• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 32
  • 13
  • 5
  • 2
  • 1
  • Tagged with
  • 138
  • 83
  • 62
  • 50
  • 46
  • 38
  • 38
  • 37
  • 31
  • 30
  • 25
  • 25
  • 24
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Synchrophasor Applications and their Vulnerability to Time Synchronization Impairment

Almas, Muhammad Shoaib January 2017 (has links)
Recent years have seen the significance of utilizing time-synchronized, high resolution measurements from phasor measurement units (PMUs) to develop and implement wide-area monitoring, protection and control (WAMPAC) systems. WAMPAC systems aim to provide holistic view of the power system and enable detection and control of certain power system phenomena to enhance reliability and integrity of the grid. This thesis focuses on the design, development and experimental validation of WAMPAC applications, and investigates their vulnerability to time synchronization impairment. To this purpose, a state-of-the-art real-time hardware-in-the-loop (RT-HIL) test-bench was established for prototyping of synchrophasor-based applications. This platform was extensively used throughout the thesis for end-to-end testing of the proposed WAMPAC applications. To facilitate the development of WAMPAC applications, an open-source real-time data mediator is presented that parses the incoming synchrophasor stream and provides access to raw data in LabVIEW environment. Within the domain of wide-area protection applications, the thesis proposes hybrid synchrophasor and IEC 61850-8-1 GOOSE-based islanding detection and automatic synchronization schemes. These applications utilize synchrophasor measurements to assess the state of the power system and initiate protection / corrective action using GOOSE messages. The associated communication latencies incurred due to the utilization of synchrophasors and GOOSE messages are also determined. It is shown that such applications can have a seamless and cost-effective deployment in the field.   Within the context of wide-area control applications, this thesis explores the possibility of utilizing synchrophasor-based damping signals in a commercial excitation control system (ECS). For this purpose, a hardware prototype of wide-area damping controller (WADC) is presented together with its interface with ECS. The WADC allows real-time monitoring and remote parameter tuning that could potentially facilitate system operators’ to exploit existing damping assets (e.g. conventional generators) when changes in operating conditions or network topology emerges. Finally the thesis experimentally investigates the impact of time synchronization impairment on WAMPAC applications by designing RT-HIL experiments for time synchronization signal loss and time synchronization spoofing. It is experimentally demonstrated that GPS-based time synchronization impairment results in corrupt phase angle computations by PMUs, and the impact this has on associated WAMPAC application. / <p>QC 20171121</p> / smart transmission grid operation and control (STRONg2rid)
102

Development and Verification of Control and Protection Strategies in Hybrid AC/DC Power Systems for Smart Grid Applications

Salehi Pour Mehr, Vahid 02 November 2012 (has links)
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.
103

Investigations On Boundary Selection For Switching Frequency Variation Control Of Current Error Space Phasor Based Hysteresis Controllers For Inverter Fed IM Drives

