• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polinômios centrais para álgebras T-primas. / Central polynomials for algebras T-prime materials.

FREITAS, Sabrina Alves de. 24 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-24T16:42:24Z No. of bitstreams: 1 SABRINA ALVES DE FREITAS - DISSERTAÇÃO PPGMAT 2010..pdf: 457483 bytes, checksum: d828740083c1ccca9a0a0f8b45be01d0 (MD5) / Made available in DSpace on 2018-07-24T16:42:24Z (GMT). No. of bitstreams: 1 SABRINA ALVES DE FREITAS - DISSERTAÇÃO PPGMAT 2010..pdf: 457483 bytes, checksum: d828740083c1ccca9a0a0f8b45be01d0 (MD5) Previous issue date: 2010-04 / Capes / Neste trabalho apresentaremos um estudo sobre polinômios centrais ordinários, Z2-graduados e com involução para algumas importantes álgebras na PI-teoria sobre corpos infinitos. Mais precisamente, descreveremos os polinômios centrais Z2-graduados para as álgebras M2(K) (matrizes 2 × 2 sobre um corpo K), M1,1(E) (subálgebra de M2(E) que consite das matrizes cujas entradas da diagonal principal estão em E0 e os da diagonal secundária estão em E1,onde E é a álgebra de Grassmann com unidade de dimensão infinita e E0 e E1 suas componentes homogêneas de graus 0 e 1, respectivamente) e E ⊗ E. Além disso descreveremos os polinômios centrais para E sobre um corpo infinito K de característica diferente de 2 e finalmente os polinômios centrais com involução para M2(K), considerando as involuções transposta e simplética. / In this work we study ordinary, Z2-graded central polinomials and central polinomials with involution for some important algebras in the theory of algebras with polinomial identities, over infinite fields.Namely, we decribe Z2-graded central polinomials for the algebras M2(K) (2 × 2 matrices over a field K), M1,1(E) (subalgebra of M2(E) whose entries on the diagonal belong to E0 and the off-diagonal entries lie in E1, E is the infinite-dimensional unitary Grassmann algebra, E0 is the center of E and E1 is the anticommutative part of E) and E ⊗ E. Also, we describe the central polinomials for e over a field K, with charK ≠ 2 and finally the central polinomial with involution for M2 (K), considering the transpose and the sympletic involutions.
2

Identidades e polinômios centrais graduados para o produto tensorial pela álgebra de Grassmann. / Identities and central polynomials graded for the tensor product by Grassmann's algebra

SILVA, Jussiê Ubaldo da. 26 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-26T13:32:46Z No. of bitstreams: 1 JUSSIÊ UBALDO DA SILVA - DISSERTAÇÃO PPGMAT 2011..pdf: 609032 bytes, checksum: cb1a1234420f940ac2f6aa5c003e9d94 (MD5) / Made available in DSpace on 2018-07-26T13:32:46Z (GMT). No. of bitstreams: 1 JUSSIÊ UBALDO DA SILVA - DISSERTAÇÃO PPGMAT 2011..pdf: 609032 bytes, checksum: cb1a1234420f940ac2f6aa5c003e9d94 (MD5) Previous issue date: 2011-07 / Capes / SendoG um grupo abeliano eR uma álgebraG-graduada, consideramos no produto tensorialR⊗E (sendoE a álgebra exterior de dimensão infinita) a (G×Z2)graduação natural, obtida a partir daG-graduação deR. Neste trabalho apresentamos resultados que relacionam as identidades graduadas e resultados que relacionam os polinômios centrais graduados das álgebrasR eR⊗E. Como aplicação obtemos a PI-equivalência entre as álgebrasM1,1(E)⊗E eM2(E), resultado que é parte do clássico Teorema do Produto Tensorial de Kemer. Também apresentamos descrições das identidades e dos polinômios centrais (Zn × Z2)-graduados da álgebra Mn(E), e das identidades e dos polinômios centrais Z2-graduados da álgebra E ⊗ E, considerando para esta última uma graduação diferente da usual. Para uma visualização mais confiáveis das formulas e sinais matemáticos deste resumo recomendamos o download do arquivo. / LetG be an abelian group andR aG-graded algebra. We consider in the tensor product R ⊗ E, where E is the exterior algebra of infinite dimension, the natural (G×Z2)-grading, obtained fromG-grading ofR. In this work, we present results that relates the graded identities and also relates the graded central polynomials of the algebrasR andR⊗E. As an application we obtain the PI-equivalence between the algebras M1,1(E)⊗E and M2(E), which is a part of the Tensor Product Theorem of Kemer. We also present descriptions of the (Zn × Z2)-graded identities and central polynomials of the algebra Mn(E), as well as of theZ2-graded identities and central polynomials of the algebra E ⊗ E. In the last case, we consider a different grading from the usual one.
3

Identidades polinomiais e polinômios centrais para Álgebra de Grassmann. / Polynomial identities and central polynomials for Grassmann's Algebra.

