• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 25
  • 16
  • 11
  • 9
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 188
  • 41
  • 37
  • 33
  • 27
  • 26
  • 26
  • 23
  • 21
  • 18
  • 17
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Einfluss der Korngefüge industriell hergestellter mc- Siliziumblöcke auf die rekombinationsaktiven Kristalldefekte und auf die Solarzelleneffizienz

Lehmann, Toni 26 May 2016 (has links) (PDF)
The efficiency of multicrystalline (mc) silicon solar cells depends strongly on the fraction of recombination active crystal defects. This work focuses on a systematic analysis of how the area fraction of recombination active crystal defects and thus the solar cell efficiency is af-fected by the grain structure of mc-silicon wafers, i.e. grain size, grain orientation and type of the grain boundaries between adjacent grains. For that purpose a new characterization method was developed which allows the measurement of the grain orientation and grain boundary type of full 156x156 mm² mc-silicon wafers. The results of the grain structure analysis were correlated with the etch pit density, the recombination active area fraction measured by photo-luminescence imaging, and the solar cell efficiency in order to quantify the most important features of the grain structure, which were relevant to obtain high quality mc-silicon wafer material. For the determination of the grain orientation and grain boundary type two metrology sys-tems were combined. The so-called grain detector determines the geometrical data of each grain (size and form) by a reflectivity measurement. Afterwards the wafer with the geomet-rical information of all grains is transferred into the so-called Laue Scanner. This system irra-diates each grain larger 3 mm² with white x-rays and creates a backscatter diffraction pattern (Laue pattern) for each grain. From this Laue pattern the grain orientation and the grain boundary type of neighboured grains is calculated and statistically analysed in combination with the geometrical data of the grain detector. In this work the grain structure of twelve industrially grown mc-silicon bricks, which were produced by different manufacturers, and two laboratory grown bricks were investigated. Seven of these bricks show a fine grain structure. This material named class F is considered to be typical for so-called High Performance Multi (HPM) silicon. The other bricks show a coarse-grained structure. This grain structure was called class G and corresponds to the con-ventional mc-silicon material. The results show that the grain structures of the start of the crystallization process differ sig-nificantly between class F and class G. The class F mc-silicon wafers have a uniform initial grain size (characterized by coefficient of variation CV¬KG < 2.5) and grain orientation (charac-terized by coefficient of variation CVKO < 1.5) distribution with a small mean grain size (< 4 mm²) and a high length fraction of random grain boundaries (> 60 %) in comparison to the class G wafers. Despite the totally different initial grain structure for the class F and class G bricks, the grain structure of the wafers which represent the end of the crystallization process is more or less comparable. It can be concluded that the development of the grain structure along the crystal height of the class F bricks is driven by an energy minimization due to the surface energy and the grain boundary energy, that means that the share of (111) oriented grains having the lowest surface energy and the share of ∑3 grain boundaries having the lowest interface energy increase from the start of crystallization to the end. This phenomenon could not be observed for the class G bricks, which show a decreasing ∑3 length fraction and a decreasing area fraction of {111} oriented grains. This energetically unfavourable grain structure development is not clear so far but it means another kind of energy minimization effect must exist within class G. This could be for instance the formation of dislocations. The grain structure investigations show clearly that especially the initially fine-grained struc-ture of the class F bricks, i.e. at the start of crystallization, influences beneficially the area fraction of recombination active defects and the solar cell efficiency subsequently. This ob-servation can be explained as follows. Reduced dislocation cluster formation: • The small grain sizes in combination with the low length fraction of ∑3 grain bounda-ries capture the dislocations within a grain. Dislocations are not able to move across the grain boundaries which have not the ∑3-type within moderate stress and tempera-ture fields. This prohibits the formation and expansion of large dislocation cluster. • The previously described energetically driven grain selection and the continuously in-creasing grain size from bottom to top leads to an overgrowth of grains. This means that also dislocated grains will disappear which also prohibits the formation of large dislocation cluster. Reduced possibility of dislocation formation: • Compared to the class G bricks the area fraction of {111} oriented grains is reduced. Therefore, the possibility of the formation of dislocations is reduced, because they would be activated first in {111} oriented grains taking the Schmidt factor in account which is lowest for {111} oriented grains. After the dislocation generation within a {111} oriented grain, the dislocation can move forward on 3 of 4 possible {111} slip planes which have an angle of 19.5° with regard to the growth direction. No other ori-entation has more slip planes for the dislocation movement which have an angle smaller 20° with regard to the growth direction. These arguments in combination with the high reproducibility of the characteristic initial class F structure can explain the observed low recombination active area fraction from start to end of crystallization which was smaller 5 % and especially the low variation of 2 % of the electrical active wafer area in between the class F bricks. One can also easily explain the higher recombination active area fraction up to 14 % and the large variation of 10 % between the class G bricks due to the obtained grain structure data. These differences in the recombination active area fractions are reflected in the solar cell efficiency which is 0.4 % higher for the class F bricks compared to the class G bricks. In consideration of the above mentioned reasons it is not beneficial for the industrial ingot production technology to increase the ingot height further, due to the fact that the advanta-geous initial grain structure properties of class F bricks disappear with increasing crystal height.
132

