• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 11
  • 2
  • Tagged with
  • 59
  • 59
  • 24
  • 19
  • 18
  • 16
  • 15
  • 14
  • 14
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

CMOS Receiver Design for 802.11ac Standard Using Offline Calibrated Active Inductor Based Band Pass Filter in 90 nm Technology

Li, Shuo January 2019 (has links)
No description available.
42

On Process Variation Tolerant Low Cost Thermal Sensor Design

Remarsu, Spandana 01 January 2011 (has links) (PDF)
Thermal management has emerged as an important design issue in a range of designs from portable devices to server systems. Internal thermal sensors are an integral part of such a management system. Process variations in CMOS circuits cause accuracy problems for thermal sensors which can be fixed by calibration tables. Stand-alone thermal sensors are calibrated to fix such problems. However, calibration requires going through temperature steps in a tester, increasing test application time and cost. Consequently, calibrating thermal sensors in typical digital designs including mainstream desktop and notebook processors increases the cost of the processor. This creates a need for design of thermal sensors whose accuracy does not vary significantly with process variations. Other qualities desired from thermal sensors include low area requirement so that many of them maybe integrated in a design as well as low power dissipation, such that the sensor itself does not become a significant source of heat. In this work, we developed a process variation tolerant thermal sensor design with (i) active compensation circuitry and (ii) signal dithering based self calibration technique to meet the above requirements in 32nm technology. Results show that we achieve 3ºC temperature accuracy, with a relatively small design which compares well with designs that are currently used.
43

Rf Power Amplifier And Oscillator Design For Reliability And Variability

Chen, Shuyu 01 January 2013 (has links)
CMOS RF circuit design has been an ever-lasting research field. It gained so much attention since RF circuits have high mobility and wide band efficiency, while CMOS technology has the advantage of low cost and better capability of integration. At the same time, IC circuits never stopped scaling down for the recent many decades. Reliability issues with RF circuits have become more and more severe with device scaling down: reliability effects such as gate oxide break down, hot carrier injection, negative bias temperature instability, have been amplified as the device size shrinks. Process variability issues also become more predominant as the feature size decreases. With these insights provided, reliability and variability evaluations on typical RF circuits and possible compensation techniques are highly desirable. In this work, a class E power amplifier is designed and laid out using TSMC 0.18 µm RF technology and the chip was fabricated. Oxide stress and hot electron tests were carried out at elevated supply voltage, fresh measurement results were compared with different stress conditions after 10 hours. Test results matched very well with mixed mode circuit simulations, proved that hot carrier effects degrades PA performances like output power, power efficiency, etc. Self- heating effects were examined on a class AB power amplifier since PA has high power operations. Device temperature simulation was done both in DC and mixed mode level. Different gate biasing techniques were analyzed and their abilities to compensate output power were compared. A simple gate biasing circuit turned out to be efficient to compensate selfheating effects under different localized heating situations. iv Process variation was studied on a classic Colpitts oscillator using Monte-Carlo simulation. Phase noise was examined since it is a key parameter in oscillator. Phase noise was modeled using analytical equations and supported by good match between MATLAB results and ADS simulation. An adaptive body biasing circuit was proposed to eliminate process variation. Results from probability density function simulation demonstrated its capability to relieve process variation on phase noise. Standard deviation of phase noise with adaptive body bias is much less than the one without compensation. Finally, a robust, adaptive design technique using PLL as on-chip sensor to reduce Process, Voltage, Temperature (P.V.T.) variations and other aging effects on RF PA was evaluated. The frequency and phase of ring oscillator need to be adjusted to follow the frequency and phase of input in PLL no matter how the working condition varies. As a result, the control signal of ring oscillator has to fluctuate according to the working condition, reflecting the P.V.T changes. RF circuits suffer from similar P.V.T. variations. The control signal of PLL is introduced to RF circuits and converted to the adaptive tuning voltage for substrate bias. Simulation results illustrate that the PA output power under different variations is more flat than the one with no compensation. Analytical equations show good support to what has been observed.
44

Design Automation Flow using Library Adaptation for Variation Aware Logic Synthesis

