21 |
K-Separator problem / Problème de k-SéparateurMohamed Sidi, Mohamed Ahmed 04 December 2014 (has links)
Considérons un graphe G = (V,E,w) non orienté dont les sommets sont pondérés et un entier k. Le problème à étudier consiste à la construction des algorithmes afin de déterminer le nombre minimum de nœuds qu’il faut enlever au graphe G pour que toutes les composantes connexes restantes contiennent chacune au plus k-sommets. Ce problème nous l’appelons problème de k-Séparateur et on désigne par k-séparateur le sous-ensemble recherché. Il est une généralisation du Vertex Cover qui correspond au cas k = 1 (nombre minimum de sommets intersectant toutes les arêtes du graphe) / Let G be a vertex-weighted undirected graph. We aim to compute a minimum weight subset of vertices whose removal leads to a graph where the size of each connected component is less than or equal to a given positive number k. If k = 1 we get the classical vertex cover problem. Many formulations are proposed for the problem. The linear relaxations of these formulations are theoretically compared. A polyhedral study is proposed (valid inequalities, facets, separation algorithms). It is shown that the problem can be solved in polynomial time for many special cases including the path, the cycle and the tree cases and also for graphs not containing some special induced sub-graphs. Some (k + 1)-approximation algorithms are also exhibited. Most of the algorithms are implemented and compared. The k-separator problem has many applications. If vertex weights are equal to 1, the size of a minimum k-separator can be used to evaluate the robustness of a graph or a network. Another application consists in partitioning a graph/network into different sub-graphs with respect to different criteria. For example, in the context of social networks, many approaches are proposed to detect communities. By solving a minimum k-separator problem, we get different connected components that may represent communities. The k-separator vertices represent persons making connections between communities. The k-separator problem can then be seen as a special partitioning/clustering graph problem
|
22 |
Learning effect, Time-dependent Processing Time and Bicriteria Scheduling Problems in a Supply ChainQian, Jianbo 10 1900 (has links)
<p>This thesis contains two parts. In the first part, which contains Chapter 2 and Chapter 3, we consider scheduling problems with learning effect and time-dependent processing time on a single machine. In Chapter 2, we investigate the earliness-tardiness objective, as well as the objective without due date assignment consideration. By reducing them to a special linear assignment problem, we solve them in near-linear time. As a consequence, we improve the time complexity for some previous algorithms for scheduling problems with learning effect and/or time-dependent processing time. In Chapter 3, we investigate the total number of tardy jobs objective. By reducing them to a linear assignment problem, we solve them in polynomial time. For some important special cases, where there is only learning effect OR time-dependent processing time, we reduce the time complexity to quadratic time. In the second part, which contains Chapter 4 and Chapter 5, we investigate the bicriteria scheduling problems in a supply chain. We separate the objectives in two parts, where the delivery cost is one of them. We present efficient algorithms to identify all the Pareto-optimal solutions for various scenarios. In Chapter 4, we study the cases without due date assignment; while in Chapter 5 we study the cases with due date assignment consideration.</p>
|
23 |
The structure of graphs and new logics for the characterization of Polynomial TimeLaubner, Bastian 14 June 2011 (has links)
Diese Arbeit leistet Beiträge zu drei Gebieten der deskriptiven Komplexitätstheorie. Zunächst adaptieren wir einen repräsentationsinvarianten Graphkanonisierungsalgorithmus mit einfach exponentieller Laufzeit von Corneil und Goldberg (1984) und folgern, dass die Logik "Choiceless Polynomial Time with Counting" auf Strukturen, deren Relationen höchstens Stelligkeit 2 haben, gerade die Polynomialzeit-Eigenschaften (PTIME) von Fragmenten logarithmischer Größe charakterisiert. Der zweite Beitrag untersucht die deskriptive Komplexität von PTIME-Berechnungen auf eingeschränkten Graphklassen. Wir stellen eine neuartige Normalform von Intervallgraphen vor, die sich in Fixpunktlogik mit Zählen (FP+C) definieren lässt, was