduction in the transportation industry which accordingly reduces the gas consumption. While the solidified microstructure and its effect on the material properties have been the subject of intensive studies, little is known about the fundamental mechanisms that determine dendritic microstructure in Mg alloys and its evolution under directional growth conditions.</p> <p>This thesis investigates the relationship between the microstructure and cooling conditions in unsteady state upward directional solidification of Al-Cu and Mg-Al alloys. The four-fold symmetry of Al-Cu alloys are used to study the dynamical spacing selection between dendrites, as the growth conditions vary dynamically, whereas, the Mg-Al system with a six-fold symmetry is used to study a competition between neighbouring, misoriented grains and the effect of this as the resulting microstructure. Mg-Al also presents a situation wherein the cooling conditions dynamically vary from the preferred crystallographic growth direction. Analysis of phase field simulations is used to shed some light on the morphological development of dendrite arms during solidification under transient conditions. Our numerical results are compared to new casting experiments.</p> <p>Chapter three studies spacing selection in directional solidification of Al-Cu alloys under transient growth conditions. New experimental results are presented which reveal that the mean dendritic spacing versus solidification front speed exhibits plateau-like regions separated by regions of rapid change, consistent with previous experiments of Losert and co-workers. In fact, The primary spacing of a dendritic array grown under transient growth conditions displays a distribution of wavelengths. As the rate of change in solidification front velocity is decreased, the evolution of the spacing follows the prediction of the geometrical models within a band of spacing fluctuations. The width of the band is shown to highly depend on the rate of the solidification front velocity acceleration, such that the higher the rate, the wider the band of available spacings. Quantitative phase field simulations of directional solidification with dynamical growth conditions approximating those in the experiments confirm this behavior. The mechanism of this type of change in mean dendrite arm spacing is consistent with the notion that a driven periodically modulated interface must overcome an energy barrier before becoming unstable, in accord with a previous analytical stability analysis of Langer and co-workers.</p> <p>In chapter four, it is demonstrated both computationally and experimentally that a material's surface tension anisotropy can compete with anisotropies present in processing conditions during solidification to produce a continuous transition from dendritic microstructure morphology to so-called seaweed and fractal-like solidification microstructures. The phase space of such morphologies is characterized and the selection principles of the various morphologies explored are explained. These results have direct relevance to the microstructure and second phase formation in commercial lightweight metal casting.</p> / Doctor of Philosophy (PhD)
|
143 |
PHASE FIELD CRYSTAL STUDIES OF STRAIN-MEDIATED EFFECTS IN THE THERMODYNAMICS AND KINETICS OF INTERFACESStolle, Jonathan F. E. 04 1900 (has links)
<p>In this dissertation, the Phase Field Crystal (PFC) Method is used to study a number of problems in which interfaces and elastic effects play important roles in alloys. In particular, the three topics covered in this work are grain boundary thermodynamics in alloys, dislocation-mediated formation of clusters in binary and ternary alloys, and solutal effects in explosive crystallization. Physical phenomena associated with grain boundaries, such as Read-Shockley-like behaviour and Gibbs adsorp- tion theorem, were shown to be accurately captured in both PFC- and XPFC-type models. In fact, a connection between the solute segregation behaviour and physical properties of the system—such as energy of mixing, mismatch, and undercooling—were shown. Also, grain boundary premelting was investigated. It was shown how solute can change the disjoining potential of a grain boundary and a mechanism for hysteresis in grain boundary premelting was discussed. Regarding the phenomenon of cluster formation, a general coexistence approach and a nucleation-like approach were used to describe the mechanism consistently with observations; the process is facilitated by lowering the energy increase associated with it. The final phenomenon studied was explosive crystallization. It was shown that the temperature oscillations due to unsteady motion of an interface could be captured with PFC-type models and that this behaviour leaves patterns, such as solute traces, in the material. The versatility of this PFC formalism was demonstrated by capturing the underlying physics and elucidating the role of misfit strain in altering interface oscillations during explosive crystallization. Finally, it was demonstrated in all projects how PFC model parameters relate to coarse-grained material properties, thereby connecting these phenomena on larger scales to atomistic-scale properties.</p> / Doctor of Philosophy (PhD)
|
144 |
Phase field modeling of flaw-induced hydride precipitation kinetics in metalsNigro, Claudio F. January 2017 (has links)