Atluri, Lava Kumar 03 June 2014 (has links)
No description available.
45

Architectural Solutions for Low-power, Low-voltage, and Unreliable Silicon Devices

Miller, Timothy Normand 22 June 2012 (has links)
No description available.
46

Low-Power Multi-GHz Circuit Techniques for On-chip Clocking

Hansson, Martin January 2006 (has links)
The impressive evolution of modern high-performance microprocessors have resulted in chips with over one billion transistors as well as multi-GHz clock frequencies. As the silicon integrated circuit industry moves further into the nanometer regime, three of the main challenges to overcome in order for continuing CMOS technology scaling are; growing standby power dissipation, increasing variations in process parameters, and increasing power dissipation due to growing clock load and circuit complexity. This thesis addresses all three of these future scaling challenges with the overall focus on reducing the total clock-power for low-power, multi-GHz VLSI circuits. Power-dissipation related to the clock generation and distribution is identified as the dominating contributor of the total active power dissipation. This makes novel power reduction techniques crucial in future VLSI design. This thesis describes a new energy-recovering clocking technique aimed at reducing the total chip clock-power. The proposed technique consumes 2.3x lower clock-power compared to conventional clocking at a clock frequency of 1.56 GHz. Apart from increasing power dissipation due to leakage also the robustness constraints for circuits are impacted by the increasing leakage. To improve the leakage robustness for sub-90 nm low clock load dynamic flip-flops a novel keeper technique is proposed. The proposed keeper utilizes a scalable and simple leakage compensation technique. During any low frequency operation, the flip-flop is configured as a static flip-flop with increased functional robustness. In order to compensate the impact of the increasingly large process variations on latches and flip-flops, a reconfigurable keeper technique is presented in this thesis. In contrast to the traditional design for worst-case process corners, a variable keeper circuit is utilized. The proposed reconfigurable keeper preserves the robustness of storage nodes across the process corners without degrading the overall chip performance. / Report code: LiU-TEK-LIC-2006:21.
47

Design of process and environment adaptive ultra-low power wireless circuits and systems

Sen, Shreyas 22 August 2011 (has links)
The objective of the proposed research is to investigate the design of Self-Aware Radio Frequency Circuits and Wireless Communication Systems that can adapt to environmental and process variations to always operate at minimum power levels possible, extending battery life. The explosive growth of portable battery operated devices has mandated design of low power circuits and systems to prolong battery life. These devices fabricated in modern nanoscale CMOS technologies suffer from severe process variation due to the reduced controllability of the fabrication process, causing yield loss. This calls for integrated low power and process tolerant design techniques, or design of systems that can adapt to its process and environment to maintain its performance while minimizing power consumption. Currently, most of the wireless circuits are designed to meet minimum quality-of-service requirements under worst-case wireless link conditions (interference, noise, multi-path effects), leading to high power consumption when the channel is better than worst-case. In this research, we develop a multi-dimensional adaptation approach for wireless transmitters and receivers that optimally trades-off power vs. performance across temporally changing operating conditions by concurrently tuning control parameters in the RF front end to lower power consumption. Tunable circuits (e.g. LNA) with built-in tuning knobs providing independent controllability of important specifications allow optimal adaptation. Process sensing using intelligent test and calibration facilitates yield improvement and the design of process tolerant environment adaptive systems. Low cost testing methodologies are developed for identification of the health of the wireless circuit/system. These are used in conjunction with tuning algorithms that tune a wireless system under process variation to meet performance specifications and recover yield loss. This testing and adaptation is performed once during the post manufacture test/tune phase to compensate for manufacturing variations. This can also be applied periodically during in field operation of a device to account for performance degradation due to ageing. Finally, process tolerant environment adaptive systems are designed.
48