Ramchand, Rijil 07 1900 (has links) (PDF)
Current-Controlled Pulse Width Modulated (CC-PWM) Voltage Source Inverters (VSIs) are extensively employed in high performance drives (HPD) because of the considerable advantages offered by them, such as, excellent dynamic response and inherent over-current protection, as compared to the voltage-controlled PWM (VC-PWM) VSIs. Amongst the different types of CC-PWM techniques, hysteresis current controllers offer significant simplicity in implementation. However, conventional type of hysteresis controllers (with independent comparators) suffers from some well-known drawbacks, such as, limit cycle oscillations (especially at lower speeds of operation of machine), overshoot in current error, generation of sub-harmonic components in the current, and random (non-optimum) switching of inverter voltage vectors. Common problems associated with the conventional, as well as current error space phasor based hysteresis controllers with fixed bands (boundary), are the wide variation of switching frequency in the fundamental output cycle and variation of switching frequency with the change in speed of the load motor. These problems cause increased switching losses in the inverter, non-optimum current ripple, excess harmonics in the load current and subsequent additional machine heating. A continuously varying parabolic boundary for the current error space phasor is proposed previously to get the switching frequency variation pattern of the output voltage of the hysteresis controller based PWM inverter similar to that of voltage controlled space vector PWM (VC SVPWM) based VSI. But the major problem associated with this technique is the requirement of two outer parabolas outside the current error space phasor boundary for the identification of sector change which gives rise to some switching frequency variations in one fundamental cycle and over the entire operating speed range. It also introduces 5th and 7th harmonic components in the voltage causing 5th and 7th harmonic currents in the induction motor. These harmonic currents causes 6th harmonic torque pulsations in the machine. This thesis proposes a new technique which replaces the outer parabolas and uses current errors along orthogonal axes for detecting the sector change, so that a fast and accurate detection of sector change is possible. This makes the voltage harmonic spectrum of the proposed hysteresis controller based inverter exactly matching with that of a constant switching frequency SVPWM based inverter. This technique uses the property that the current error along one of the orthogonal axis changes its direction during sector change. So the current error never goes outside the parabolic boundary as in the case of outer parabolas based sector change technique. So the proposed new technique for sector change eliminates the 5th and 7th harmonic components from the applied voltage and thus eliminates the 5th and 7th harmonic currents in the motor. So there will be no introduction of 6th harmonic torque pulsations in the motor. Using the proposed scheme for sector change and parabolic boundary for current error space phasor, simulation study was carried out using Matlab-Simulink. Simulation study showed that the switching frequency variations in a fundamental cycle and over the entire speed range of the machine upto six step mode operation is similar to that of a VC-SVPWM based VSI. The proposed hysteresis controller is experimentally verified on a 3.7 kW IM drive fed with a two-level VSI using vector control. The proposed current error space phasor based hysteresis controller providing constant switching frequency is completely implemented on the TI TMS320LF2812 DSP controller platform. The three-phase reference currents are generated depending on the frequency command and the controller is tested with drive for the entire operating speed range of the machine in forward and reverse directions. Steady state and transient results of the proposed drive are presented in this thesis. This thesis also proposes a new hysteresis controller which eliminates parabolic boundary and replaces it with a simple online computation of the boundary. In this proposed new hysteresis controller the boundary computed in the present sampling interval is used for identifying next vector to be switched. This thesis gives a detailed mathematical explanation of how the boundary is computed and how it is used for selecting vector to be switched in a sector. It also explains how the sector in which stator voltage vector is present is determined. The most important part of this proposed hysteresis controller is the estimation of stator voltages along alpha and beta axes during active and zero vector periods. Estimation of stator voltages are carried out using current errors along alpha and beta axes and steady state equivalent circuit of induction motor. Using this estimated stator voltages along alpha and beta axes, instantaneous phase voltages are computed and used for finding individual voltage vector switching times. These switching times are used for the computation of hysteresis boundary for individual vectors. So the hysteresis boundary for individual vectors are exactly calculated and used for vector change detection, making phase voltage harmonic spectrum exactly similar to that of constant switching frequency VC SVPWM inverter. Sector change detection is very simple, since we have the estimated stator voltages along alpha and beta axes to give exact position of stator voltage vector. Simulation study to verify the steady state as well as transient performance of the proposed controller based VSI fed IM drive is carried out using Simulink tool box of Matlab Simulation Software. The proposed hysteresis controller is experimentally verified on a 3.7 kW IM drive fed with a two-level VSI using vector control. The proposed current error space phasor based hysteresis controller providing constant switching frequency profile for phase voltage is implemented on the TI TMS320LF2812 DSP controller platform. The three-phase reference currents are generated depending on the frequency command and the proposed hysteresis controller is tested with drive for the entire operating speed range of the machine in forward and reverse directions. Steady state and transient results of the proposed drive are presented for different operating conditions.
104

OvÄen­ funkce metody Vdip na fyzikln­m modelu VN soustavy / Verification of the Vdip method on the physical model of the MV network

