411 |
Transcriptional Regulation By Nuclear Receptor Homodimers Binding To The Direct Repeat Motif DR1 : Investigations In An in vitro Transcription System Derived From Rat Liver Nuclear ExtractsHarish, S 02 1900 (has links)
Nuclear receptors (NRs) are important transcription factors involved in the regulation of a variety of physiological processes such as embryonic development, cell differentiation and homeostasis (for review, see Mangelsdorf et al., 1995 TenBaum and Baniahrned, 1997). In contrast to membrane bound receptors, they bind small lipophilic ligands and function in the nucleus as ligand-modulated transcription factors. The ligands for nuclear receptors include steroids (glucocorticoids, progestins, mineralocorticoids, androgens and estrogens), vitamin D3, retinoids, thyroid hormone, prostaglandins, farnesoids etc. Several other nuclear receptors are classified as orphan receptors for which no ligand has yet been identified.
More than 300 nuclear receptors have now been identified and together these proteins comprise the single largest family of metazoan transcription factors, the nuclear receptor superfamily. Recently, a unified nomenclature has been evolved (nuclear receptor nomenclature committee, 1999), a summary of which is presented in Table 1.
|
412 |
Mechanism Of mom Gene Transactivation By Transcription Factor C Of Phage MUChakraborty, Atanu 05 1900 (has links)
Regulation of transcription initiation is the major determining event employed by the cell to control gene expression and subsequent cellular processes. The weak promoters, with low basal transcription activities, are activated by activators. Bacteriophage Mu mom gene, which encodes a unique DNA modification function, is detrimental to cell when expressed early or in large quantities. Mu has designed a complex, well-controlled and orchestrated regulatory network for mom expression to ensure its synthesis only in late lytic cycle. The phage encoded transcription activator protein C activates the gene by promoter unwinding of the DNA and thereby recruiting of RNAP to the promoter.
C protein functions as a dimer for DNA binding and transcription activation. Mutagenesis and chemical crosslinking studies revealed that the leucine zipper motif, and not the coiled coil motif in the N terminal region, is responsible for C dimerization. The DNA binding domain of C is a HTH domain which is preceded by the leucine zipper motif. The C protein is one of the few examples in the bacterial proteins containing both leucine zipper and HTH domain.
Most of the transcription activators either influence initial binding of RNAP or conversion of closed to open complex formation. Very few activators act at subsequent steps of promoter-polymerase interaction. Earlier studies showed high level of transcription from a mutant mom promoter, tin7. Addition of C further increased transcription from Ptin7 indicating that C may have a role beyond polymerase recruitment. Each steps of transcription initiation have been dissected using the Ptin7 and a positive control (pc) mutant of C, R105D. The results revealed multi-step transcription activation mechanism for C protein at Pmom. C recruits RNAP at Pmom and subsequently increases the productive RNAP-promoter complex and enhances promoter clearance.
To further understand the C mediated transactivation mechanism, interaction between C and RNAP was assessed. C interacts with holo and core RNAP only in presence of DNA. Positive control mutants of C, F95A and R015D, were found to be compromised in RNAP interactions. These mutants were efficient in RNAP recruitment to Pmom but do not enhance promoter clearance. Trypsin cleavage protection experiment indicated that probably C protein interacts with b¢ subunit of RNAP. Interaction between C and RNAP appears to enhance the formation of productive RNAP-promoter complex leading to promoter clearance.