Statistical Yield Analysis and Design for Nanometer VLSI

Jaffari, Javid January 2010 (has links)
Process variability is the pivotal factor impacting the design of high yield integrated circuits and systems in deep sub-micron CMOS technologies. The electrical and physical properties of transistors and interconnects, the building blocks of integrated circuits, are prone to significant variations that directly impact the performance and power consumption of the fabricated devices, severely impacting the manufacturing yield. However, the large number of the transistors on a single chip adds even more challenges for the analysis of the variation effects, a critical task in diagnosing the cause of failure and designing for yield. Reliable and efficient statistical analysis methodologies in various design phases are key to predict the yield before entering such an expensive fabrication process. In this thesis, the impacts of process variations are examined at three different levels: device, circuit, and micro-architecture. The variation models are provided for each level of abstraction, and new methodologies are proposed for efficient statistical analysis and design under variation. At the circuit level, the variability analysis of three crucial sub-blocks of today's system-on-chips, namely, digital circuits, memory cells, and analog blocks, are targeted. The accurate and efficient yield analysis of circuits is recognized as an extremely challenging task within the electronic design automation community. The large scale of the digital circuits, the extremely high yield requirement for memory cells, and the time-consuming analog circuit simulation are major concerns in the development of any statistical analysis technique. In this thesis, several sampling-based methods have been proposed for these three types of circuits to significantly improve the run-time of the traditional Monte Carlo method, without compromising accuracy. The proposed sampling-based yield analysis methods benefit from the very appealing feature of the MC method, that is, the capability to consider any complex circuit model. However, through the use and engineering of advanced variance reduction and sampling methods, ultra-fast yield estimation solutions are provided for different types of VLSI circuits. Such methods include control variate, importance sampling, correlation-controlled Latin Hypercube Sampling, and Quasi Monte Carlo. At the device level, a methodology is proposed which introduces a variation-aware design perspective for designing MOS devices in aggressively scaled geometries. The method introduces a yield measure at the device level which targets the saturation and leakage currents of an MOS transistor. A statistical method is developed to optimize the advanced doping profiles and geometry features of a device for achieving a maximum device-level yield. Finally, a statistical thermal analysis framework is proposed. It accounts for the process and thermal variations simultaneously, at the micro-architectural level. The analyzer is developed, based on the fact that the process variations lead to uncertain leakage power sources, so that the thermal profile, itself, would have a probabilistic nature. Therefore, by a co-process-thermal-leakage analysis, a more reliable full-chip statistical leakage power yield is calculated.
49