KrÄl, V­t January 2019 (has links)
This Master's thesis is focused on creating of an algorithm which calculates changes of negative-sequence voltages and currents from their instantaneous values. That allows to conduct localization of asymmetrical faults in MV network in line with the Vdip method, which is based on monitoring the changes of negative-sequence components at distribution substations and at a sub-transmission station. The algorithm is being developed in Matlab environment with continuous implementation of partial procedures which are being assessed and compared with each other. A study of phasor estimating methods is carried out with pointing out related problems which are mainly caused by Ripple control and deviation of system frequency from its nominal value. Optimization precautions are designed to mitigate these problems. For elimination of the Ripple control effects a method based on averaging is presented. The deviation of system frequency is dealt with by resampling the original data recordings. The analysis processes are tested by both simulation signals and real measured data. The optimized algorithm enables precise calculation of negative-sequence components changes which is the main contribution of this thesis. The constructed algorithm is used in verification of the Vdip method on physical model of MV network. For these purposes a simple distribution network is created within which ground faults on different places and with different resistances are realised. The results of localization are not convincing which is mainly caused by specific features of laboratory power line models which are constructed with heterogenous parameters.
105

Etude et mise en oeuvre du transfert de l'énergie électrique par induction : application à la route électrique pour véhicules en mouvement / Study and implementation of the inductive power transfer : application to the electric road for in motion vehicles.

Caillierez, Antoine 19 January 2016 (has links)
La transmission d’énergie par induction est devenue un sujet extrêmement porteur compte tenu du contexte géopolitique et environnemental du moment ; ainsi que des possibilités technologiques. Les enjeux de l’alimentation électrique d’un véhicule en roulant sont importants : réduction de la taille de la batterie embarquée, du poids et du coût du véhicule, limitation des importations de cellules de batteries et réduction des importations pétrolières au profit d’investissements locaux et extension du rayon d’action des véhicules électriques voire hybrides rechargeables pouvant aller d’un simple bonus à un rayon d’action infini selon le dimensionnement de l’infrastructure.La solution développée utilise le vecteur magnétique. Elle fait donc appel à des bobines faiblement couplés qui impliquent de fortes inductances de fuite et des chutes de tensions associées hors du commun. Un nouveau type de convertisseur « continu-continu » a été imaginé afin de répondre à ces contraintes. Celui-ci se fonde sur le concept de symétrie ; l’analyse détaillée basée sur les diagrammes de Fresnel, a conduit à l’élaboration d’un fonctionnement particulier qui a été appelé la « recopie de tension ». Le prototype réalisé fonctionne avec un entrefer réaliste de 15 centimètres, une tolérance au décentrage de +/-50% sur l’axe longitudinal, une tension de sortie stable avec de faibles pertes malgré d’importantes variations de couplage. Le tout sans aucune communication entre la partie au sol et la partie mobile. Ces résultats permettent d’envisager sérieusement un fonctionnement en roulant.Celui-ci nécessite de pouvoir séquencer l’alimentation d’une multitude de bobines de petite taille enfouies sous la chaussée, au bon moment et à la bonne position. La mise en court-circuit résonnant des bobines inactive permet d’utiliser la mesure des courants pour déterminer précisément l’instant d’activation de la bobine suivante. Cette solution originale, qui s’affranchi de tout capteur de position, conserve la propriété de recopie de tension et le principe de dimensionnement développés dans la première partie. / Inductive power transfer has become a flourishing subject, considering the current geopolitical and environmental situation and the new technological possibilities. The electric road may lead to important and valuable consequences: extended range for electric vehicles and even hybrids, from a simple bonus to an infinite range, depending on the infrastructure set up, down-sized on-board batteries, reduction of the weight and cost of the vehicle and lowered importations of both battery cells and oil for the benefit of local investments .The solution developed uses a magnetic medium for the transfer. Therefore, it involves loosely coupled coils, implying inevitably strong leakage inductances and outstanding associated voltage drops. A new type of DC-DC converter was imagined to answer those issues. It is based on the concept of symmetry; a detailed analysis conducted with phasor diagrams leads to a specific working principle, which has been named the “voltage copying”. Thus, the DC/DC converter designed works with a realistic air-gap of 15 centimeters, a longitudinal tolerance to displacement up to +/-50% and a stable output voltage with low losses despite large coupling variations. And it all works without any communication between the ground part and the mobile part. These results make a dynamic charging seriously worth investigating.It requires to sequence the power supply of a multitude of small coils buried beneath the road surface, at the right time and for the right position. Putting inactive coils in a resonant short-circuit mode enables to use current measures to precisely detect the switching time from one coil to the next. This original solution, free of any position sensor, does not prevent the specific “voltage copying” property and the design principles developed in the first part.
106