The connection between activator-polymerase interaction and transcription activation is well documented where the recruitment of RNAP is influenced. In case of activators acting at post recruitment steps of initiation, the role of polymerase contact is poorly understood. Our study shows that activator-polymerase interaction can lead to increased promoter clearance at Pmom by overcoming abortive initiation.
|
413 |
Molekulare Analyse des probiotischen Stamms Escherichia coli Nissle 1917Schmidt, Dorothea 05 June 2009 (has links) (PDF)
Der probiotische Stamm E. coli Nissle 1917 ist ein Fäkalisolat, das in der Medizin traditionell zur Behandlung verschiedener gastrointestinaler Erkrankungen eingesetzt wird. Durch erfolgversprechende klinische Studien zur Remissionserhaltung bei Colitis ulcerosa, bei denen EcN als therapeutische Alternative zur Standardmedikation eingesetzt wird, ist das Interesse an den Wirkmechanismen von Probiotika stark gestiegen. EcN gehört derzeit zu den am besten untersuchten Probiotika. Einige Wirkmechanismen konnten dadurch schon aufgeklärt werden. So sind vermutlich Strukturkomponenten und stammspezifische Syntheseleistungen an der Ausprägung des probiotischen Phänotyps von EcN beteiligt. Schlüssige Konzepte, die über Gene, Genprodukte und molekulare Mechanismen den probiotischen Effekt von EcN erklären, fehlen bislang. Im Rahmen dieser Arbeit wird das Genom von EcN analysiert und auf der Basis der Genomsequenz mit anderen E. coli-Stämmen verglichen. Mit Hilfe einer Promotor-Reporter-Fusionsbibliothek (Promotorbank) werden intestinal in vivo regulierte Gene identifiziert und dadurch neue Ansätze zur Untersuchung der probiotischen Eigenschaften von EcN geschaffen. Die Grundlage für die molekulare Analyse von EcN ist die manuelle Nachannotation seines sequenzierten Genoms. Die EcN-Sequenz wird mit 13 weiteren annotierten E. coli-Sequenzen verglichen. Nach dieser Analyse kodiert EcN derzeit 121 stammspezifische Gene. Die Genomstruktur ist mit den enthaltenen genomischen Inseln und Prophagen dem Genom des uropathogenen E. coli CFT073 sehr ähnlich. Mit wenigen Ausnahmen kodiert EcN alle in E. coli CFT073 vorhandenen Virulenz- und Fitnessfaktoren, so dass auf der Nukleotidebene die nahe Verwandschaft dieser beiden Stämme bestätigt werden kann. Zudem kann gezeigt werden, dass EcN in artifiziellen Systemen wie der Zellkultur oder gnotobiotischen Mäusen ein pathogenes Potenzial hat, obgleich die Kolonisierungsfähigkeit pathogener Bakterien durch Inkubation mit EcN herabgesetzt wird. Eine wichtige Rolle bei der Besiedlung des Intestinaltrakts und der Immunstimulation von Darmepithelzellen spielt auch die globale Regulation der Genaktivität bei EcN durch den alternativen Sigma-Faktor RpoS, der im Gegensatz zu rpoS-Deletionsmutanten zu einer gesteigerten mRNA-Expression des Tight-junction Proteins ZO-1 führt. Des Weiteren führte die Untersuchung von EcN-Deletionsmutanten zu der Schlussfolgerung, dass einige genomische Inseln für Eigenschaften, die das probiotische Verhalten erklären können, eine Rolle spielen. Durch den Einsatz einer Promotorbank von EcN in konventionellen und gnotobiotischen Mäusen werden erstmalig Sequenzen von intestinal in vivo aktiven Promotoren identifiziert. Der Aufbau eines Promotor-Reportergen-Assays mit dem Biolumineszenz erzeugenden luxCDABE-Operon ermöglichte die Untersuchung ausgewählter Promotoren in vitro. Mit einem In Vivo Imaging System (IVIS) kann in weiteren Experimenten die Aktivität dieser Promotoren in lebenden Mäusen untersucht werden. Im Rahmen dieser Arbeit wird gezeigt, dass EcN kein vollkommen harmloser probiotischer Stamm ist. Weitere Informationen über EcN sind dehalb wichtig für eine optimierte Anwendung als Therapeutikum. Die molekulare Analyse ist somit eine unbedingt notwendige Grundlage für weiterführende Untersuchungen der Eigenschaften von EcN, die für seinen probiotischen Charakter verantwortlich sind. / The probiotic E. coli Nissle 1917 is a fecal isolate which is traditionally used for treatment of various gastrointestinal disorders. In clinical trials where EcN was used as therapeutic alternative for remission maintenance of ulcerative colitis compared to standard medication, promising results led to an increased interest in probiotics. Today, EcN is one of the best studied probiotics. Therefore, several mechanisms