A novel low-temperature growth method of silicon structures and application in flash memory

Mih, Thomas Attia January 2011 (has links)
Flash memories are solid-state non-volatile memories. They play a vital role especially in information storage in a wide range of consumer electronic devices and applications including smart phones, digital cameras, laptop computers, and satellite navigators. The demand for high density flash has surged as a result of the proliferation of these consumer electronic portable gadgets and the more features they offer – wireless internet, touch screen, video capabilities. The increase in the density of flash memory devices over the years has come as a result of continuous memory cell-size reduction. This size scaling is however approaching a dead end and it is widely agreed that further reduction beyond the 20 nm technological node is going to be very difficult, as it would result to challenges such as cross-talk or cell-to-cell interference, a high statistical variation in the number of stored electrons in the floating gate and high leakage currents due to thinner tunnel oxides. Because of these challenges a wide range of solutions in form of materials and device architectures are being investigated. Among them is three-dimensional (3-D) flash, which is widely acclaimed as the ideal solution, as they promise the integration of long-time retention and ultra-high density cells without compromising device reliability. However, current high temperature (>600 °C) growth techniques of the Polycrystalline silicon floating gate material are incompatible with 3-D flash memory; with vertically stacked memory layers, which require process temperatures to be ≤ 400 °C. There already exist some low temperature techniques for producing polycrystalline silicon such as laser annealing, solid-phase crystallization of amorphous silicon and metal-induced crystallization. However, these have some short-comings which make them not suitable for use in 3-D flash memory, e.g. the high furnace annealing temperatures (700 °C) in solid-phase crystallization of amorphous silicon which could potentially damage underlying memory layers in 3-D flash, and the metal contaminants in metal-induced crystallization which is a potential source of high leakage currents. There is therefore a need for alternative low temperature techniques that would be most suitable for flash memory purposes. With reference to the above, the main objective of this research was to develop a novel low temperature method for growing silicon structures at ≤ 400 °C. This thesis thus describes the development of a low-temperature method for polycrystalline silicon growth and the application of the technique in a capacitor-like flash memory device. It has been demonstrated that silicon structures with polycrystalline silicon-like properties can be grown at ≤ 400 °C in a 13.56 MHz radio frequency (RF) plasma-enhanced chemical vapour deposition (PECVD) reactor with the aid of Nickel Formate Dihydrate (NFD). It is also shown that the NFD coated on the substrates, thermally decomposes in-situ during the deposition process forming Ni particles that act as nucleation and growth sites of polycrystalline silicon. Silicon films grown by this technique and without annealing, have exhibited optical band gaps of ~ 1.2 eV compared to 1.78 eV for films grown under identical conditions but without the substrate being coated. These values were determined from UV-Vis spectroscopy and Tauc plots. These optical band gaps correspond to polycrystalline silicon and amorphous silicon respectively, meaning that the films grown on NFD-coated substrates are polycrystalline silicon while those grown on uncoated substrates remain amorphous. Moreover, this novel technique has been used to fabricate a capacitor-like flash memory that has exhibited hysteresis width corresponding to charge storage density in the order of 1012 cm-2 with a retention time well above 20 days for a device with silicon films grown at 300 °C. Films grown on uncoated films have not exhibit any significant hysteresis, and thus no flash memory-like behaviour. Given that all process temperatures throughout the fabrication of the devices are less than 400 °C and that no annealing of any sort was done on the material and devices, this growth method is thermal budget efficient and meets the crucial process temperature requirements of 3-D flash memory. Furthermore, the technique is glass compatible, which could prove a major step towards the acquisition of flash memory-integrated systems on glass, as well as other applications requiring low temperature polycrystalline silicon.
133

A theoretical study of creep deformation mechanisms of Type 316H stainless steel at elevated temperatures