Methods of Handling Missing Data in One Shot Response Based Power System Control

Dahal, Niraj 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The thesis extends the work done in [1] [2] by Rovnyak, et al. where the authors have described about transient event prediction and response based one shot control using decision trees trained and tested in a 176 bus model of WECC power system network. This thesis contains results from rigorous simulations performed to measure robustness of the existing one shot control subjected to missing PMU's data ranging from 0-10%. We can divide the thesis into two parts in which the first part includes understanding of the work done in [2] using another set of one-shot control combinations labelled as CC2 and the second part includes measuring their robustness while assuming missing PMU's data. Previous work from [2] involves use of decision trees for event detection based on different indices to classify a contingency as a 'Fault' or 'No fault' and another set of decision trees that decides either to actuate 'Control' or 'No control'. The actuation of control here means application of one-shot control combination to possibly bring the system to a new equilibrium point which would otherwise attain loss of synchronism. The work done in [2] also includes assessing performance of the one shot control without event detection. The thesis is organized as follows- Chapter 1 of the thesis highlights the effect of missing PMUs' data in a power system network and the need to address them appropriately. It also provides a general idea of transient stability and response of a transient fault in a power system. Chapter 2 forms the foundation of the thesis as it describes the work done in [1] [2] in detail. It describes the power system model used, contingencies set, and different indices used for decision trees. It also describes about the one shot control combination (CC1) deduced by Rovnyak, et.al. of which performance is later tested in this thesis assuming different missing data scenarios. In addition to CC1, the chapter also describes another set of control combination (CC2) whose performance is also tested assuming the same missing data scenarios. This chapter also explains about the control methodology used in [2]. Finally the performance metrics of the DTs are explained at the end of the chapter. These are the same performance metrics used in [2] to measure the robustness of the one shot control. Chapter 2 is thus more a literature review of previous work plus inclusion of few simulation results obtained from CC2 using exactly the same model and same control methodology. Chapter 3 describes different techniques of handling missing data from PMUs most of which have been used in and referred from different previous papers. Finally Chapter 4 presents the results and analysis of the simulation. The thesis is wrapped up explaining future enhancements and room for improvements.
107