of action could be enlightened. Structural components and strain-specific products are responsible for its probiotic effects. But conclusive concepts about genes, gene products and molecular mechanisms that really contribute to the probiotic character of EcN have not been offered so far. In order to create new possibilities to elucidate the probiotic traits of EcN the genome is analysed by taking this as a basis for comparison to other E. coli genomes and identification of intestinal in vivo regulated genes using a promoter-trap-library. The sequenced EcN genome is annotated and compared to 13 other so far annotated E. coli genomes. Concerning these analyses EcN encodes 121 strain-specific genes. The genome structure including the genomic islands and prophages is highly homolog to the uropathogenic E. coli CFT073. EcN encodes most of the virulence and fitness factors that are present in E. coli CFT073. Therefore, the close relationship of these two strains is confirmed at nucleotide level. Furthermore, it is shown that in artificial systems like cell culture assays and gnotobiotic mice EcN reveals a pathogenic potential although EcN is able to decrease colonization efficiency of pathogenic bacteria. The alternative sigma factor RpoS that is responsible for global regulation and activity of several genes seems to play an important role during colonization of EcN in the intestine and its immunostimulatory effects on intestinal epithelial cells. Investigation of EcN-deletion mutants lacking genomic islands and prophages lead to the conclusion that some genomic islands may play a role for specific probiotic traits. This is the first time where a promoter-trap-library was used in conventional and gnotobiotic mice for collection of intestinal in vivo active promoters. Constructing and establishing a promoter-reporter gene assay with the bioluminescent luxCDABE operon made the investigation of selected promoters in vitro possible as well as establishing a bioluminescence assay using an In Vivo Imaging System (IVIS) for investigation of promoter activity in living mice. In this research project was shown that EcN is not a completely harmless probiotic. The genome structure and regulatory mechanisms of gene expression are the strain’s molecular traits that lead to probiotic activity and immunostimulatory effects. Therefore, the molecular analyses presented here, together with the complete genome sequence, are a basis for further investigations of mechanisms that are responsible for the probiotic effects of EcN.
|
414 |
Synthesis and Characterization of Thin films of Novel Functionalised 2,5-Dithienylpyrrole Derivatives on Oxide SubstratesOberoi, Sonia 14 May 2005 (has links) (PDF)
Conducting polymers find variety of application in many areas in microelectronics. PPY and PT are among the most extensively studied intrinsically conducting polymers. The problem of poor adhesion of the electrochemically deposited conducting polymers was the main focus of this work. This easy peeling of the PPY layer from the oxide substrate was circumvented by design of novel adhesion promoters, which compatibilise the two incompatible surfaces- the polymer film and the oxide substrate. The first part of the research was focused on the synthesis of different classes of adhesion promoters. These monomers were based on monoheterocyclic derivative of 3-substituted pyrrole and a tricyclic derivative of 2,5-dithienylpyrrole. The synthesized monomers were bifunctional with a specified and defined task for each group. Pyrrole based monomers, 3-phenyl N-alkyl pyrrolyl phosphonic acids referred as C10PhP and C12PhP and the monomers based on 2,5-dithienylpyrrole were synthesized with different anchoring groups namely, -Si(OMe)3 and-PO3H2 and spacer groups (n= 4, 6, 10, 12, benzyl). SNSnP for [(2,5-dithiophen-2-yl-pyrrol-1-yl)-dodecyl]-phosphonic acid, SNSnTMS for [(2,5-dithiophen-2-yl-pyrrol-1-yl)-alkyl]-trimethoxysilane and ArP for 4-(2,5-di-thiophen-2-yl-pyrrol-1-yl)-1-yl)-benzyl]-phosphonic acid was used as acronym for further references. The adsorption and self-organisation process as well as the surface reactions of these adhesion promoters on different oxide surfaces have been investigated. The aim was to graft conducting polymer layers covalently on modified metal oxide surfaces. This novel molecule has the