bedeutet, dass FP+C auf dieser Graphklasse PTIME charakterisiert. Wir adaptieren außerdem unsere Methoden, um einen kanonischen Beschriftungsalgorithmus für Intervallgraphen zu erhalten, der sich mit logarithmischer Platzbeschränkung (LOGSPACE) berechnen lässt. Im dritten Teil der Arbeit beschäftigt uns die ungelöste Frage, ob es eine Logik gibt, die alle Polynomialzeit-Berechnungen charakterisiert. Wir führen eine Reihe von Ranglogiken ein, die die Fähigkeit besitzen, den Rang von Matrizen über Primkörpern zu berechnen. Wir zeigen, dass diese Ergänzung um lineare Algebra robuste Logiken hervor bringt, deren Ausdrucksstärke die von FP+C übertrifft. Außerdem beweisen wir, dass Ranglogiken strikt an Ausdrucksstärke gewinnen, wenn wir die Zahl an Variablen erhöhen, die die betrachteten Matrizen indizieren. Dann bauen wir eine Brücke zur klassischen Komplexitätstheorie, indem wir über geordneten Strukturen eine Reihe von Komplexitätsklassen zwischen LOGSPACE und PTIME durch Ranglogiken charakterisieren. Die Arbeit etabliert die stärkste der Ranglogiken als Kandidat für die Charakterisierung von PTIME und legt nahe, dass Ranglogiken genauer erforscht werden müssen, um weitere Fortschritte im Hinblick auf eine Logik für Polynomialzeit zu erzielen. / This thesis is making contributions to three strands of descriptive complexity theory. First, we adapt a representation-invariant, singly exponential-time graph canonization algorithm of Corneil and Goldberg (1984) and conclude that on structures whose relations are of arity at most 2, the logic "Choiceless Polynomial Time with Counting" precisely characterizes the polynomial-time (PTIME) properties of logarithmic-size fragments. The second contribution investigates the descriptive complexity of PTIME computations on restricted classes of graphs. We present a novel canonical form for the class of interval graphs which is definable in fixed-point logic with counting (FP+C), which shows that FP+C captures PTIME on this graph class. We also adapt our methods to obtain a canonical labeling algorithm for interval graphs which is computable in logarithmic space (LOGSPACE). The final part of this thesis takes aim at the open question whether there exists a logic which generally captures polynomial-time computations. We introduce a variety of rank logics with the ability to compute the ranks of matrices over (finite) prime fields. We argue that this introduction of linear algebra results in robust logics whose expressiveness surpasses that of FP+C. Additionally, we establish that rank logics strictly gain in expressiveness when increasing the number of variables that index the matrices we consider. Then we establish a direct connection to standard complexity theory by showing that in the presence of orders, a variety of complexity classes between LOGSPACE and PTIME can be characterized by suitable rank logics. Our exposition provides evidence that rank logics are a natural object to study and establishes the most expressive of our rank logics as a viable candidate for capturing PTIME, suggesting that rank logics need to be better understood if progress is to be made towards a logic for polynomial time.
|
24 |
Batch replenishment planning under capacity reservation contract / Planification d'approvisionnement par batch sous contrat de réservation de capacitéMouman, Mlouka 08 February 2019 (has links)
Nous nous intéressons au Problème de Dimensionnement de Lots mono-produit (PDL) dans une chaîne logistique composée d'un détaillant et d'un fournisseur en y intégrant le contrat buyback et l'approvisionnement par batch. L'objectif est de déterminer un plan d'approvisionnement pour le détaillant pour satisfaire ses demandes déterministes sur un horizon fini, tout en minimisant ses coûts d'approvisionnement et de stockage. Concernant le coût d'approvisionnement, nous supposons deux structures différentes : FTL (Full Truck Load) et OFB (Only Full Batch). Trois types de contrat buyback sont étudiés : avec des périodes de retour fixes, avec une limite de temps sur les retours, et avec des retours uniquement dans les périodes d'approvisionnement. Chaque contrat est caractérisé par un pourcentage de retour maximal qui peut être égal à 100% (retour total) ou inférieur à 100% (retour partiel). Pour le PDL sous le contrat buyback avec des périodes de retour fixes, nous supposons le cas de ventes perdues (lost sales). En outre, un autre concept ajouté dans les PDL sous les trois types de contrat buyback réside dans le fait