COSTA, Nancy Lima. 05 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-05T13:56:35Z No. of bitstreams: 1 NANCY LIMA COSTA - DISSERTAÇÃO PPGMAT 2012..pdf: 696380 bytes, checksum: b115561e2d297770211db99b1ed44747 (MD5) / Made available in DSpace on 2018-08-05T13:56:35Z (GMT). No. of bitstreams: 1 NANCY LIMA COSTA - DISSERTAÇÃO PPGMAT 2012..pdf: 696380 bytes, checksum: b115561e2d297770211db99b1ed44747 (MD5) Previous issue date: 2012-08 / Capes / Neste trabalho de dissertação estudamos as identidades polinomiais ordinárias para a Álgebra de Grassmann com unidade, denotada por E, e sem unidade, denotada por E 0, para corpos de característica diferente de 2. Além disso, também estudamos as identidades Z2-graduadas da álgebra E no caso em que o corpo tem característica positiva. Por fim, descrevemos o T-espaço dos polinômios centrais de E tanto para corpos de característica zero, quanto para corpos de característica positiva e descrevemos também os polinômios centrais de E 0 para corpos de característica positiva. / In this dissertation we study the ordinary polynomial identities for the Grassmann Algebra with unity, denoted by E, and without unity, denoted by E 0, for fields of characteristic di erent from 2. We also study the Z2-graded identities of the algebra E over elds of positive characteristic. Finaly, we describe the T-space of the central polynomials of E for fields of characteristic zero and also for fields of positive characteristic, moreover we describe the T-space of the central polynomials of E 0 for fields of positive characteristic.
4

Identidades e polinômios centrais para álgebras de matrizes. / Identities and central polynomials for matrix algebras.

BERNARDO, Leomaques Francisco Silva. 23 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-23T14:58:20Z No. of bitstreams: 1 LEOMAQUES FRANCISCO SILVA BERNARDO - DISSERTAÇÃO PPGMAT 2009..pdf: 656966 bytes, checksum: 9ca0422e8cc572aa2c43d542260ef401 (MD5) / Made available in DSpace on 2018-07-23T14:58:20Z (GMT). No. of bitstreams: 1 LEOMAQUES FRANCISCO SILVA BERNARDO - DISSERTAÇÃO PPGMAT 2009..pdf: 656966 bytes, checksum: 9ca0422e8cc572aa2c43d542260ef401 (MD5) Previous issue date: 2009-06 / Capes / Neste trabalho apresentamos um estudo sobre identidades e polinômios centrais para a álgebra das matrizes. Mais precisamente, apresentamos a descrição das identidades e polinômios centrais Zn-graduados e Z-graduados para a álgebra Mn(K) (matizes n x n sobre um corpo K), quando característica de K é zero. Depois, apresentamos a descrição dos polinômios centrais ordinários para a álgebra M2(K) (matrizes 2 x 2 sobre K), também para um corpo de característica zero. Finalmente, apresentamos duas construções clássicas de polinômios centrais para Mn(K), que surgiram como resposta a um problema sugerido por Kaplansky em 1956 sobre a existência de polinômios não triviais para esta álgebra. / In this work we study polynomial identities and central polynomials for matrix algebras. More precisely, we present the description of the identities and Zn-graded and Z-graded central polynomials for the algebra Mn(K) (the n x n matrices over the field K) when the characteristic of K is zero. Afterwards we give the description or the ordinary (nongraded) central polynomials for the algebra m2(K), the 2 x 2 matrices over K, assuming the field of characteristic zero. Finally, we present two classical constructions of central polynomials for Mn(K). These appeared as an answer to a problem posed by Kaplansky in 1956 about the existence of nontrivial central polynomials for that algebra.
5

Identidades polinomiais e polinômios centrais com involução. / Polynomial identities and involutional central polynomials.

BEZERRA JÚNIOR, Claudemir Fidelis. 09 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-09T16:56:07Z No. of bitstreams: 1 CLAUDEMIR FIDELIS BEZERRA JÚNIOR - DISSERTAÇÃO PPGMAT 2014..pdf: 825308 bytes, checksum: d7bd377c69f618ba4b331c4575210512 (MD5) / Made available in DSpace on 2018-08-09T16:56:07Z (GMT). No. of bitstreams: 1 CLAUDEMIR FIDELIS BEZERRA JÚNIOR - DISSERTAÇÃO PPGMAT 2014..pdf: 825308 bytes, checksum: d7bd377c69f618ba4b331c4575210512 (MD5) Previous issue date: 2014-02 / Capes / Nesta dissertação são descritas bases para as identidades polinomiais e os polinômios centrais com involução para a álgebra das matrizes 2 × 2 sobre um corpo in nito K de característica p 6= 2, considerando-se a involução transposta, denotada por t, e também a involução simplética, denotada por s. É conhecido que, como o corpo K é in nito, se ∗ é uma involução em M2(K), então o ideal de identidades (M2(K), ∗) coincide com (M2(K), t) ou com (M2(K), s). Consideramos também as álgebras Mn(E), Mk,l(E) e M1,1(E) sobre corpos de característica 0. Para as álgebras Mn(E) e Mk,l(E), provamos que para uma classe ampla de involuções as identidades polinomiais com involução coincidem com as identidades ordinárias, e para a álgebra M1,1(E) com a involução ∗ induzida pela superinvolução transposta na superálgebra M1,1(K), exibimos uma base nita para as ∗-identidades polinomiais. / In this dissertation we describe basis for the polynomial identities and central polynomials with involution for the algebra of 2 × 2 matrices over an infinite field K of characteristic p 6= 2 considering the transpose involution, denoted by t, and also the symplectic involution, denoted by s. It is known that, since the field K is infinite, if ∗ is an involution on M2(K), then the ideal of identities (M2(K), ∗) coincides with (M2(K), t) or with (M2(K), s). We also consider the algebras Mn(E), Mk,l(E) and M1,1(E) over fields of characteristic 0. For the algebras Mn(E) and Mk,l(E) we prove that for a large class of involutions the polynomial identities with involution coincide with the ordinary identities, and for the algebra M1,1(E) with the involution ∗ induced by the transposition superinvolution of the superalgebra M1,1(K) we exhibit nite basis for the ∗-polynomial identities.

Page generated in 0.0871 seconds