Hydrogen embrittlement can manifest itself as hydride formation in structures when in contact with hydrogen-rich environments, e.g. in space and nuclear power applications. To supplant experimentation, modeling of such phenomena is beneficial to make life prediction reduce cost and increase the understanding. In the present work, two different approaches based on phase field theory are employed to study the precipitation kinetics of a second phase in a metal, with a special focus on the application of hydride formation in hexagonal close-packed metals. For both presented models, a single component of the non-conserved order parameter is utilized to represent the microstructural evolution. Throughout the modelling the total free energy of the system is minimized through the time-dependent Ginzburg-Landau equation, which includes a sixth order Landau potential in the first model, whereas one of fourth order is used for the second model. The first model implicitly incorporates the stress field emanating from a sharp crack through the usage of linear elastic fracture mechanics and the governing equation is solved numerically for both isotropic and anisotropic bodies by usage of the finite volume method. The second model is applied to plate and notched cantilever geometries, and it includes an anisotropic expansion of the hydrides that is caused by the hydride precipitation. For this approach, the mechanical and phase transformation aspects are coupled and solved simultaneously for an isotropic material using the finite element method. Depending on the Landau potential coefficients and the crack-induced hydrostatic stress, for the first model the second-phase is found to form in a confined region around the crack tip or in the whole material depending on the material properties. From the pilot results obtained with the second model, it is shown that the applied stress and considered anisotropic swelling induces hydride formation in preferential directions and it is localized in high stress concentration areas. The results successfully demonstrate the ability of both approaches to model second-phase formation kinetics that is triggered by flaw-induced stresses and their capability to reproduce experimentally observed hydride characteristics such as precipitation location, shape and direction. / <p>Note: The papers are not included in the fulltext online.</p><p>Paper I and II in thesis as manuscripts.</p>
|
145 |
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive ModelsMalekzade Kebria, Mahyar January 2024 (has links)
This study introduces numerical frameworks for simulating the interactions within soil
systems subjected to freezing and thawing processes, crucial for addressing geotechnical
challenges in cold regions. By integrating robust thermo-hydro-mechanical (THM), this
research offers a general understanding and specific insights into the deformation, thermal,
and moisture transport behaviors of freezing-thawing soils.
The first part of this study presents a soil freezing characteristic curve (SFCC) adaptable
to various computational frameworks, including THM models. The SFCC, enhanced
by an automatic regression scheme and a smoothing algorithm, accommodates the dynamic
changes in soil properties due to phase transitions. This model effectively captures
the unique behaviors of different soil types under freezing conditions, addressing key
factors such as freezing temperature, compaction, and mechanical loading.
Building on this foundation, the second framework employs the phase-field method
(PFM) coupled with THM to model the behavior of ice-rich saturated porous media.
This approach advances the field by enabling distinct representations of the mechanical
behaviors of ice and soil through a diffused interface, introducing anisotropic responses
as the soil undergoes freezing. By integrating a transversely isotropic plastic constitutive
model for ice, this method provides a tool for capturing the phase transition processes
and the resulting mechanical responses of frozen soil.
The third part extends these methodologies to model thaw consolidation in permafrost
regions using a THM framework combined with phase field methods. This model incorporates
internal energy functions and a multiscale modified Cam-Clay model within
a damage phase field framework, adept at capturing the simultaneous effects of phase
change and particle rearrangement. Through validation against experimental scenarios,
this model demonstrates its effectiveness in understanding the microstructural evolution
and plastic softening in thaw-sensitive soils, which is vital for enhancing infrastructure
resilience under thaw conditions.
Together, these integrated approaches represent a leap in the modeling and simulation
of geotechnical behaviors in cold regions, offering potential applications in predicting and
mitigating the impacts of climate change on permafrost and other freeze-thaw affected
terrains. / Thesis / Doctor of Science (PhD)
|
146 |
Coarse-grained modeling of crystals by the amplitude expansion of the phase-field crystal model: an overviewSalvalaglio, Marco, Elder, Ken R 22 May 2024 (has links)
Comprehensive investigations of crystalline systems often require methods bridging atomistic and continuum scales. In this context, coarse-grained mesoscale approaches are of particular interest as they allow the examination of large systems and time scales while retaining some microscopic details. The so-called phase-field crystal (PFC) model conveniently describes crystals at diffusive time scales through a continuous periodic field which varies on atomic scales and is related to the atomic number density. To go beyond the restrictive atomic length scales of the PFC model, a complex amplitude formulation was first developed by Goldenfeld et al (2005 Phys. Rev. E 72 020601). While focusing on length scales larger than the lattice parameter, this approach can describe crystalline defects, interfaces, and lattice deformations. It has been used to examine many phenomena including liquid/solid fronts, grain boundary energies, and strained films. This topical review focuses on this amplitude expansion of the PFC model and its developments. An overview of the derivation, connection to the continuum limit, representative applications, and extensions is presented. A few practical aspects, such as suitable numerical methods and examples, are illustrated as well. Finally, the capabilities and bounds of the model, current challenges, and future perspectives are addressed.