self-assembling property and can bind to the surface via acid-base interactions with the oxide surface. The pre-treated oxide substrates were modified by self-assembling technique from solution. Static contact angle gave the first indication of a successful adsorption. The kinetics of adsorption was monitored by Surface Plasmon Resonance Spectroscopy (SPR), Angle-Resolved X-Ray Photoelectron Spectroscopy (AR-XPS) confirms that the molecules are standing with the phosphonic acid group present in the inner part of the self-assembled monolayer (SAM), and the 2,5-dithienylpyrrole group is free on the top for further surface reactions. Such self-assembling molecules can find applications in grafting conducting polymer layers on metal oxide surfaces. The grafting process of conducting polymer was done either chemically or electrochemically with additional monomer. Thickness and morphology of the polymer films were studied by AFM and SEM. The film thickness could be adjusted between several hundreds of nanometer by varying the polymerization conditions. The tape-test confirms the strong adhesive bonding of the polymer to the modified substrate. Besides PPY, Poly(SNS) and Poly(SNSnP) were studied for their properties. The optical properties of Poly(SNS) were studied by UV-Vis spectroscopy. Electrochemically deposited polymer films of (Poly(SNS), Poly(SNSnTMS), Poly(ArP) and Poly(SNSnP)) was investigated by UV-Vis spectroscopy, XPS, grazing-angle FTIR spectroscopy, four-point conductivity and I-V and luminance - voltage characteristics. Grazing-angle FT-IR of the homopolymer, poly(SNSnP) showed interesting results. We observed the peaks due to P-OH at 1111 cm-1 indicating that the phosphonic acid is free on the top. This can find application as ion sensor because phosphonates are known to be good chelating agents. Comparison of the EIS and four-point conductivity measurements for the homopolymers of SNSnP and Poly(SNS) indicated a drop in the conductivity in case of substituted hompolymers. Poly(SNSnP) based LED device give white emission. EL spectra show broad bands, which cover the entire spectrum. They can be studied further for the development of light emitting diodes of different colours.
|
415 |
EU som demokratifrämjare? : En jämförande studie av Europeiska Unionens demokratifrämjande politik gentemot Makedonien, Kroatien och Turkiet / EU as a democracy promoter? : A comparative study of the EU:s democracy promotion towards Macedonia, Croatia and Turkey.Jansson, Andreas January 2010 (has links)
<p><strong> </strong></p><p>In this essay the aim was to investigate how the EU is trying to function as a democracy promoter in three particular countries, the so called candidate-countries Croatia, Macedonia and Turkey. The aim was also to analyze if there exist any differences in how the EU functions in these countries as a democracy promoter with a focus on how acts of democracy promotion is taken place. In order to fulfil the purpose of the essay two questions were addressed, how does the EU perform in promoting democracy in the three candidate-countries Croatia, Macedonia and Turkey? And also, is it possible to identify any differences in how the EU functions as a democracy promoter in those three countries?</p><p>The method used to fulfil purpose and answering research-questions was qualitative text-analysis. The results of the study were that the EU does perform in a number of ways to promote democracy in the three countries. The main differences are that the EU is using primarily political tools in Croatia and Macedonia which are channelized top-down and economic tools in Turkey channelized mainly top-down to promote democracy. The extent between the tools used differs.</p><p> </p><p><strong> </strong></p>
|
416 |
Molecular characterization of the fepA-fes bidirectional promoter in escherichia coliMorris, Terry Lynn, January 2001 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2001. / Typescript. Vita. Includes bibliographical references (leaves 135-149). Also available on the Internet.
|
417 |
Structure and function of the polypyrimidine region of the rat [alpha]1 (I) procollagen gene promoterRirie, Seth S., January 2000 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2000. / Typescript. Vita. Includes bibliographical references (leaves 133-147). Also available on the Internet.