que le détaillant peut jeter la quantité invendue et non retournée au fournisseur, appelé mise au rebut (disposal). Nous avons modélisé ces différentes extensions du PDL par des Programmes Linéaires en Nombres Entiers (PLNE). Nous avons ensuite développé des algorithmes exacts polynomiaux de programmation dynamique pour certaines extensions, et montré la NP-difficulté pour d'autres. Pour chaque problème résolu en temps polynomial, nous avons comparé l'efficacité et les limites de l'algorithme proposé avec celles des quatre formulations en PLNE. Nous avons également proposé des modèles mathématiques pour les PDL sous d'autres types de contrats de réservation de capacité dans le cas déterministe à multi-périodes. / We study the single-item Lot Sizing Problem (LSP) in a supply chain composed of a retailer and a supplier by integrating the buyback contract and the batch ordering. The purpose is to determine a replenishment planning for the retailer to satisfy his deterministic demands over a finite horizon, while minimizing the procurement and inventory costs. Regarding the procurement cost, we assume two different structures: FTL (Full Truck Load) and OFB (Only Full Batch). We consider three types of buyback contract: with fixed return periods, with a time limit on returns, and with returns permitted only in procurement periods. Each contract is characterized by the maximum return percentage being either equal to 100% (full return) or less than 100% (partial return). For the LSP under the buyback contract with fixed return periods, we assume the concept of lost sales. Another concept considered in the LSP's under the three types of buyback contract is the disposal of the unsold and unreturned quantities. We model these different LSP extensions as a Mixed Integer Linear Program (MILP). Thereafter, we develop exact polynomial time dynamic programming algorithms for some extensions and show the NP-hardness of others. For each problem solved in polynomial time, we compare the efficiency and the limits of the proposed algorithm with those of four MILP formulations by performing different tests. Finally, we propose mathematical models for the LSP's under other types of the capacity reservation contract in the deterministic and multi-period case.
|
25 |
Standard and Non-standard reasoning in Description Logics / Standard- und Nicht-Standard-Inferenzen in BeschreibungslogikenBrandt, Sebastian-Philipp 23 May 2006 (has links) (PDF)
The present work deals with Description Logics (DLs), a class of knowledge representation formalisms used to represent and reason about classes of individuals and relations between such classes in a formally well-defined way. We provide novel results in three main directions. (1) Tractable reasoning revisited: in the 1990s, DL research has largely answered the question for practically relevant yet tractable DL formalisms in the negative. Due to novel application domains, especially the Life Sciences, and a surprising tractability result by Baader, we have re-visited this question, this time looking in a new direction: general terminologies (TBoxes) and extensions thereof defined over the DL EL and extensions thereof. As main positive result, we devise EL++(D)-CBoxes as a tractable DL formalism with optimal expressivity in the sense that every additional standard DL constructor, every extension of the TBox formalism, or every more powerful concrete domain, makes reasoning intractable. (2) Non-standard inferences for knowledge maintenance: non-standard inferences, such as matching, can support domain experts in maintaining DL knowledge bases in a structured and well-defined way. In order to extend their availability and promote their use, the present work extends the state of the art of non-standard inferences both w.r.t. theory and implementation. Our main results are implementations and performance evaluations of known matching algorithms for the DLs ALE and ALN, optimal non-deterministic polynomial time algorithms for matching under acyclic side conditions in ALN and sublanguages, and optimal algorithms for matching w.r.t. cyclic (and hybrid) EL-TBoxes. (3) Non-standard inferences over general concept inclusion (GCI) axioms: the utility of GCIs in modern DL knowledge bases and the relevance of non-standard inferences to knowledge maintenance naturally motivate the question for tractable DL formalism in which both can be provided. As main result, we propose hybrid EL-TBoxes as a solution to this hitherto open question.