|
147 |
\"Simulações de escoamentos tridimensionais bifásicos empregando métodos adaptativos e modelos de campo fase\" / \"Simulations of 3D two-phase flows using adaptive methods and phase field models\"Nós, Rudimar Luiz 20 March 2007 (has links)
Este é o primeiro trabalho que apresenta simulações tridimensionais completamente adaptativas de um modelo de campo de fase para um fluido incompressível com densidade de massa constante e viscosidade variável, conhecido como Modelo H. Solucionando numericamente as equações desse modelo em malhas refinadas localmente com a técnica AMR, simulamos computacionalmente escoamentos bifásicos tridimensionais. Os modelos de campo de fase oferecem uma aproximação física sistemática para investigar fenômenos que envolvem sistemas multifásicos complexos, tais como fluidos com camadas de mistura, a separação de fases sob forças de cisalhamento e a evolução de micro-estruturas durante processos de solidificação. Como as interfaces são substituídas por delgadas regiões de transição (interfaces difusivas), as simulações de campo de fase requerem muita resolução nessas regiões para capturar corretamente a física do problema em estudo. Porém essa não é uma tarefa fácil de ser executada numericamente. As equações que caracterizam o modelo de campo de fase contêm derivadas de ordem elevada e intrincados termos não lineares, o que exige uma estratégia numérica eficiente capaz de fornecer precisão tanto no tempo quanto no espaço, especialmente em três dimensões. Para obter a resolução exigida no tempo, usamos uma discretização semi-implícita de segunda ordem para solucionar as equações acopladas de Cahn-Hilliard e Navier-Stokes (Modelo H). Para resolver adequadamente as escalas físicas relevantes no espaço, utilizamos malhas refinadas localmente que se adaptam dinamicamente para recobrir as regiões de interesse do escoamento, como por exemplo, as vizinhanças das interfaces do fluido. Demonstramos a eficiência e a robustez de nossa metodologia com simulações que incluem a separação dos componentes de uma mistura bifásica, a deformação de gotas sob cisalhamento e as instabilidades de Kelvin-Helmholtz. / This is the first work that introduces 3D fully adaptive simulations for a phase field model of an incompressible fluid with matched densities and variable viscosity, known as Model H. Solving numerically the equations of this model in meshes locally refined with AMR technique, we simulate computationally tridimensional two-phase flows. Phase field models offer a systematic physical approach to investigate complex multiphase systems phenomena such as fluid mixing layers, phase separation under shear and microstructure evolution during solidification processes. As interfaces are replaced by thin transition regions (diffuse interfaces), phase field simulations need great resolution in these regions to capture correctly the physics of the studied problem. However, this is not an easy task to do numerically. Phase field model equations have high order derivatives and intricate nonlinear terms, which require an efficient numerical strategy that can achieve accuracy both in time and in space, especially in three dimensions. To obtain the required resolution in time, we employ a semi-implicit second order discretization scheme to solve the coupled Cahn-Hilliard/Navier-Stokes equations (Model H). To resolve adequatly the relevant physical scales in space, we use locally refined meshes which adapt dynamically to cover special flow regions, e.g., the vicinity of the fluid interfaces. We demonstrate the efficiency and robustness of our methodology with simulations that include spinodal decomposition, the deformation of drops under shear and Kelvin-Helmholtz instabilities.
|
148 |
Controlabilidade, problema inverso, problema de contato e estabilidade para alguns sistemas hiperbólicos e parabólicosSousa Neto, Gilcenio Rodrigues de 30 November 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-23T16:00:02Z
No. of bitstreams: 1
arquivototal.pdf: 9090532 bytes, checksum: d4fefb1d97e9c6d585d5d18a33abf752 (MD5) / Made available in DSpace on 2017-08-23T16:00:02Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 9090532 bytes, checksum: d4fefb1d97e9c6d585d5d18a33abf752 (MD5)
Previous issue date: 2016-11-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this thesis we study controllability results, asymptotic behavior and inverse problem
related to some problems of the theory of partial di erential equations. Two particular systems
are the focus of the study: the Mindin-Timoshenko system, describing the vibrational motion
of a plate or a beam, and the phase eld system describing the temperature and phase of a
medium having two distinct physical states.