Robust Design of Variation-Sensitive Digital Circuits

Moustafa, Hassan January 2011 (has links)
The nano-age has already begun, where typical feature dimensions are smaller than 100nm. The operating frequency is expected to increase up to 12 GHz, and a single chip will contain over 12 billion transistors in 2020, as given by the International Technology Roadmap for Semiconductors (ITRS) initiative. ITRS also predicts that the scaling of CMOS devices and process technology, as it is known today, will become much more difficult as the industry advances towards the 16nm technology node and further. This aggressive scaling of CMOS technology has pushed the devices to their physical limits. Design goals are governed by several factors other than power, performance and area such as process variations, radiation induced soft errors, and aging degradation mechanisms. These new design challenges have a strong impact on the parametric yield of nanometer digital circuits and also result in functional yield losses in variation-sensitive digital circuits such as Static Random Access Memory (SRAM) and flip-flops. Moreover, sub-threshold SRAM and flip-flops circuits, which are aggravated by the strong demand for lower power consumption, show larger sensitivity to these challenges which reduces their robustness and yield. Accordingly, it is not surprising that the ITRS considers variability and reliability as the most challenging obstacles for nanometer digital circuits robust design. Soft errors are considered one of the main reliability and robustness concerns in SRAM arrays in sub-100nm technologies due to low operating voltage, small node capacitance, and high packing density. The SRAM arrays soft errors immunity is also affected by process variations. We develop statistical design-oriented soft errors immunity variations models for super-threshold and sub-threshold SRAM cells accounting for die-to-die variations and within-die variations. This work provides new design insights and highlights the important design knobs that can be used to reduce the SRAM cells soft errors immunity variations. The developed models are scalable, bias dependent, and only require the knowledge of easily measurable parameters. This makes them useful in early design exploration, circuit optimization as well as technology prediction. The derived models are verified using Monte Carlo SPICE simulations, referring to an industrial hardware-calibrated 65nm CMOS technology. The demand for higher performance leads to very deep pipelining which means that hundreds of thousands of flip-flops are required to control the data flow under strict timing constraints. A violation of the timing constraints at a flip-flop can result in latching incorrect data causing the overall system to malfunction. In addition, the flip-flops power dissipation represents a considerable fraction of the total power dissipation. Sub-threshold flip-flops are considered the most energy efficient solution for low power applications in which, performance is of secondary importance. Accordingly, statistical gate sizing is conducted to different flip-flops topologies for timing yield improvement of super-threshold flip-flops and power yield improvement of sub-threshold flip-flops. Following that, a comparative analysis between these flip-flops topologies considering the required overhead for yield improvement is performed. This comparative analysis provides useful recommendations that help flip-flops designers on selecting the best flip-flops topology that satisfies their system specifications while taking the process variations impact and robustness requirements into account. Adaptive Body Bias (ABB) allows the tuning of the transistor threshold voltage, Vt, by controlling the transistor body voltage. A forward body bias reduces Vt, increasing the device speed at the expense of increased leakage power. Alternatively, a reverse body bias increases Vt, reducing the leakage power but slowing the device. Therefore, the impact of process variations is mitigated by speeding up slow and less leaky devices or slowing down devices that are fast and highly leaky. Practically, the implementation of the ABB is desirable to bias each device in a design independently, to mitigate within-die variations. However, supplying so many separate voltages inside a die results in a large area overhead. On the other hand, using the same body bias for all devices on the same die limits its capability to compensate for within-die variations. Thus, the granularity level of the ABB scheme is a trade-off between the within-die variations compensation capability and the associated area overhead. This work introduces new ABB circuits that exhibit lower area overhead by a factor of 143X than that of previous ABB circuits. In addition, these ABB circuits are resolution free since no digital-to-analog converters or analog-to-digital converters are required on their implementations. These ABB circuits are adopted to high performance critical paths, emulating a real microprocessor architecture, for process variations compensation and also adopted to SRAM arrays, for Negative Bias Temperature Instability (NBTI) aging and process variations compensation. The effectiveness of the new ABB circuits is verified by post layout simulation results and test chip measurements using triple-well 65nm CMOS technology. The highly capacitive nodes of wide fan-in dynamic circuits and SRAM bitlines limit the performance of these circuits. In addition, process variations mitigation by statistical gate sizing increases this capacitance further and fails in achieving the target yield improvement. We propose new negative capacitance circuits that reduce the overall parasitic capacitance of these highly capacitive nodes. These negative capacitance circuits are adopted to wide fan-in dynamic circuits for timing yield improvement up to 99.87% and to SRAM arrays for read access yield improvement up to 100%. The area and power overheads of these new negative capacitance circuits are amortized over the large die area of the microprocessor and the SRAM array. The effectiveness of the new negative capacitance circuits is verified by post layout simulation results and test chip measurements using 65nm CMOS technology.
50

Implement Low Power IC Design with Statistical Static Timing Analysis in 90nm CMOS Technology

Ou, Yu-Hao 15 February 2011 (has links)
As the mobile electronic products development are more and more popular such as mobile phone, digital camera, PDA¡Ketc. Each of company releases variable kind of mobile products, and every portable machine has plenty of functions. A low power consumption design is a significant issue which academics and engineers concern. It would be a major progress if the approach which can drop off the power consumption successfully. The mobile electronic products have more application programs than before and the size of LCD increases continuously, so that the power consumption becomes large. Therefore, expanding the life of battery would be a significant issue. Besides, the process technology has improved day by day, and it would influence the supply voltage be declined. It represents the power management would influence the power consumption of circuit directly. Comparing to drop down the entire IC power consumption and not to influence the performance of IC, the thesis employs the algorithm that searches the Critical Path and embeds the Level Converter Logic into digital circuit. It can offer the proper supply voltage to circuits which do not want to bigger supply voltage for reduce power consumption. However, the process variation (Inter-Die or Intra-Die) may transform the original Critical Path, the Critical Path which searches through the static timing analysis would not correct. To conquer this problem, the thesis provides the statistical approach to analysis timing. It would search Path Sensitivity which is exactly equal to the probability that a path is critical. Finally, the logic gate which is designed by us would replace the UMC 90nm standard cell through Cell-Based.

Page generated in 0.0892 seconds