|
26 |
Improvement and partial simulation of King & Saia’s expected-polynomial-time Byzantine agreement algorithmKimmett, Ben 16 June 2020 (has links)
We present a partial implementation of King and Saia 2016’s expected polyno- mial time byzantine agreement algorithm, which which greatly speeds up Bracha’s Byzantine agreement algorithm by introducing a shared coin flip subroutine and a method for detecting adversarially controlled nodes. In addition to implementing the King-Saia algorithm, we detail a new version of the “blackboard” abstraction used to implement the shared coin flip, which improves the subroutine’s resilience from t < n/4 to t < n/3 and leads to an improvement of the resilience of the King-Saia Byzantine agreement algorithm overall. We test the King-Saia algorithm, and detail a series of adversarial attacks against it; we also create a Monte Carlo simulation to further test one particular attack’s level of success at biasing the shared coin flip / Graduate
|
27 |
Standard and Non-standard reasoning in Description LogicsBrandt, Sebastian-Philipp 05 April 2006 (has links)
The present work deals with Description Logics (DLs), a class of knowledge representation formalisms used to represent and reason about classes of individuals and relations between such classes in a formally well-defined way. We provide novel results in three main directions. (1) Tractable reasoning revisited: in the 1990s, DL research has largely answered the question for practically relevant yet tractable DL formalisms in the negative. Due to novel application domains, especially the Life Sciences, and a surprising tractability result by Baader, we have re-visited this question, this time looking in a new direction: general terminologies (TBoxes) and extensions thereof defined over the DL EL and extensions thereof. As main positive result, we devise EL++(D)-CBoxes as a tractable DL formalism with optimal expressivity in the sense that every additional standard DL constructor, every extension of the TBox formalism, or every more powerful concrete domain, makes reasoning intractable. (2) Non-standard inferences for knowledge maintenance: non-standard inferences, such as matching, can support domain experts in maintaining DL knowledge bases in a structured and well-defined way. In order to extend their availability and promote their use, the present work extends the state of the art of non-standard inferences both w.r.t. theory and implementation. Our main results are implementations and performance evaluations of known matching algorithms for the DLs ALE and ALN, optimal non-deterministic polynomial time algorithms for matching under acyclic side conditions in ALN and sublanguages, and optimal algorithms for matching w.r.t. cyclic (and hybrid) EL-TBoxes. (3) Non-standard inferences over general concept inclusion (GCI) axioms: the utility of GCIs in modern DL knowledge bases and the relevance of non-standard inferences to knowledge maintenance naturally motivate the question for tractable DL formalism in which both can be provided. As main result, we propose hybrid EL-TBoxes as a solution to this hitherto open question.
|
28 |
On the Complexity of Binary Polynomial Optimization Over Acyclic HypergraphsDel Pia, Alberto, Di Gregorio, Silvia 19 March 2024 (has links)
In this work, we advance the understanding of the fundamental limits of computation for binary polynomial optimization (BPO), which is the problem of maximizing a given polynomial function over all binary points. In our main result we provide a novel class of BPO that can be solved efficiently both from a theoretical and computational perspective. In fact, we give a strongly polynomial-time algorithm for instances whose corresponding hypergraph is β-acyclic. We note that the β-acyclicity assumption is natural in several applications including relational database schemes and the lifted multicut problem on trees. Due to the novelty of our proving technique, we obtain an algorithm which is interesting also from a practical viewpoint. This is because our algorithm is very simple to implement and the running time is a polynomial of very low degree in the number of nodes and edges of the hypergraph. Our result completely settles the computational complexity of BPO over acyclic hypergraphs, since the problem is NP-hard on α-acyclic instances.Our algorithm can also be applied to any general BPO problem that contains β-cycles. For these problems, the algorithm returns a smaller instance together with a rule to extend any optimal solution of the smaller instance to an optimal solution of the original instance.
|
29 |
Learning Partial Policies for Intractable Domains on Tractable Subsets. / Lärande av ofullständiga strategier för svårlärda domäner via lättlärda delmängder.Carlsson, Viktor January 2023 (has links)
The field of classical planning deals with designing algorithms for generating plans or squences of actions that achieve specific goals. It involves representing a problem domain as a set of state variables, actions and goals, and then developing search algorithms that can explore the state of possible plans to find the one that satisfies the specified goal. Classical planning domains are often NP-hard, meaning that their worst-case complexity grows exponentially with the size of the problem. This means that as the number of state variables, actions and goals in the problem domain increases, the search space grows exponentially, making it very difficult to find a plan that satisfies the specified goal. This thesis is concerned with investigating these NP-hard domains, specifically by simplifying these domains into ones that have a polynomial solving time, creating a general policy of conditions and rules for which actions to take for the simplified domain, and then attempting to apply this policy onto the original domain. This creates a partial policy for the original domain, and the performance of this policy can be measured in order to judge its effectiveness. This can be explained as simplifying an intractable domain into a tractable one, creating a general policy for the tractable domain and then measuring its performance as a partial policy for the intractable domain.