Hu, Jianan January 2015 (has links)
The currently operating Generation II Advanced Gas-Cooled Reactors (AGR) in the nuclear power stations in the UK, mainly built in the 1960s and 1970s, are approaching their designed life. Besides the development of the new generation of reactors, the government is also seeking to extend the life of some AGRs. Creep and failure properties of Type 316H austenitic stainless steels used in some components of AGR at elevated temperature are under investigation in EDF Energy Ltd. However, the current empirical creep models used and examined in EDF Energy have deficiency and demonstrate poor agreement with the experimental data in the operational complex thermal/mechanical conditions. The overall objective of the present research is to improve our general understanding of the creep behaviour of Type 316H stainless steels under various conditions by undertaking theoretical studies and developing a physically based multiscale state variable model taking into account the evolution of different microstructural elements and a range of different internal mechanisms in order to make realistic life prediction. A detailed review shows that different microstructural elements are responsible for the internal deformation mechanisms for engineering alloys such as 316H stainless steels. These include the strengthening effects, associated with forest dislocation junctions, solute atoms and precipitates, and softening effects, associated with recovery of dislocation structure and coarsening of precipitates. All the mechanisms involve interactions between dislocations and different types of obstacles. Thus change in the microstructural state will lead to the change in materials' internal state and influence the mechanical/creep property. Based on these understandings, a multiscale self-consistent model for a polycrystalline material is established, consisting of continuum, crystal plasticity framework and dislocation link length model that allows the detailed dislocation distribution structure and its evolution during deformation to be incorporated. The model captures the interaction between individual slip planes (self- and latent hardening) and between individual grains and the surrounding matrix (plastic mismatch, leading to the residual stress). The state variables associated with all the microstructure elements are identified as the mean spacing between each type of obstacles. The evolution of these state variables are described in a number of physical processes, including the dislocation multiplication and climb-controlled network coarsening and the phase transformation (nucleation, growth and coarsening of different phases). The enhancements to the deformation kinetics at elevated temperature are also presented. Further, several simulations are carried out to validate the established model and further evaluate and interpret various available data measured for 316H stainless steels. Specimens are divided into two groups, respectively ex-service plus laboratory aged (EXLA) with a considerable population of precipitates and solution treated (ST) where precipitates are not present. For the EXLA specimens, the model is used to evaluate the microscopic lattice response, either parallel or perpendicular to the loading direction, subjected to uniaxial tensile and/or compressive loading at ambient temperature, and macroscopic Bauschinger effect, taking into account the effect of pre-loading and pre-crept history. For the ST specimens, the model is used to evaluate the phase transformation in the specimen head volume subjected to pure thermal ageing, and multiple secondary stages observed during uniaxial tensile creep in the specimen gauge volume at various temperatures and stresses. The results and analysis in this thesis improve the fundamental understanding of the relationship between the evolution of microstructure and the creep behaviour of the material. They are also beneficial to the assessment of materials' internal state and further investigation of deformation mechanism for a broader range of temperature and stress.
134

Matériaux magnétiques en couches. Etudes des systèmes FePt et FeRh / Magnetic Materials Films : studies of the FePt and FeRh systems

Ndao, Cheikh Birahim 11 April 2011 (has links)
Ce travail a porté sur la préparation et l'étude de matériaux magnétiques fonctionnels en couches dans l'optique d'une utilisation dans des micro-systèmes magnétiques. Deux systèmes de matériaux ont été étudiés: le FePt, qui est un matériau magnétique dur, et le FeRh, qui a une transition antiferromagnétique-ferromagnétique proche de la température ambiante. Dans le cas du FePt, les influences de la concentration en Pt, de l'ajout de Cu et des traitements thermiques, sur la transition de la phase A1 désordonnée, de faible anisotropie, à la phase L10 ordonnée, de forte anisotropie, ont été étudiées. Les dépendances en température de l'aimantation spontanée et du champ d'anisotropie de la phase L10 ont été déduites de l'analyse des courbes d'aimantation. Le pic d'Hopkinson qui est lié aux processus d'aimantation de la phase L10 à l'approche de la température de Curie a été modélisé. Dans le cas du FeRh, les influences de la concentration en Rh et des traitements thermiques ont été étudiées. Une analyse thermodynamique des mesures d'aimantation et des mesures de calorimétrie différentielle a été effectuée. Enfin, des couches hybrides de FePt-FeRh ont été déposées sur des substrats pré-gravés, pour démontrer la potentialité d'utiliser le FeRh pour contrôler thermiquement le champ de fuite généré par le FePt. / The aim of this work was the preparation and study of thin films of functional magnetic materials of interest for use in magnetic micro-systems. Two material systems have been studied: FePt, which is a hard magnetic material, and FeRh, which has an antiferromagnetic - ferromagnetic transition near room temperature. For the case of FePt, the influence of the film composition, the addition of Cu, and the annealing conditions, on the transition from the disordered, low anisotropy A1 phase to the ordered, high anisotropy L10 phase has been studied. The temperature dependence of the spontaneous magnetisation and the anisotropy field of the L10 phase were deduced from an analysis of magnetisation curves. The Hopkinson peak which characterises the susceptibility of the demagnetized L10 phase close to its Curie temperature has been modelled. In the case of FeRh, the influence of film composition and annealing conditions on the antiferromagnetic - ferromagnetic transition was studied. A thermodynamic analysis of magnetisation measurements and differential calorimetry measurements has been carried out. Finally, hybrid FePt-FeRh films have been deposited on patterned wafers, to demonstrate the potential use of FeRh for the thermal control of the stray field generated by the FePt.
135

Electrical Analysis and Physical Mechanisms of Low-Temperature Polycrystalline-Silicon Thin Film Transistors and Nonvolatile Memory for System-on-Panel and Flexible Displays