The rst chapter is devoted to the study of the 1-D Mindlin-Timoshenko system with
discontinuous coe cient. A Carleman inequality is obtained under the assumption of monotonicity
on the beam speed. Subsequently, two applications are provided: the controllability
of the control system acting on the boundary and Lipschitzian stability of the inverse problem
of recovering a potential from a single measurement of the solution.
In the second chapter we consider a contact problem characterized by the behavior of a
two-dimensional plate whose board makes contact with a rigid obstacle. The formulation of
this problem is presented by the 2-D Mindlin-Timoshenko system with boundary conditions
and suitable damping terms. Concerning such system, is proved via penalty techniques,
the existence of solution and that the system energy has exponential decay when the time
approaches in nity.
In the third chapter, the study is aimed at a nonlinear phase- eld system de ned in a real
open interval. Here we present some controllability results when a single control acts, by means
of Dirichlet conditions, on the temperature equation of the system on one of the endpoints
of the interval. To prove the results is used the method of moments, plus a spectral study of
operators associated to the system and xed point theory to deal with the nonlinearity. / Nesta tese estudamos resultados de controlabilidade, comportamento assintótico e problema
inverso relacionados a alguns problemas da teoria de equações diferenciais parciais.
Dois sistemas particulares são foco do estudo: o sistema de Mindin-Timoshenko, que descreve
o movimento vibratório de uma placa ou viga, e o sistema de campo de fases que descreve a
temperatura e a fase de um meio onde ocorrem dois estados físicos distintos.
O primeiro capítulo é dedicado ao estudo do sistema de Mindlin-Timoshenko 1-D com
coe ciente descontínuos. Uma desigualdade de Carleman é obtida sob a hipótese de monotonicidade
sobre velocidade da viga. Posteriormente, são fornecidas duas aplicações: a
controlabilidade do sistema com controles agindo na fronteira e a estabilidade Lipschitziana
do problema inverso de recuperar um potencial através de uma única informação obtida sobre
a solução.
No segundo capítulo consideramos um problema de contato caracterizado pelo comportamento
de uma placa bidimensional cujo bordo faz contato com um obstáculo rígido. A
formulação deste problema é apresentada pelo sistema de Mindlin-Timoshenko 2-D com condi
ções de fronteira e termos de amortecimento (damping) adequados. Sobre tal sistema, é
provada, através de técnicas de penalização, a existência de solução e, posteriormente, que
sua energia possui decaimento exponencial quando o tempo tende ao in nito.
No terceiro capítulo o estudo é voltado a um sistema de campo de fases não-linear de nido
em um intervalo aberto real. Neste espaço apresentamos alguns resultados de controlabilidade
quando um único controle age, sob condições de Dirichlet, na equação da temperatura em um
dos bordos do intervalo. Para provar os resultados é utilizado o método dos momentos, além
de uma estudo espectral de operadores associados ao sistema e teoria de ponto xo para lidar
com a não-linearidade.
|
149 |
\"Simulações de escoamentos tridimensionais bifásicos empregando métodos adaptativos e modelos de campo fase\" / \"Simulations of 3D two-phase flows using adaptive methods and phase field models\"Rudimar Luiz Nós 20 March 2007 (has links)
Este é o primeiro trabalho que apresenta simulações tridimensionais completamente adaptativas de um modelo de campo de fase para um fluido incompressível com densidade de massa constante e viscosidade variável, conhecido como Modelo H. Solucionando numericamente as equações desse modelo em malhas refinadas localmente com a técnica AMR, simulamos computacionalmente escoamentos bifásicos tridimensionais. Os modelos de campo de fase oferecem uma aproximação física sistemática para investigar fenômenos que envolvem sistemas multifásicos complexos, tais como fluidos com camadas de mistura, a separação de fases sob forças de cisalhamento e a evolução de micro-estruturas durante processos de solidificação. Como as interfaces são substituídas por delgadas regiões de transição (interfaces difusivas), as simulações de campo de fase requerem muita resolução nessas regiões para capturar corretamente a física do problema em estudo. Porém essa não é uma tarefa fácil de ser executada numericamente. As equações que caracterizam o modelo de campo de fase contêm derivadas de ordem elevada e intrincados termos não lineares, o que exige uma estratégia numérica eficiente capaz de fornecer precisão tanto no tempo quanto no espaço, especialmente em três dimensões. Para obter a resolução exigida no tempo, usamos uma discretização semi-implícita de segunda ordem para solucionar as equações acopladas de Cahn-Hilliard e Navier-Stokes (Modelo H). Para resolver adequadamente as escalas físicas relevantes no espaço, utilizamos malhas refinadas localmente que se adaptam dinamicamente para recobrir as regiões de interesse do escoamento, como por exemplo, as vizinhanças das interfaces do fluido. Demonstramos