|
30 |
Capturing Polynomial Time and Logarithmic Space using Modular Decompositions and Limited RecursionGrußien, Berit 10 November 2017 (has links)
Diese Arbeit leistet Beiträge im Bereich der deskriptiven Komplexitätstheorie. Zunächst beschäftigen wir uns mit der ungelösten Frage, ob es eine Logik gibt, welche die Klasse der Polynomialzeit-Eigenschaften (PTIME) charakterisiert. Wir betrachten Graphklassen, die unter induzierten Teilgraphen abgeschlossen sind. Auf solchen Graphklassen lässt sich die 1976 von Gallai eingeführte modulare Zerlegung anwenden. Graphen, die durch modulare Zerlegung nicht zerlegbar sind, heißen prim. Wir stellen ein neues Werkzeug vor: das Modulare Zerlegungstheorem. Es reduziert (definierbare) Kanonisierung einer Graphklasse C auf (definierbare) Kanonisierung der Klasse aller primen Graphen aus C, die mit binären Relationen auf einer linear geordneten Menge gefärbt sind. Mit Hilfe des Modularen Zerlegungstheorems zeigen wir, dass Fixpunktlogik mit Zählen (FP+C) PTIME auf der Klasse aller Permutationsgraphen und auf der Klasse aller chordalen Komparabilitätsgraphen charakterisiert. Wir beweisen zudem, dass modulare Zerlegungsbäume in Symmetrisch-Transitive-Hüllen-Logik mit Zählen (STC+C) definierbar und damit in logarithmischem Platz berechenbar sind.
Weiterhin definieren wir eine neue Logik für die Komplexitätsklasse Logarithmischer Platz (LOGSPACE). Wir erweitern die Logik erster Stufe mit Zählen um einen Operator, der eine in logarithmischem Platz berechenbare Form der Rekursion erlaubt. Die resultierende Logik LREC ist ausdrucksstärker als die Deterministisch-Transitive-Hüllen-Logik mit Zählen (DTC+C) und echt in FP+C enthalten. Wir zeigen, dass LREC LOGSPACE auf gerichteten Bäumen charakterisiert. Zudem betrachten wir eine Erweiterung LREC= von LREC, die sich gegenüber LREC durch bessere Abschlusseigenschaften auszeichnet und im Gegensatz zu LREC ausdrucksstärker als die Symmetrisch-Transitive-Hüllen-Logik (STC) ist. Wir beweisen, dass LREC= LOGSPACE sowohl auf der Klasse der Intervallgraphen als auch auf der Klasse der chordalen klauenfreien Graphen charakterisiert. / This theses is making contributions to the field of descriptive complexity theory. First, we look at the main open problem in this area: the question of whether there exists a logic that captures polynomial time (PTIME). We consider classes of graphs that are closed under taking induced subgraphs. For such graph classes, an effective graph decomposition, called modular decomposition, was introduced by Gallai in 1976. The graphs that are non-decomposable with respect to modular decomposition are called prime. We present a tool, the Modular Decomposition Theorem, that reduces (definable) canonization of a graph class C to (definable) canonization of the class of prime graphs of C that are colored with binary relations on a linearly ordered set. By an application of the Modular Decomposition Theorem, we show that fixed-point logic with counting (FP+C) captures PTIME on the class of permutation graphs and the class of chordal comparability graphs. We also prove that the modular decomposition tree is definable in symmetric transitive closure logic with counting (STC+C), and therefore, computable in logarithmic space.
Further, we introduce a new logic for the complexity class logarithmic space (LOGSPACE). We extend first-order logic with counting by a new operator that allows it to formalize a limited form of recursion which can be evaluated in logarithmic space. We prove that the resulting logic LREC is strictly more expressive than deterministic transitive closure logic with counting (DTC+C) and that it is strictly contained in FP+C. We show that LREC captures LOGSPACE on the class of directed trees. We also study an extension LREC= of LREC that has nicer closure properties and that, unlike LREC, is more expressive than symmetric transitive closure logic (STC). We prove that LREC= captures LOGSPACE on the class of interval graphs and on the class of chordal claw-free graphs.
|
Page generated in 0.0793 seconds