Lin, Chia-sheng 19 June 2011 (has links)
In this dissertation, we investigates the electrical stress induced degradation in low-temperature polycrystalline-silicon thin film transistors (LTPS TFTs) applied for system-on-panel (SOP), including the electrical degradations of device for switch operation in active matrix flat-panel displays, driving circuit and nonvolatile memory. Finally, we also present the reliability of LTPS TFTs applied for flexible displays. In first part, electrical degradation of conventional and pattered metal-shielding LTPS TFTs under darkened and illuminated dynamic AC stresses are investigated. Experimental results reveal that competitive mechanisms are generated in conventional LTPS TFTs during illuminated stress, namely, carrier increase and electric field weakening. This phenomenon is verified by stressing the patterned source/drain open metal-shielding LTPS TFTs, which determines that the electric field weakening dominates; conversely, the carrier increase is dominated the electrical degradation in channel open metal-shielding device under illuminated stress. In addition, an improvement in anomalous on-current and subthreshold swing (S.S.) in n-channel LTPS TFTs after positive gate bias stress are studied. These improved electric properties are due to the hole trapping at SiO2 above the lightly doped drain regions, which causes a strong electric field at the gate corners. The effect of the hole trapping is to reduce the effective channel length and the S.S.. Besides, the stress-related electric field was also simulated by TCAD software to verify the mechanism above. Secondly, a mechanism of anomalous capacitance in p-channel LTPS TFTs was investigated. In general, the effective capacitance of the LTPS TFTs was only dependent with the overlap area between gate and source/drain under the off-state. However, the experimental results reveal that the off-state capacitance was increased with decreasing measurement frequency and/or with increasing measurement temperature. Besides, by fitting the curve of drain current versus electric field under off-state region, it was verified that the TAGIDL is consisted of the Pool-Frenkel emission and Thermal-Field emission. In addition, the charge density calculated from the Cch-Vg measurement also the same dependence with electric field. This result demonstrates that the anomalous capacitance is mainly due to the trap-assisted-gate-induced-drain-leakage (TAGIDL). In order to suppress the anomalous capacitance, a band-to-band hot electron (BTBHE) stress was utilized to reduce the vertical electric field between the gate and the drain. In third part, in order to realize the reliability in p-channel TFTs under illuminated environment operation, the degradation of negative bias temperature instability (NBTI) with illumination effect is investigated. The generations of interface state density (Nit) are identical under various illuminated intensity DC NBTI stresses. Nevertheless, the degradation of the grain boundary trap (Ntrap) under illumination was more significant than for the darkened environment, with degradation increasing as illumination intensity increases. This phenomenon is mainly caused by the extra number of holes generated during the illuminated NBTI stress. The increased Ntrap degradation leads to an increase in the darkened environment leakage current. This indicates that more traps are generated in the drain junction region that from carrier tunneling via the trap, resulting in leakage current. Conversely, an increase of Ntrap degradation results in a decrease in the photoleakage current. This indicates that the number of recombination centers increases in poly-Si bulk, affecting photosensitivity in LTPS TFTs. Besides, the transient effect assisted NBTI degradation in p-channel LTPS TFTs under dynamic stress is also presented, in which the degradation of the Ntrap becomes more significant as rise time decreases to 1 £gs. Because the surface inversion layer cannot form during the short rise time, transient bulk voltage will cause excess holes to diffuse into the poly-Si bulk. Therefore, the significant Ntrap increase is assisted by this transient effect. Fourthly, we study the electric properties of n- and p-channel LTPS TFTs under the mechanical tensile strain. The improved on-current for tensile strained n-channel TFTs is originated form an increase in energy difference between 2- and 4-fold valleys, reducing the inter-valley scattering and further improving the carrier mobility. On the contrary, the hole mobility decreases in p-channel, suggesting the split between the light hole and heavy hole energy bands and an increase in hole population on the heavy hole energy band of poly-Si when the uniaxial tensile strain is parallel to the channel direction. In addition, the Nit and Ntrap degradations induced by NBTI for tensile strained LTPS TFTs are more pronounced than in the unstrained. Extracted density-of-states (DOS) and conduction activation energy (EA) both show increases due to the strained Si-Si bonds, which implies that strained Si-Si bonds are able to react with dissociated H during the NBTI stress. Therefore, the NBTI degradation is more significant after tensile strain than in an unstrained condition. Finally, the SONOS-TFT applied to nonvolatile memory is prepared and studied. In the gate disturb stress, a parasitic capacitance and resistance in off-state region are identified as electrons trapped in the gate-insulator (GI) near the defined gate region. Meanwhile, these trapping electrons induced depletions in source/drain also degraded the I-V characteristic when the gate bias is larger than the threshold voltage. However, these degradations slightly recover when the trapped electrons are removed after negative bias stress. The electric field in the undefined gate region is also verified by TCAD simulation software.
136

UHF帯プラズマを用いた次世代大口径機能性薄膜プロセスの開発

後藤, 俊夫, 河野, 明廣, 堀, 勝, 伊藤, 昌文, 寒川, 誠二, 塚田, 勉 03 1900 (has links)
科学研究費補助金 研究種目:基盤研究(A)(2) 課題番号:09355002 研究代表者:後藤 俊夫 研究期間:1997-1999年度
137

Investigation of novel cooling methods to enhance aerospace component manufacturing practices