a eficiência e a robustez de nossa metodologia com simulações que incluem a separação dos componentes de uma mistura bifásica, a deformação de gotas sob cisalhamento e as instabilidades de Kelvin-Helmholtz. / This is the first work that introduces 3D fully adaptive simulations for a phase field model of an incompressible fluid with matched densities and variable viscosity, known as Model H. Solving numerically the equations of this model in meshes locally refined with AMR technique, we simulate computationally tridimensional two-phase flows. Phase field models offer a systematic physical approach to investigate complex multiphase systems phenomena such as fluid mixing layers, phase separation under shear and microstructure evolution during solidification processes. As interfaces are replaced by thin transition regions (diffuse interfaces), phase field simulations need great resolution in these regions to capture correctly the physics of the studied problem. However, this is not an easy task to do numerically. Phase field model equations have high order derivatives and intricate nonlinear terms, which require an efficient numerical strategy that can achieve accuracy both in time and in space, especially in three dimensions. To obtain the required resolution in time, we employ a semi-implicit second order discretization scheme to solve the coupled Cahn-Hilliard/Navier-Stokes equations (Model H). To resolve adequatly the relevant physical scales in space, we use locally refined meshes which adapt dynamically to cover special flow regions, e.g., the vicinity of the fluid interfaces. We demonstrate the efficiency and robustness of our methodology with simulations that include spinodal decomposition, the deformation of drops under shear and Kelvin-Helmholtz instabilities.
|
150 |
Geometry controlled phase behavior in nanowetting and jamming / Effet géométriques dans les transitions de mouillage et dans la physique des empilements désordonnésMickel, Walter 30 September 2011 (has links)
Cette thèse porte sur différents aspects géométriques et morphologiques concernant des problèmes de mouillage et d'empilement de sphères. Nous proposons tout d'abord une nouvelle méthode de simulation pour étudier le mouillage et le glissement d'un liquide sur une surface nanostructurée: un modèle de champ de phase en lien avec la théorie de la fonctionnelle de la densité dynamique. Nous étudions grâce à cette méthode la possibilité de transformer une surface quelconque en surface omniphobe (c'est à dire qui repousse tous les liquides). Nous montrons que contrairement à la théorie classique de Cassie-Baxter-Wenzel, il est possible d'inverser la mouillabilité d'une surface en la texturant, et nous montrons qu'une surface monovaluée, i.e. sans constrictions, peut produire un comportement omniphobe c'est à dire repousser tous les liquides grâce à un effet de pointe. La géométrie a également un effet considérable dans les milieux vitreux ou bloqués. Les empilements aléatoires de sphères conduisent par exemple à des état bloqués ("jamming") et nous montrons que la structure locale de ces systèmes est universelle, c'est à dire indépendante de la méthode de préparation. Pour cela, nous introduisons des paramètres d'ordre - les tenseurs de Minkowski - qui suppriment les problèmes de robustesse qu'ont les paramètres d'ordre utilisés classiquement. Ces nouveaux paramètres d'ordre conduisent à une vision unifiée, basée sur des principes géométriques. Enfin, nous montrons grâce aux tenseurs de Minkowski que les empilements de sphères se mettent à cristalliser au delà du point d'empilement aléatoire le plus dense ("random close packing") / This thesis is devoted to several aspects of geometry and morphology in wetting problems and hard sphere packings. First, we propose a new method to simulate wetting and slip on nanostructured substrates: a phase field model associated with a dynamical density theory approach. We showed omniphobicity, meaning repellency, no matter the chemical properties of the liquid on monovalued surfaces, i.e. surfaces without overhangs, which is in contradiction with the macroscopic Cassie-Baxter-Wenzel theory, can produce so-called We checked systematically the impact of the surface parameters on omniphobic repellency, and we show that the key ingredient are line tensions, which emerge from needle shaped surface structures. Geometrical effects have also an important influence on glassy or jammed systems, for example amorphous hard sphere systems in infinite pressure limit. Such hard sphere packings got stuck in a so-called jammed phase, and we shall demonstrate that the local structure in such systems is universal, i.e. independent of the protocol of the generation. For this, robust order parameters - so-called Minkowski tensors - are developed, which overcome robustness deficiencies of widely used order parameters. This leads to a unifying picture of local order parameters, based on geometrical principles. Furthermore, we find with the Minkowski tensor analysis crystallization in jammed sphere packs at the random closed packing point
|
Page generated in 0.0679 seconds