Trustworthy SDN Control Plane for Prioritized Path Recovery

Barcellesi, Jacopo January 2022 (has links)
Software Defined Networking (SDN) has gained popularity and attractiveness in the past years’ thanks to its dynamic and programmable nature. The possibility to decouple the data plane and control plane allows for the implementation of Internet networks in an innovative way. Thanks to its ease in changing flow rules in network switches, SDN allows network resources optimization. In the case of critical applications, an essential aspect is to ensure connectivity on the network even in case of link failures. Even when a failure causes an interruption of connectivity, the challenge also stays in recovering as fast as possible. Nonetheless, the SDN controller should have the policy to decide which pairs of end-hosts to disable connectivity when there is a shortage of resources to keep the most important connections active. In this thesis, we developed a proactive-reactive SDN controller coded in Python that copes with restoring end-hosts connectivity as fast as possible. The controller prioritizes the couples of end-hosts that need connectivity based on their importance. During a shortage of network resources, the connectivity of pairs of end-hosts with low importance is disabled, and the connectivity between the most important couples can be ensured. We tested our solution with a reactive-only SDN controller and a proactive-reactive SDN controller that does not consider any prioritization order between end-hosts connectivity. Both the benchmark SDN controllers were developed in the thesis. Experiments were run on the same network topology, with the same couple of endhosts involved. The comparison between the proactive-reactive and reactive-only controllers showed the first one to be faster in restoring the connectivity after a failure. It saves time restoring the connectivity and has fewer packets lost under certain conditions in the relationship between the switch-to-switch and the switchto-controller transmission delay. The comparison between the proactive-reactive iii controller and the controller with no prioritization confirms that without an ordered queue of priorities, it may be the most important couple of end-hosts to lose connectivity in case of shortages of network resources. To simulate a realistic scenario, the project considers the case study of electric power transmission networks using SDN. In particular, the focus is on reconnecting Phasor Measurement Unit (PMU)s to the power grid to ensure system observability. During our experiments, we adopted the typical measurement transmission frequency used by PMUs (50Hz). The SDN switches are deployed with P4, and the SDN controller is coded in Python. Furthermore, it exploits P4Runtime to communicate with the switches in run-time. / Software Defined Networking (SDN) har vunnit popularitet och attraktionskraft under de senaste åren tack vare sin dynamiska och programmerbara natur. Möjligheten att frikoppla dataplanet från kontrollplanet gör det möjligt att genomföra Internetnät på ett innovativt sätt. Tack vare att det är lätt att ändra flödesreglerna i nätverksväxlar gör SDN det möjligt att optimera nätverksresurserna. När det gäller kritiska tillämpningar är en viktig aspekt att säkerställa konnektiviteten i nätet även vid länkfel. Även när ett fel orsakar ett avbrott i konnektiviteten är utmaningen också att återhämta sig så snabbt som möjligt. Trots detta bör SDNstyrenheten ha en policy för att avgöra vilka par av slutvärdar som ska inaktivera anslutningen när det råder brist på resurser för att hålla de viktigaste anslutningarna aktiva. I den här avhandlingen har vi utvecklat en proaktiv-reaktiv SDN-styrenhet kodad i Python som klarar av att återställa slutvärdarnas anslutning så snabbt som möjligt. Styrenheten prioriterar paren av slutvärdar som behöver anslutning utifrån deras betydelse. Vid brist på nätverksresurser inaktiveras anslutningen för par av slutvärdar med låg betydelse, och anslutningen mellan de viktigaste paren kan säkerställas. Vi testade vår lösning med en enbart reaktiv SDN-styrenhet och en proaktiv-reaktiv SDN-styrenhet som inte tar hänsyn till någon prioriteringsordning mellan slutvärdarnas konnektivitet. Båda riktmärkeskontrollerna SDN utvecklades i avhandlingen. Experimenten genomfördes på samma nätverkstopologi med samma antal slutvärdar. Jämförelsen mellan den proaktivt-reaktiva och den enbart reaktiva kontrollören visade att den förstnämnda kontrollören var snabbare när det gäller att återställa anslutningen efter ett fel. Den sparar tid för att återställa anslutningen och har färre förlorade paket under vissa förhållanden i förhållandet mellan överföringsfördröjningen från switch till switch och från switch till styrenhet. Jämförelsen mellan den proaktiva-reaktiva styrenheten och v styrenheten utan prioritering bekräftar att utan en ordnad kö av prioriteringar kan det vara det viktigaste paret av slutvärdar som förlorar konnektiviteten vid brist på nätverksresurser. För att simulera ett realistiskt scenario används SDN i projektet som fallstudie för elöverföringsnät. Fokus ligger särskilt på att återansluta Phasor Measurement Unit (PMU)s till elnätet för att säkerställa systemets observerbarhet. Under våra experiment antog vi den typiska överföringsfrekvensen för mätningar som används av PMUs (50Hz). SDN-växlarna installeras med P4, och SDN-styrenheten är kodad i Python. Dessutom utnyttjas P4Runtime för att kommunicera med växlarna i körtid.
108