Koen, Devan 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: The aerospace industry actively pursues innovation, especially in materials and their use in new applications, to improve their aircraft as well as their competitive position. Ti-6Al-4V has been available now for more than 50 years. Yet, in the new generation of aircraft using structural composites, a dramatic increase in the proportion of Ti-6Al-4V will be seen along with emerging application in automotive and chemical industries. This material possesses superior material properties compared to conventional materials such as steel and aluminium, although it is at the expense of machinability. Researchers are therefore actively searching for improved cutting technologies to improve production rates for Ti-6Al-4V. At higher cutting speeds than the industry norm of 60 - 90 m/min, machining becomes a challenge, resulting in low productivity on titanium parts. The limiting factor in the machining of Ti-6Al-4V is high tool temperatures of the order of 1000oC, caused by its resistance to absorb heat and good mechanical strength at elevated temperatures. The result is extreme temperatures that are concentrated on the cutting edge of the tool. The challenge to improve the tool life is therefore focused on removing heat from the insert. Liquid nitrogen was identified as a good candidate as coolant with the additional advantage of being environmentally friendly. The research presented investigates the use of a gravity feed enclosed liquid nitrogen cooling system to improve the tool life of the cutting inserts. The liquid nitrogen is contained on the insert rake face by means of a tool cap. To improve the effectiveness of the cooling method, a polycrystalline diamond (PCD) insert was used. This insert has a considerably higher thermal conductivity that aids in cooling the cutting edge. Tungsten carbide inserts are used for benchmark testing. The round tungsten carbide inserts with conventional cooling performed exceptionally well for machining titanium compared to square inserts, yielding exceptional tool life improvements while significantly increasing the material removal rate. Positive results were recorded with the liquid nitrogen cooling system when used with the polycrystalline diamond cutting insert. A number of far reaching performance issues are identified relating to the design of the tool cap that hindered clear scientific outputs. From a research perspective, the project makes a contribution to the knowledge base in this field. Additionally a new approach in cooling was investigated, resulting in clear indications of design changes required. / AFRIKAANSE OPSOMMING: Die lugvaart industrie streef aktief innovasie na, veral op die gebied van materiale en hul gebruike, om hul vliegtuie en kompeterende posisie in die mark te verbeter. Ti-6Al-4V is al vir meer as 50 jaar beskikbaar. ‘n Drastiese verhoging in die aanvraag na Ti-6Al-4V deur die lugvaart, motor en chemiese industrieë word verwag wanneer die volgende geslag vliegtuie wat koolstofvesel as strukturele materiaal begin gebruik, in produksie gaan. Die materiaal het beter materiaaleienskappe as konvensionele materiale soos staal en aluminium, maar dit kom egter teen die prys van masjieneerbaarheid. Ti-6Al-4V se masjienering bo die industrie norm van 60 – 90m/min is ‘n groot uitdaging. Navorsers soek daarom deurentyd na verbeterde sny tegnologieë om die produksie tempo van Ti-6Al-4V te verbeter. Die beperkende faktor vir Ti-6Al-4V masjienering is die temperatuur wat genereer word. Die weerstand van die materiaal om hitte te absorbeer en sy goeie meganiese eienskappe veroorsaak dat temperature in die beitel 1000oC bereik. Hierdie temperature word egter op die snykant van die beitel gekonsentreer. Die uitdaging is dus om hierdie temperature in die beitel te beheer. Vloeibare stikstof is geïdentifiseer as ‘n goeie kandidaat vir verkoeling met die bykomende voordeel dat dit omgewingsvriendelik is. Die navorsing wat hier uiteengesit word, ondersoek die gebruik van ‘n geslote kamer beitelverkoelingstelsel wat deur gravitasie met vloeibare stikstof voorsien word om die beitel leeftyd te verbeter. Die oppervlak van die beitel word in hierdie konsep direk aan die vloeibare stikstof blootgestel. Om die effektiwiteit van die stelsel te verbeter word van PCD beitels gebruik gemaak. Die beitel se verbeterde hittegeleidingsvermoë help om die beitel se snykant koel te hou. Tungstenkarbied beitels word gebruik om ‘n standaard te stel vir eksperimentele analise. Die ronde tungstenkarbied beitels en konvensionele verkoeling het verstommend goed presteer vir Ti-6A-4V masjienering in vergelyking met vierkantige beitels. Die materiaalverwyderingstempo is aansienlik verhoog sonder om die beitel se leeftyd in te boet. Positiewe resultate is waargeneem met die vloeibare stikstof sisteem saam met die PCD beitels. ‘n Aantal verreikende uitdagings is geïdentifiseer wat suiwer wetenskaplike afleidings bemoeilik. Hierdie probleme kan almal aan die ontwerp van die toerusting toegeskryf word. Die werk lewer egter steeds ‘n bydrae tot die kennis in die veld. ‘n Bykomende benadering vir verkoeling is ondersoek wat duidelik ontwerp-veranderings aandui.
138

Etude des propriétés thermoélectriques et d’isolation thermique du Si poreux et Si nanocristallin / Study of thermoelectric properties and thermal isolation of porous Si and nanocrystalline Silicon