|
418 |
Beziehungspromotoren in Netzwerken und ihre Auswirkungen auf die InteraktionsqualitätNaumann, Antje, Turgut, Nergiz, Reitenbach, Victoria, Staar, Henning, Janneck, Monique 30 May 2014 (has links) (PDF)
No description available.
|
419 |
A Functional Genomics Approach for Characterizing the Role of Six Transcription Factors in Muscle DevelopmentChu, Alphonse 14 May 2012 (has links)
Proper development of skeletal muscle occurs through a highly complex process where activation and repression of genes are essential. Control of this process is regulated by timely and spatial expression of specific transcription factors (TFs). Six1 and Six4 are homeodomain TFs known to be essential for skeletal muscle development in mice. Using the C2C12 cell line, a model for skeletal muscle differentiation, I used a functional genomics approach, employing siRNA specific to both these TFs, to characterize their role in skeletal myogenesis. To identify the genes that are regulated by both these TFs, gene expression profiling by microarray of cells treated with siRNA against Six1 and/or Six4 was performed. The knock-down of these TFs caused lower expression of markers of terminal differentiation genes in addition to an impairment of myoblast fusion and differentiation. Interestingly, transcript profiling of cells treated with siRNA against myogenin revealed that several of the Six1 and Six4 target genes are also regulated by myogenin. Through a combination of bioinformatic analyses it was also found that specific knock-down of Six4 causes an up-regulation of genes involved in mitosis and the cell cycle. In summary, these results show that Six1 and Six4 can both independently regulate different genes, but can also cooperate together with other TFs where they play an important role in the proper regulation of skeletal myogenesis.
|
420 |
Mutated in colorectal cancer (MCC): a putative tumour suppressor gene in colorectal cancerSigglekow, Nicholas David, Garvan Institute of Medical Research, Faculty of Medicine, UNSW January 2009 (has links)
Colorectal cancer (CRC) remains a significant burden in contemporary society due to an aging population, unhealthy dietary choices and an increasingly sedentary lifestyle. While the underlying defects for many hereditary forms of CRC have been determined, many genetic and epigenetic changes promoting common sporadic CRCs have yet to be identified. The Mutated in Colorectal Cancer (MCC) gene, identified in 1991, was initially thought to be responsible for the hereditary form of CRC, familial adenomatous polyposis, before the discovery of the susceptibility gene Adenomatous Polyposis Coli (APC), which then became the focus of intense research. Recent data, however, suggests that MCC may also be important in the development of CRC. I have investigated the mechanism of MCC gene silencing, the putative structure, and multiple functions of MCC. MCC was frequently silenced by promoter hypermethylation in CRC cell lines and primary tumours. MCC methylation showed strong molecular and clinicopathological associations with hallmarks of the serrated neoplasia pathway. Furthermore, MCC methylation was more frequent in serrated precursor lesions compared with adenomas, thus occurring early during carcinogenesis. MCC is highly conserved in complex multicellular organisms. Re-introduction of MCC in CRC cell lines resulted in partial G1 to S phase, and G2/M phase cell cycle blocks, potentially by upregulating cell cycle inhibitor gene transcription and interfering with the process of mitotic checkpoints and division, respectively. Changes in MCC levels also modulated NF?B pathway signalling, the pathway required for maintaining cell viability and proliferation in colonic epithelial cells. In particular, MCC overexpression suppressed both TNF? and LPS-induced NF?B activation, decreasing both the magnitude and rate of cellular responses. Overexpression also resulted in downregulation of proteins involved in canonical NF?B pathway signalling, while increasing the transcription of non-canonical NF?B genes. Therefore, MCC may direct activation of this pathway to a specific subset of NF?B-regulated genes. These data provide a molecular basis for the role of MCC as a tumour suppressor gene in CRC. MCC may have multiple functions, regulating cell cycle progression and modulating NF?B pathway signalling, either through direct involvement in pathway signalling cascades, or by providing a scaffold on which signalling events can occur.
|
Page generated in 0.0671 seconds