Power Systems Frequency Dynamic Monitoring System Design and Applications

Zhong, Zhian 25 August 2005 (has links)
Recent large-scale blackouts revealed that power systems around the world are far from the stability and reliability requirement as they suppose to be. The post-event analysis clarifies that one major reason of the interconnection blackout is lack of wide area information. Frequency dynamics is one of the most important parameters of an electrical power system. In order to understand power system dynamics effectively, accurately measured wide-area frequency is needed. The idea of building an Internet based real-time GPS synchronized wide area Frequency Monitoring Network (FNET) was proposed to provide the imperative dynamic information for the large-scale power grids and the implementation of FNET has made the synchronized observations of the entire US power network possible for the first time. The FNET system consists of Frequency Disturbance Recorders (FDR), which work as the sensor devices to measure the real-time frequency at 110V single-phase power outlets, and an Information Management System (IMS) to work as a central server to process the frequency data. The device comparison between FDR and commercial PMU (Phasor Measurement Unit) demonstrate the advantage of FNET. The web visualization tools make the frequency data available for the authorized users to browse through Internet. The research work addresses some preliminary observations and analyses with the field-measured frequency information from FNET. The original algorithms based on the frequency response characteristic are designed to process event detection, localization and unbalanced power estimation during frequency disturbances. The analysis of historical cases illustrate that these algorithms can be employed in real-time level to provide early alarm of abnormal frequency change to the system operator. The further application is to develop an adaptive under frequency load shedding scheme with the processed information feed in to prevent further frequency decline in power systems after disturbances causing dangerous imbalance between the load and generation. / Ph. D.
109

Centralized Control of Power System Stabilizers

Sanchez Ayala, Gerardo 09 October 2014 (has links)
This study takes advantage of wide area measurements to propose a centralized nonlinear controller that acts on power system stabilizers, to cooperatively increase the damping of problematic small signal oscillations all over the system. The structure based on decision trees results in a simple, efficient, and dependable methodology that imposes much less computational burden than other nonlinear design approaches, making it a promising candidate for actual implementation by utilities and system operators. Details are given to utilize existing stabilizers while causing minimum changes to the equipment, and warranting improvement or at least no detriment of current system behavior. This enables power system stabilizers to overcome their inherent limitation to act only on the basis of local measurements to damp a single target frequency. This study demonstrates the implications of this new input on mathematical models, and the control functionality that is made available by its incorporation to conventional stabilizers. In preparation of the case of study, a heuristic dynamic reduction methodology is introduced that preserves a physical equivalent model, and that can be interpreted by any commercial software package. The steps of this method are general, versatile, and of easy adaptation to any particular power system model, with the aggregated value of producing a physical model as final result, that makes the approach appealing for industry. The accuracy of the resulting reduced network has been demonstrated with the model of the Central American System. / Ph. D.
110

PMU-Based Applications for Improved Monitoring and Protection of Power Systems

Pal, Anamitra 07 May 2014 (has links)
Monitoring and protection of power systems is a task that has manifold objectives. Amongst others, it involves performing data mining, optimizing available resources, assessing system stresses, and doing data conditioning. The role of PMUs in fulfilling these four objectives forms the basis of this dissertation. Classification and regression tree (CART) built using phasor data has been extensively used in power systems. The splits in CART are based on a single attribute or a combination of variables chosen by CART itself rather than the user. But as PMU data consists of complex numbers, both the attributes, should be considered simultaneously for making critical decisions. An algorithm is proposed here that expresses high dimensional, multivariate data as a single attribute in order to successfully perform splits in CART. In order to reap maximum benefits from placement of PMUs in the power grid, their locations must be selected judiciously. A gradual PMU placement scheme is developed here that ensures observability as well as protects critical parts of the system. In order to circumvent the computational burden of the optimization, this scheme is combined with a topology-based system partitioning technique to make it applicable to virtually any sized system. A power system is a dynamic being, and its health needs to be monitored at all times. Two metrics are proposed here to monitor stress of a power system in real-time. Angle difference between buses located across the network and voltage sensitivity of buses lying in the middle are found to accurately reflect the static and dynamic stress of the system. The results indicate that by setting appropriate alerts/alarm limits based on these two metrics, a more secure power system operation can be realized. A PMU-only linear state estimator is intrinsically superior to its predecessors with respect to performance and reliability. However, ensuring quality of the data stream that leaves this estimator is crucial. A methodology for performing synchrophasor data conditioning and validation that fits neatly into the existing linear state estimation formulation is developed here. The results indicate that the proposed methodology provides a computationally simple, elegant solution to the synchrophasor data quality problem. / Ph. D.

Page generated in 0.0647 seconds