Valalaki, Aikaterini 25 May 2016 (has links)
Cette thèse a été consacrée à l’étude du Si poreux comme matériaux à faible conductivité thermique (k) pour application aux dispositifs thermoélectriques à base de Si. D’autres paramètres thermoélectriques, comme par exemple le coefficient Seebeck de ce matériau, ont été également étudiés.Si poreux est un matériau complexe composé de nanostructures de Si séparées de vide. Quand la porosité est élevée, sa conductivité thermique est bien inférieure à celle de Si cristallin. Nous avons étudié la conductivité thermique de Si poreux de différentes morphologies et porosités dans la gamme de températures 4.2-350K. Les mesures à T<20K sont les premières dans la bibliographie et ont montré une saturation de k en fonction de T pour ces températures. A des températures supérieures à 20K, k augmente régulièrement avec la température. La dépendance de température de k de Si poreux a été interprétée en considérant des modèles théoriques, basées sur la nature “fractal” de Si poreux. Nous avons calculé la dimension fractale de Si poreux par des images de microscopie électronique à balayage (SEM) et l’algorithme de “box counting”.Deux méthodes différentes ont été utilisées pour mesurer k: la méthode à courant direct (dc) combinée avec une analyse FEM et la méthode 3ω. Nous avons proposé deux approches améliorées pour extraire k du signal de potentiel 3ω en fonction de la fréquence. La première considère l’accord des résultats expérimentaux avec la solution asymptotique intégrale de la formule de Cahill, et la seconde fait une analyse des résultats expérimentaux en solvant l’équation temporelle de transfert de chaleur par des éléments finis. Plus précise est la méthode 3ω combinée avec des éléments finis. Les résultats correspondants sont en bon accord avec ceux obtenus par la méthode dc.Nous avons aussi étudié le Si poreux comme matériau thermoélectrique. Dans ce cas, le Si poreux peut être intéressant si il a une faible porosité, car le matériau à haute porosité est très résistive. Dans ce but, nous avons déterminé le coefficient Seebeck (S) des membranes de Si poreux de différentes porosités dans la gamme 40-84%, en utilisant un dispositif de mesure spécialement développé à cet effet. Pour des échantillons de porosité 51%, la valeur de coefficient S est de 1mV/K, bien supérieure à celle le Si cristallin. La dépendance de S de la porosité n’est pas monotone, et ceci est attribué à une combinaison des effets de filtrage d’énergie, des collisions des phonons et interactions phonon-porteurs électriques. Les résultats obtenus sont basées sur des mesures de photoluminescence (PL) et observations microscopiques à transmission (TEM). Nous avons enfin conclue que, malgré le coefficient S très élevé, le Si poreux n’est pas adéquat comme matériau thermoélectrique à cause de sa faible conductivité électrique, qui diminue en augmentant la porosité à cause de la résultante déplétion de porteurs.Nous avons aussi étudié des films minces polycristallins dopés avec du Bore. Ces films sont très intéressants comme matériaux thermoélectrique, car ils sont compatibles avec les procédés de fabrication des circuits intégrés de Si. Leur performance thermoélectrique est améliorée par diminution de la taille des grains. Des films minces polycristallins d’épaisseur entre 100 et 500nm ont été étudiés. Tous leurs paramètres thermoélectriques ont été mesurés et nous avons trouvé que le facteur de performance thermoélectrique zT augmente d’un facteur 3 en diminuant l’épaisseur de 500 à 100nm ceci étant attribué à la diminution de la taille des grains dans les films, conduisant à zT = 0.033, qui est la meilleure valeur reporté dans la littérature.Ce résultat compétitif augmente le potentiel d’utilisation des films polycristallins dans des dispositifs thermoélectriques efficaces, compatibles à la technologie de Si. / This thesis is devoted to the thermal conductivity and other thermoelectric properties of porous silicon (PSi) and thin polycrystalline Si films (thickness: 100-500 nm).PSi is a complex material composed of a Si skeleton of interconnected nanowires and dots, separated by voids. When it is highly porous, its thermal conductivity is very low, even below that of the amorphous Si. This makes it a good material for use as a thermal isolation platform on the Si wafer. In addition, its Seebeck coefficient is much higher than that of bulk c-Si.We studied k of PSi layers with different morphologies and porosities, in the temperature range 4.2-350K. The measurements below 20K are the first reported in the literature. A plateau-like dependence on temperature was observed for T below 20K, while above this temperature a monotonic increase with T is observed. The observed behaviour was interpreted using known theoretical models, based mainly on the fractal nature of PSi. PSi was characterized as a fractal material by calculating its fractal dimension using SEM images and the box counting algorithm.Two different methods were used to determine porous Si thermal conductivity: the DC method combined with FEM analysis and the 3ω method. Concerning the 3ω method, two improved approaches were proposed for extracting k from the 3ω voltage as a function of frequency: the first uses a fitting of the experimental data to the asymptotic solution of the Cahill’s integral formula, and the second is based on the analysis of the experimental data by combining them with a solution of the transient heat transfer equation using FEM analysis. The results in this second case were more accurate and in very good agreement with the DC method.We also measured the Seebeck coefficient (S) of PSi membranes with porosities 40-84% using a home-built setup, which was fabricated, calibrated and tested within this thesis. A value as high as 1mV/K was obtained for the 51% porosity sample. An anomalous porosity dependence of S was obtained, which was attributed to the interplay between energy filtering, phonon scattering and phonon drag effects. The results were explained by combining them with PL and TEM measurements, used for the determination of nanocrystal sizes. We concluded that, despite of the extremely low k and the high S of PSi, the material with the studied high porosities is not adequate for use as a “good thermoelectric” material, because of its significantly low electrical conductivity, which decreases with increasing porosity, resulting from carrier depletion during formation.We also studied the thermoelectric properties of thin, boron-doped, polycrystalline silicon films, which are much more attractive for use as Si-based thermoelectrics than porous Si. Their thermoelectric performance is improved by decreasing film thickness, due to a decrease in polysilicon grain size. Thin films with thickness between 100-500nm were investigated. We measured their thermal conductivity, resistivity and Seebeck coefficient and extracted their thermoelectric figure of merit, which showed threefold increase by reducing film thickness down to 100nm. A value as high as 0.033 was achieved, which is the highest reported in the literature so far for boron-doped polysilicon films at room temperature. This increase is attributed to a decrease in the grain size of the material. The obtained value shows the interest of nanocrystalline Si films for integration in efficient Si-based thermoelectric generators, compatible with CMOS processing.
139

Avaliação das cargas de adesão e das superfícies do esmalte dentário após a remoção de bráquetes ortodônticos cerâmicos e metálicos: uma visão por microscopia eletrônica de varredura

Rocha, José Maurício da 03 March 2010 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-07-24T13:54:41Z No. of bitstreams: 1 josemauriciodarocha.pdf: 1043351 bytes, checksum: cf01ad4dea7870b0a189a72005b608f0 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-08-09T13:46:41Z (GMT) No. of bitstreams: 1 josemauriciodarocha.pdf: 1043351 bytes, checksum: cf01ad4dea7870b0a189a72005b608f0 (MD5) / Made available in DSpace on 2017-08-09T13:46:41Z (GMT). No. of bitstreams: 1 josemauriciodarocha.pdf: 1043351 bytes, checksum: cf01ad4dea7870b0a189a72005b608f0 (MD5) Previous issue date: 2010-03-03 / Este estudo objetivou avaliar, in vitro, a resistência ao cisalhamento apresentada por três marcas comerciais de bráquetes ortodônticos cerâmicos policristalinos e uma marca de bráquete metálico, todos com retenção mecânica, verificando os índices de resina remanescentes após os ensaios, e analisar, através da microscopia eletrônica de varredura, as topografias superficiais do esmalte pós-descolagem, detectando o desprendimento de partículas minerais do esmalte após a remoção dos bráquetes. Foram utilizados 60 incisivos inferiores bovinos recém-extraídos. Os bráquetes cerâmicos policristalinos (Allure®, InVu® e Clarity®) e metálico (Geneus®) foram colados utilizando-se o adesivo Transbond XT®. Para os resultados referentes ao cisalhamento, utilizou-se o teste de Kruskal-Wallis, com nível de significância de 5%. O teste de Mann-Whtiney foi utilizado para comparar os diferentes tipos de bráquetes aos pares, quanto aos índices de resina remanescentes. Para a análise dos resultados referentes às composições químicas do esmalte aplicou-se o teste de Brown-Forsythe com significância estatística ao nível de 5%. As comparações entre os grupos foram realizadas utilizando os testes Post Hoc de Games-Hoewell. Não foram observadas diferenças estatisticamente significativas, quanto as cargas de cisalhamento, durante a descolagem dos bráquetes. Em relação ao IRA, quando comparados aos pares, foi possível observar diferenças estatísticas entre os bráquetes Clarity® e InVu® (p = 0,002), Allure® e InVu® (p = 0,006) e, Clarity® e Geneus® (p = 0,0022). Foi confirmada a prevalência do escore “4”, com um percentual de 40,4%. Em relação à topografia superficial do esmalte, o Geneus® foi o único que não apresentou perda de tecido superficial. O Clarity® foi o mais afetado em relação à topografia superficial e ao desprendimento de partículas minerais do esmalte (íons Ca). O InVu® e o Clarity® apresentaram fraturas coesivas de 33,3% de suas amostras e o Allure® de 50%, sendo o que mais apresentou fraturas durante a remoção. / This study aimed at evaluating, in vitro, the shear bond strength shown by three different brands of polycrystalline ceramic orthodontic brackets and a brand of metallic orthodontic bracket, all with mechanical retention, by verifying the adhesive remnant index after trials, and to analyze, by means of scanning electronic microscopy, the superficial enamel topographies after debonding, detecting the release of mineral particles of enamel after bracket removal. Sixty recently extracted mandibular bovine incisors were used in this study. Polycrystalline ceramic brackets (Allure®, InVu®, and Clarity®), and metallic brackets (Geneus®) were bonded with Transbond XT®. For the results concerning the shear bond strength the KruskalWallis test was applied with a significance level of 5%. The Mann Whitney test was performed to compare the different types of brackets by pair, in relation to the adhesive remnant. For the analysis of the results concerning the chemical composition of the enamel the Brown-Forsythe test was applied with a significance level of 5%. Comparisons between the groups were analyzed using the GamesHowell Post Hoc test. No statistically significant differences were observed in relation to shear loads during bracket debonding. In relation to ARI, when the pairs are compared, it was possible to observe statistically significant differences between Clarity and InVu brackets (p = 0,002), Allure and InVu (p = 0.006), and Clarity and Geneus (p = 0.0022). The prevalence of score “4” was confirmed with a percentile of 40.4%. In relation to the superficial enamel topography, the Geneus® bracket was the only one which did not show loss of superficial tissue. Clarity® brackets was the most affected in relation to superficial topography and to the release of mineral particles of enamel (Ca ions). InVu® and Clarity® brackets showed cohesive fractures in 33.3% of their samples and the Allure® in 50%, the latter being the one that presented most fractures during removal.
140

Caractérisation et modélisation du comportement mécanique à haute température des aciers ferritiques renforcés par dispersion d'oxydes / Experimental study and modelling of the high temperature mechanical behaviour of oxide dispersion strengthened ferritic steels

Steckmeyer, Antonin 28 November 2012 (has links)
Le renforcement par dispersion d'oxydes nanométriques permet, d'une manière générale, d'améliorer la résistance mécanique des matériaux métalliques. Il autorise donc une augmentation de leur température maximale d'utilisation. De nombreux travaux de recherche sont menés au Commissariat à l'Énergie Atomique et aux Énergies Alternatives sur les aciers ODS, pour Oxide Dispersion Strengthened steels. S'inscrivant dans le cadre du développement du nucléaire civil de quatrième génération, ces travaux ont pour but de qualifier un matériau pouvant être utilisé en tant que matériau de gainage combustible à une température de 650℃. Ce travail de thèse a pour objectif d'améliorer la compréhension des propriétés mécaniques des aciers ODS, en cherchant d'une part à caractériser et à modéliser leur comportement en fluage, et d'autre part à caractériser leur nisotropie de comportement et à en identifier l'origine. Pour cela, de nombreux essais mécaniques ont été effectués entre 20℃ et 900℃ sur une nuance d'acier ODS ferritique de composition nominale Fe-14Cr1W0,26Ti + 0,3Y2O3 . Cette nuance a été élaborée au CEA, par mécanosynthèse puis extrusion à chaud, sous la forme d'une barre ronde. Les résultats obtenus démontrent la grande résistance mécanique à haute température de l'acier ODS étudié. Ils mettent également en évidence une forte dépendance de la ductilité et de la résistance du matériau vis-à-vis de la vitesse de sollicitation. Sur la base des différentes caractérisations expérimentales réalisées, un modèle de comportement macroscopique uniaxial a été développé. S'appuyant sur la description de trois écrouissages cinématiques et d'un terme de restauration statique, ce modèle démontre une capacité remarquable à reproduire le comportement mécanique du matériau en traction, en fatigue, en fluage et en relaxation. Par ailleurs, la caractérisation de l'anisotropie mécanique de la nuance d'acier ODS étudiée s'avère dépendre de la température. Deux modélisations polycristallines différentes ont été mises en place afin de reproduire cette anisotropie de comportement à partir des textures cristallographique et morphologique du matériau. Le désaccord observé entre les prévisions de ces modèles et les résultats expérimentaux conduit à formuler d'autres hypothèses sur la déformation des aciers ODS. / The strength of metals, and therefore their maximum operating temperature, can be improvedby oxide dispersion strengthening (ODS). Numerous research studies are carried out at the French Atomic Energy Commission (CEA) in order to develop a cladding tube material for Gen IV nuclear power reactors. Oxide dispersion strengthened steels appear to be the most promising candidates for such application, which demand a minimum operating temperature of (650℃). The present dissertation intends to improve the understanding of the mechanical properties of ODS steels, in terms of creep lifetime and mechanical anisotropy. The methodology of this work includes mechanical tests between room temperature and 900℃ as well as macroscopic and polycrystalline modelling. These tests are carried out on a Fe-14Cr1W0,26Ti + 0,3Y2O3 ODS ferritic steel processed at CEA by mechanical alloying and hot extrusion. The as-received material is a bar with a circular section. The mechanical tests reveal the high mechanical strength of this steel at high temperature. A strong influence of the strain rate on the ductility and the mechanical strength is also observed. A macroscopic mechanical model has been developed on the basis of some experimental statements such as the high kinematic contribution to the flow stress. This model has a strong ability to reproduce the mechanical behaviour of the studied material. Two different polycristalline models have also been developed in order to reproduce the mechanical anisotropy of the material. They are based on its specific grain morphology and crystallographic texture. The discrepancy between the predictions of both models and experimental results reveal the necessity to formulate alternate assumptions on thedeformation mechanisms of ODS ferritic steels.

Page generated in 0.1073 seconds